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Abstract5

Measures of selective constraint on genes have been used for many applications including6

clinical interpretation of rare coding variants, disease gene discovery, and studies of genome7

evolution. However, widely-used metrics are severely underpowered at detecting constraint8

for the shortest ∼25% of genes, potentially causing important pathogenic mutations to be over-9

looked. We developed a framework combining a population genetics model with machine10

learning on gene features to enable accurate inference of an interpretable constraint metric,11

shet. Our estimates outperform existing metrics for prioritizing genes important for cell essen-12

tiality, human disease, and other phenotypes, especially for short genes. Our new estimates13

of selective constraint should have wide utility for characterizing genes relevant to human14

disease. Finally, our inference framework, GeneBayes, provides a flexible platform that can15

improve estimation of many gene-level properties, such as rare variant burden or gene expres-16

sion differences.17
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1 Introduction18

Identifying the genes important for disease and fitness is a central goal in human genetics. One19

particularly useful measure of importance is how much natural selection constrains a gene [1–4].20

Constraint has been used to prioritize de novo and rare variants for clinical followup [5, 6], predict21

the toxicity of drugs [7], link GWAS hits to genes [8], and characterize transcriptional regulation22

[9, 10], among many other applications.23

To estimate the amount of constraint on a gene, several metrics have been developed using24

loss-of-function variants (LOFs), such as protein truncating or splice disrupting variants. If a gene25

is important, then natural selection will act to remove LOFs from the population. Several metrics26

of gene importance have been developed based on this intuition to take advantage of large exome27

sequencing studies.28

In one line of research, the number of observed unique LOFs is compared to the expected29

number under a model of no selective constraint. This approach has led to the widely-used metrics30

pLI [11] and LOEUF [12].31

While pLI and LOEUF have proved useful for identifying genes intolerant to LOF mutations,32

they have important limitations [3]. First, they are uninterpretable in that they are only loosely33

related to the fitness consequences of LOFs. Their relationship with natural selection depends on34

the study’s sample size and other technical factors [3]. Second, they are not based on an explicit35

population genetics model so it is impossible to compare a given value of pLI or LOEUF to the36

strength of selection estimated for variants other than LOFs [3, 4].37

Another line of research has solved these issues of interpretability by estimating the fitness re-38

duction for heterozygous carriers of an LOF in any given gene [1,2,4]. Throughout, we will adopt39

the notation of Cassa and colleagues and refer to this reduction in fitness as shet [1, 2], although40

the same population genetic quantity has been referred to as hs [4, 13]. In [1], a deterministic41

approximation was used to estimate shet, which was relaxed to incorporate the effects of genetic42

drift in [2]. This model was subsequently extended by Agarwal and colleagues to include the X43

chromosome and applied to a larger dataset, with a focus on the interpretability of shet [4].44

A major issue for most previous methods is that thousands of genes have few expected unique45

LOFs under neutrality, as they have short protein-coding sequences. For example, there are >5,00046

genes that cannot be called as constrained by LOEUF, as they have too few expected unique LOFs47

to fall under the recommended LOEUF cutoff of 0.35 [14]. This problem is not limited to LOEUF,48

however, and all of these methods are severely underpowered to detect selection for this ∼25% of49

genes.50

Here, we present an approach that can accurately estimate shet even for genes with few ex-51

pected LOFs, while maintaining the interpretability of previous population-genetics based esti-52

mates [1, 2, 4].53

Our approach has two main technical innovations. First, we use a novel population genet-54

ics model of LOF allele frequencies. Previous methods have either only modeled the number of55

unique LOFs, throwing away frequency information [11,12,15], or considered the sum of LOF fre-56

quencies across the gene [1,2,4], an approach that is not robust to misannotated LOFs. In contrast,57

we model the frequencies of individual LOF variants, allowing us to not only use the information58
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in such frequencies but also to model the possibility that any given LOF variant has been misan-59

notated, making our estimates more robust. Our approach uses new computational machinery,60

described in a companion paper [16], to accurately obtain the likelihood of observing an LOF at a61

given frequency without resorting to simulation [2, 4] or deterministic approximations [1].62

Second, our approach uses thousands of gene features, including gene expression patterns,63

protein structure information, and evolutionary constraint, to improve estimates for genes with64

few expected LOFs. By using these features, we can share information across similar genes. In-65

tuitively, this allows us to improve estimates for genes with few expected LOFs by leveraging66

information from genes with similar features that do have sufficient LOF data.67

Adopting a similar approach, a recent preprint [15] used gene features in a deep learning68

model to improve estimation of constraint for genes with few expected LOFs, but did not use an69

explicit population genetics model, resulting in the same issues with interpretability faced by pLI70

and LOEUF.71

We applied our method to a large exome sequencing cohort [12]. Our estimates of shet are72

substantially more predictive than previous metrics at prioritizing essential and disease-associated73

genes. We also interrogated the relationship between gene features and natural selection, finding74

that evolutionary conservation, protein structure, and expression patterns are more predictive of75

shet than co-expression and protein-protein interaction networks. Expression patterns in the brain76

and expression patterns during development are particularly predictive of shet. Finally, we use77

shet to highlight differences in selection on different categories of genes and consider shet in the78

context of selection on variants beyond LOFs.79

Our approach, GeneBayes, is extremely flexible and can be applied to improve estimation of80

numerous gene properties beyond shet. Our implementation is available at https://github.com/81

tkzeng/GeneBayes.82

2 Results83

2.1 Model Overview84

Using LOF data to infer gene constraint is challenging for genes with few expected LOFs, with85

metrics like LOEUF considering almost all such genes to be unconstrained (Figures 1A,B). We86

hypothesized that it would be possible to improve estimation using auxiliary information that87

may be predictive of LOF constraint, including gene expression patterns across tissues, protein88

structure, and evolutionary conservation. Intuitively, genes with similar features should have89

similar levels of constraint. By pooling information across groups of similar genes, constraint90

estimated for genes with sufficient LOF data may help improve estimation for underpowered91

genes.92

However, while the frequencies of LOFs can be related to shet through models from population93

genetics [1, 2, 4], we lack an understanding of how other gene features relate to constraint a priori.94
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Figure 1: Limitations of LOEUF and schematic for inferring shet using GeneBayes. A) Stacked histogram of
the expected number of unique LOFs per gene, where the distribution for genes considered unconstrained (respectively
constrained) by LOEUF are colored in red (respectively blue). Genes with LOEUF < 0.35 are considered constrained,
while all other genes are unconstrained (Methods). The plot is truncated on the x-axis at 100 expected LOFs. B)

Scatterplot of the observed against the expected number of unique LOFs per gene. The dashed line denotes observed =
expected. Each point is a gene, colored by its LOEUF score; genes with LOEUF > 1 are colored as LOEUF = 1. C)

Schematic for estimating shet using GeneBayes, highlighting the major components of the model: prior (blue boxes)
and likelihood (red boxes). Parameters of the prior are learned by maximizing the likelihood (red arrow). Combining
the prior and likelihood produces posteriors over shet (purple box). See Methods for details.
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To address this problem, we developed a flexible empirical Bayes framework, GeneBayes, that95

learns the relationship between gene features and shet (Figure 1C). Our model consists of two main96

components. First, we model the prior on shet for each gene as a function of its gene features (Fig-97

ure 1C, left). Specifically, we train gradient-boosted trees using NGBoost [17] to predict the param-98

eters of each gene’s prior distribution from its features. Our gene features include gene expression99

levels, Gene Ontology terms, conservation across species, neural network embeddings of pro-100

tein sequences, gene regulatory features, co-expression and protein-protein interaction features,101

sub-cellular localization, and intolerance to missense mutations (see Methods and Supplementary102

Note C for a full list).103

Second, we use a model from population genetics to relate shet to the observed LOF data (Fig-104

ure 1C, right). This model allows us to fit the gradient-boosted trees for the prior by maximizing105

the likelihood of the LOF data. Specifically, we use the discrete-time Wright Fisher model with106

genic selection, a standard model in population genetics that accounts for mutation and genetic107

drift [13, 18]. In our model, shet is the reduction in fitness per copy of an LOF, and we infer shet108

while keeping the mutation rates and demography fixed to values taken from the literature (Sup-109

plementary Note B). Likelihoods are computed using new methods described in a companion110

paper [16].111

Previous methods use either the number of unique LOFs or the sum of the frequencies of all112

LOFs in a gene, but we model the frequency of each individual LOF variant. We used LOF fre-113

quencies from the gnomAD consortium, which consists of exome sequences from ∼125,000 indi-114

viduals for 18,563 genes after filtering.115

Combining these two components—the learned priors and the likelihood of the LOF data— we116

obtained posterior distributions over shet for every gene. Throughout, we use the posterior mean117

value of shet for each gene as a point estimate. See Methods for more details and Supplementary118

Table 2 for estimates of shet.119

2.2 Population genetics model and gene features both affect the estimation of shet120

First, we explored how LOF frequency and mutation rate relate to shet in our population genet-121

ics model (Figure 2A). Invariant sites with high mutation rates are indicative of strong selection122

(shet > 10−2), consistent with [19], while such sites with low mutation rates are consistent with123

essentially any value of shet for the demographic model considered here. Regardless of mutation124

rate, singletons are consistent with most values of shet but can rule out extremely strong selec-125

tion, and variants observed at a frequency of >10% rule out even moderately strong selection126

(shet > 10−3).127

To assess how informative gene features are about shet, we trained our model on a subset128

of genes and evaluated the model on held-out genes (Figure 2B, Methods). We computed the129

Spearman correlation between shet estimates from the prior and shet estimated from the LOF data130

only. The correlation is high and comparable between train and test sets (Spearman ρ = 0.83 and131

0.78 respectively), indicating the gene features alone are highly predictive of shet and that this is132

not a consequence of overfitting.133

To further characterize the impact of features on our estimates of shet, we removed all features134

from our model and recalculated posterior distributions (Figure 2C). For most genes, posteriors135
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Figure 2: Factors that contribute to our estimates of shet. A) Likelihood curves for different allele frequencies
( f ) and mutation rates. B) Scatterplot of shet estimated from LOF data (y-axis; posterior mean from a model without
features) against the prior’s predictions of shet (x-axis; mean of learned prior). Dotted line denotes y = x. Each point
is a gene, colored by the expected number of LOFs. C) Comparison of posterior distributions of shet (95% Credible
Intervals) from a model with (blue lines) and without (orange lines) gene features. Genes are ordered by their posterior
mean in the model with gene features. D) Top: scatterplot of LOEUF (y-axis) and our shet estimates (x-axis; posterior
mean). Each point is a gene, colored by the expected number of LOFs. Bottom: scatterplot of shet estimates from [4]
(y-axis; posterior mode) and our shet estimates (x-axis; posterior mean). Numbered points refer to genes in panels E

and F. E) TBC1D3 and PLN are two example genes where the gene features substantially affect the posterior. We plot
their posterior distributions (blue) and likelihoods (orange; rescaled so that the area under the curve = 1). F) AARD
and TWIST1 are two example genes with the same LOEUF but different shet. Posteriors and likelihoods are plotted as
in panel E.
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are substantially more concentrated when using gene features.136

Next, we compared our estimates of shet using GeneBayes to LOEUF and to selection coeffi-137

cients estimated by [4] (Figure 2D). To facilitate comparison, we use the posterior modes of shet138

reported in [4] as point estimates, but we note that [4] emphasizes the value of using full posterior139

distributions. While the correlation between our estimates is high for genes with sufficient LOFs140

(for genes with more LOFs than the median, Spearman ρ with LOEUF = 0.94; ρ with shet from [4]141

= 0.88), it is lower for genes with few expected LOFs (for genes with fewer LOFs than the median,142

Spearman ρ with LOEUF = 0.71; ρ with shet from [4] = 0.71).143

We further explored the reduced correlations for genes with few expected LOFs. For example,144

TBC1D3 and PLN have few expected LOFs, and their likelihoods are consistent with any level145

of constraint (Figure 2E). Due to the high degree of uncertainty, LOEUF considers both genes to146

be unconstrained, while the shet point estimates from [4] err in the other direction and consider147

both genes to be constrained (Figure 2D). This uncertainty arises from use of the LOF data alone,148

and is captured by the wide posterior distributions for the shet estimates from [4]. In contrast, by149

using gene features, our posterior distributions of shet indicate that PLN is strongly constrained150

but TBC1D3 is not, consistent with the observation that heterozygous LOFs in PLN cause severe151

cardiac dilation and heart failure [20].152

In contrast to estimates of shet, LOEUF further ignores information about allele frequencies by153

considering only the number of unique LOFs, resulting in a loss of information. For example,154

AARD and TWIST1 have almost the same numbers of observed and expected unique LOFs, so155

LOEUF is similar for both (LOEUF = 1.1 and 1.06 respectively). However, while TWIST1’s ob-156

served LOF is present in only 1 of 246,192 alleles, AARD’s is ∼40× more frequent. Consequently,157

the likelihood rules out the possibility of strong constraint at AARD (Figure 2F), causing the two158

genes to differ in their estimated selection coefficients (Figure 2D).159

In contrast, TWIST1 has a posterior mean shet of 0.11 when using gene features, indicating very160

strong selection. Consistent with this, TWIST1 is a transcription factor critical for specification of161

the cranial mesoderm, and heterozygous LOFs in the gene are associated with Saethre-Chotzen162

syndrome, a disorder characterized by congenital skull and limb abnormalities [21, 22].163

Besides PLN and TWIST1, many genes are considered constrained by shet but not by LOEUF,164

which is designed to be highly conservative. In Table 1, we list 15 examples with shet > 0.1165

and LOEUF > 0.5, selected based on their clinical significance and prominence in the literature166

(Methods). One notable example is a set of 16 ribosomal protein genes for which heterozygous167

disruption causes Diamond-Blackfan anemia—a rare genetic disorder characterized by an inabil-168

ity to produce red blood cells [23] (Supplementary Table 1). All are considered strongly con-169

strained by shet (minimum shet = 0.26). In contrast, only 6 are considered constrained by LOEUF170

(LOEUF < 0.35), as many of these genes have few expected unique LOFs.171
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Gene shet LOEUF Obs. Exp. Condition and reference

RPS15A* 0.61 0.56 0 5.4
Diamond-Blackfan anemia: Red blood cell aplasia resulting in growth,

craniofacial, and other congenital defects [23]

DCX 0.48 0.62 3 12.6
Lissencephaly: Migrational arrest of neurons resulting in mental re-

tardation and seizures [24]

SOX2 0.33 0.57 1 8.3 Syndromic microphthalmia: Missing or small eyes from birth [25]

NDP 0.33 0.88 0 3.4
Norrie disease: Retinal dystrophy resulting in early childhood blind-

ness, mental disorders, and deafness [26]

EIF5A 0.32 0.54 1 8.7
Faundes-Banka syndrome: Developmental delay, microcephaly, and fa-

cial dysmorphisms [27]

CDKN1C 0.27 0.53 0 5.7
Beckwith-Wiedemann syndrome: Pediatric overgrowth with predispo-

sition to tumor development [28]

TGIF1 0.25 0.91 5 11.5
Holoprosencephaly: Structural malformation of the forebrain during

development [29]

SH2D1A 0.23 0.96 1 4.9
Lymphoproliferative syndrome: Severe immune dysregulation due to

improper lymphocyte apoptosis [30]

CEBPA 0.17 1.18 0 2.4
Acute myeloid leukemia: Blood and bone marrow cancer with rapid

progression [31]

GATA4 0.15 0.53 3 14.7
Atrial septal defect: Congenital heart defect resulting in a hole be-

tween the atria [32]

TIMP3 0.13 0.53 2 11.8
Sorsby fundus dystrophy: Retinal dystrophy that causes loss of vision

[33]

FOXC2 0.13 0.79 3 9.8
Lymphedema-distichiasis syndrome: Lymphedema of the limbs and

double rows of eyelashes [34]

IGF2 0.12 1.13 3 6.8
Silver-Russell syndrome: Growth retardation, relative macrocephaly,

and feeding difficulties [35]

PLN 0.12 1.56 0 1.5
Dilated cardiomyopathy: Enlarged heart chambers, decreased contrac-

tile function, and heart failure [20]

TWIST1 0.11 1.06 1 4.5
Saethre-Chotzen syndrome: Craniosynostosis, facial dysmorphism,

and hand and foot abnormalities [21] [22]

Table 1: OMIM genes constrained by shet but not by LOEUF. Mutations that disrupt the functions of these
genes are associated with Mendelian diseases in the OMIM database [36]. Genes are ordered by shet (posterior mean).
Obs. and Exp. are the unique number of observed and expected LOFs respectively. *RPS15A is associated with
Diamond-Blackfan anemia along with nine other genes considered constrained by shet but not by LOEUF (Supple-
mentary Table 1).

2.3 Utility of shet in prioritizing phenotypically important genes172

To assess the accuracy of our shet estimates and evaluate their ability to prioritize genes, we first173

used these estimates to classify genes essential for survival of human cells in vitro. Genome-wide174

CRISPR growth screens have measured the effects of gene knockouts on cell survival or prolif-175

eration, quantifying the in vitro importance of each gene for fitness [37, 38]. We find that our176

estimates of shet outperform other constraint metrics at classifying essential genes (Figure 3A, left;177

bootstrap p < 2 × 10−5 for pairwise differences in AUPRC between our estimates and other met-178

rics). The difference is largest for genes with few expected LOFs, where shet (GeneBayes) retains179

similar precision and recall while other metrics lose performance (Figure 3A, right). In addition,180

our estimates of shet outperform other metrics at classifying nonessential genes (Supplementary181

Figure 2A).182

DeepLOF [15], the only other method that combines information from both LOF data and gene183
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Figure 3: GeneBayes estimates of shet perform well at identifying constrained and unconstrained genes.

A) Precision-recall curves comparing the performance of shet against other methods in classifying essential genes (left:
all genes, right: quartile of genes with the fewest expected unique LOFs). B) Precision-recall curves comparing the
performance of shet against LOEUF in classifying developmental disorder genes. C) Scatterplots showing the enrich-
ment (respectively depletion) of the top 10% most (respectively least) constrained genes in HPO terms, with genes
ranked by shet (y-axis) or LOEUF (x-axis). D) Enrichment of de novo mutations in patients with developmental
disorders, calculated as the observed number of mutations over the expected number under a null mutational model.
We plot the enrichment of missense, splice, and nonsense variants in the 10% most constrained genes, ranked by shet

(blue) or LOEUF (orange). Bars represent 95% confidence intervals. E) Left: LOESS curve showing the relationship
between constraint (gene rank, x-axis) and absolute log fold change in expression between chimp and human cortical
cells (y-axis). Genes are ranked by shet (blue) or LOEUF (orange) Right: LOESS curve showing the relationship be-
tween constraint (gene rank, x-axis) and gene expression variation (normalized standard deviation) in GTEx samples.

features, outperforms methods that rely exclusively on LOF data, highlighting the importance of184
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using auxiliary information. Yet, DeepLOF uses only the number of unique LOFs, discarding185

frequency information. As a result, it is outperformed by our method, indicating that careful186

modeling of LOF frequencies also contributes to the performance of our approach.187

Next, we performed further comparisons of our estimates of shet against LOEUF, as LOEUF188

and its predecessor pLI are extremely popular metrics of constraint. To evaluate the ability of189

these methods to prioritize disease genes, we first used shet and LOEUF to classify curated devel-190

opmental disorder genes [39]. Here, shet outperforms LOEUF (Figure 3B; bootstrap p = 2 × 10−9
191

for the difference in AUPRC) and performs favorably compared to additional constraint metrics192

(Supplementary Figure 2B).193

Next, we considered a broader range of phenotypic abnormalities annotated in the Human194

Phenotype Ontology (HPO) [40]. For each HPO term, we calculated the enrichment of the 10%195

most constrained genes and depletion of the 10% least constrained genes, ranked using shet or196

LOEUF. Genes considered constrained by shet are 1.9-fold enriched in HPO terms, compared to197

1.5-fold enrichment for genes considered constrained by LOEUF (Figure 3C, left). Additionally,198

genes considered unconstrained by shet are 3.0-fold depleted in HPO terms, compared to 2.1-fold199

depletion for genes considered constrained by LOEUF (Figure 3C, right).200

X-linked inheritance is one of the terms with the largest enrichment of constrained genes (6.6-201

fold enrichment for shet and 4.2-fold enrichment for LOEUF). The ability of shet to prioritize X-202

linked genes may prove particularly useful, as many disorders are enriched for X-chromosome203

genes [41] and the selection on losing a single copy of such genes is stronger on average [4].204

Yet, population-scale sequencing alone has less power to detect a given level of constraint on205

X-chromosome genes, as the number of X chromosomes in a cohort with males is smaller than the206

number of autosomes.207

We next assessed if de novo disease-associated variants are enriched in constrained genes, simi-208

lar to the analyses in [4,5]. To this end, we used data from 31,058 trios to calculate for each gene the209

enrichment of de novo missense and LOF mutations in offspring with DDs relative to unaffected210

parents [5]. We found that for both classes of variants, enrichment is higher for genes considered211

constrained by shet, with the highest enrichment observed for LOF variants (Figure 3D; enrich-212

ment of shet and LOEUF respectively, for missense mutations = 2.2, 1.9; splice site mutations =213

6.3, 4.6; and nonsense mutations = 9.5, 6.7). Consistent with previous findings, the excess burden214

of de novo variants is predominantly in highly constrained genes (Supplementary Figure 2C, left).215

Notably, this difference in enrichment remains after removing known DD genes (Supplementary216

Figure 2C, right). Together, these results indicate that shet not only improves identification of217

known disease genes but may also facilitate discovery of novel DD genes [5].218

Finally, constraint can also be related to longer-term evolutionary processes that give rise to the219

variation among individuals or species, including variation in gene expression levels. We expect220

constrained genes to maintain expression levels closer to their optimal values across evolutionary221

time scales, as each LOF can be thought of as a ∼50% reduction in expression. Consistent with222

this expectation, we find that less constrained genes have larger absolute differences in expression223

between human and chimpanzee in cortical cells [42], with a stronger correlation for shet than for224

LOEUF (Figure 3E). This pattern should also hold when considering the variation in expression225

within a species. We quantified variance using the normalized standard deviation of gene expres-226

sion levels estimated from RNA-seq samples in GTEx [43] and found that the variance decreases227
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with increased constraint, again with a stronger correlation for shet (Figure 3E).228

Figure 4: Breakdown of the gene features important for shet prediction. A) Ordered from highest to lowest,
plot of the mean per-gene log likelihood over the test genes for models separately trained on categories of features. “All”
and “Baseline” include all and no features respectively. B) Plot of the mean per-gene log likelihood, as in panel A,
for models separately trained on expression features grouped by tissue, cell type, or developmental stage. C) Ordered
from highest to lowest, feature scores for individual gene ontology (GO) terms. Inset: lineplot showing the change
in predicted shet for a feature as the feature value is varied. D) Lineplot as in panel C (inset) for protein-protein
interaction (PPI) and co-expression features, E) enhancer and promoter features, and F) gene structure features.
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2.4 Interpreting the learned relationship between gene features and shet229

Our framework allows us to learn the relationship between gene features and shet in a statistically230

principled way. In particular, by fitting a model with all of the features jointly, we can account231

for dependencies between the features. To interrogate the relationship between features and shet,232

we divided our gene features into 10 distinct categories (Figure 4A) and trained a separate model233

per category using only the features in that category. We found that missense constraint, gene234

expression patterns, evolutionary conservation, and protein embeddings are the most informative235

categories.236

Next, we further divided the expression features into 24 subgroups, representing tissues, cell237

types, and developmental stage (Table 6). Expression patterns in the brain, digestive system,238

and during development are the most predictive of constraint (Figure 4B). Notably, a study that239

matched Mendelian disorders to tissues through literature review found that a sizable plurality240

affect the brain [44]. Meanwhile, most of the top digestive expression features are also related to241

development (e.g., expression component loadings in a fetal digestive dataset [45]). The impor-242

tance of developmental features is consistent with the severity of many developmental disorders243

and the expectation that selection is stronger on early-onset phenotypes [46], supported by the244

findings of [4].245

To quantify the relationship between constraint and individual features, we changed the value246

of one feature at a time and used the variation in predicted shet over the feature values as the score247

for each feature (Methods).248

We first explored some of the individual Gene Ontology (GO) terms most predictive of con-249

straint (Figure 4C). Consistent with the top expression features, the top GO features highlight250

developmental and brain-specific processes as important for selection.251

Next, we analyzed network (Figure 4D), gene regulatory (Figure 4E), and gene structure (Fig-252

ure 4F) features. Protein-protein interaction (PPI) and gene co-expression networks have high-253

lighted “hub” genes involved in numerous cellular processes [47,48], while genes linked to GWAS254

variants have more complex enhancer landscapes [49]. Consistent with these studies, we find255

that connectedness in PPI and co-expression networks as well as enhancer and promoter count256

are positively associated with constraint (Figure 4D,E). In addition, gene structure affects gene257

function—for example, UTR length and GC content affect RNA stability, translation, and local-258

ization [50, 51]—and likewise, several gene structure features are predictive of constraint (Figure259

4F). Our results indicate that more complex genes—genes that are involved in more regulatory260

connections, that are more central to networks, and that have more complex gene structures—are261

generally more constrained.262

2.5 Contextualizing the strength of selection against gene loss-of-function263

A major benefit of shet over LOEUF and pLI is that shet has a precise, intrinsic meaning in terms264

of fitness [1–4]. This facilitates comparison of shet between genes, populations, species, and stud-265

ies. For example, shet can be compared to selection estimated from mutation accumulation or266

gene deletion experiments performed in model organisms [52,53]. More broadly, selection applies267

beyond LOFs. While we focused on estimating changes in fitness due to LOFs, consequences of268
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Figure 5: Comparing selection on LOFs (shet) between genes and to selection on other variant types. A)

Distributions of shet for gene sets, calculated by averaging the posterior distributions for the genes in each gene set.
Gene sets are sorted by the mean of their distributions. Colors represent four general selection regimes. B) Posterior
distributions of shet for individual genes, ordered by mean. Lines represent 95% credible intervals, with labeled
genes represented by thick black lines. Colors represent the selection regimes in panel A. C) Schematic demonstrating
the hypothesized relationship between changes in expression (x-axis, log2 scale) and selection (y-axis) against these
changes for two hypothetical genes, assuming stabilizing selection. The shapes of the curves are not estimated from
real data. Background colors represent the selection regimes in panel A. The red points and line represent the effects
of heterozygous LOFs and deletions on expression and selection, while the blue points and line represent the potential
effects of other types of variants.
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non-coding, missense, and copy number variants can be understood through the same framework,269

as we expect such variants to also be under negative selection [19] due to ubiquitous stabilizing270

selection on traits [54]. Quantifying differences in the selection on variants will deepen our under-271

standing of the evolution and genetics of human traits (see Discussion).272

To contextualize our shet estimates, we compared the distributions of shet for different gene sets273

(Figure 5A) and genes (Figure 5B), and analyzed them in terms of selection regimes. To define such274

regimes, we first conceptualized selection on variants as a function of their effects on expression275

(Figure 5C), where heterozygous LOFs reduce expression by ∼50% across all contexts relevant to276

selection. Under this framework, we can directly compare shet to selection on other variant types—277

for the hypothetical genes in Figure 5C, a GWAS hit affecting Gene 1 has a stronger selective effect278

than a LOF affecting Gene 2, despite having a smaller effect on expression.279

Next, we divided the range of possible shet values into four regimes determined by theoretical280

considerations [55] and comparisons to other types of variants [56, 57]—nearly neutral (9% of281

genes), weak selection (22%), strong selection (54%), and extreme selection (15%). LOFs in nearly282

neutral genes (shet < 10−4) have minimal effects on fitness—the frequency of such variants is283

dominated by genetic drift rather than selection [55]. Under the weak selection regime (shet from284

10−4 to 10−3), gene LOFs have similar effects on fitness as typical GWAS hits, which usually have285

small or context-specific effects on gene expression or function [56]. Under the strong selection286

regime (shet from 10−3 to 10−1), gene LOFs have fitness effects on par with the strongest selection287

coefficients measured for common variants, such as the selection estimated for adaptive mutations288

in LCT [57]. Finally, for genes in the extreme selection regime (shet > 10−1), LOFs have an effect289

on fitness equivalent to a >2% chance of embryonic lethality, indicating that such LOFs have an290

extreme effect on survival or reproduction.291

Gene sets vary widely in their constraint. For example, genes known to be haploinsufficient292

for severe diseases are almost all under extreme selection. In contrast, genes that can tolerate293

homozygous LOFs are generally under weak selection. One notable example of such a gene is294

LPA—while high expression levels are associated with cardiovascular disease, low levels have295

minimal phenotypic consequences [58, 59], consistent with limited conservation in the sequence296

or gene expression of LPA across species and populations [60, 61]297

Other gene sets have much broader distributions of shet values. For example, manually curated298

recessive genes are under weak to strong selection, indicating that many such genes are either not299

fully recessive or have pleiotropic effects on other traits under selection. For example, homozy-300

gous LOFs in PROC can cause life-threatening congenital blood clotting [62], yet shet for PROC is301

non-negligible (Figure 5B), consistent with observations that heterozygous LOFs can also increase302

blood clotting and cause deep vein thrombosis [63].303

Similarly, shet values for ClinVar disease genes [64] span the range from weak to extreme se-304

lection, with only moderate enrichment for greater constraint relative to all genes. Consistent305

with this, the effects of disease on fitness depend on disease severity, age-of-onset, and preva-306

lence throughout human history. For example, even though heterozygous loss of BRCA1 greatly307

increases risk of breast and ovarian cancer [65], BRCA1 is under strong rather than extreme se-308

lection. Possible partial explanations are that these cancers have an age-of-onset past reproduc-309

tive age and are less prevalent in males, or that BRCA1 is subject to some form of antagonistic310

pleiotropy [14, 66].311
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3 Discussion312

Figure 6: GeneBayes is a flexible framework for estimating gene-level properties. Schematic for how
GeneBayes can be applied to estimate gene-level properties beyond shet, showing the key inputs and outputs and two
example applications. See Supplementary Note D for more details.

Here, we developed an empirical Bayes approach to accurately infer shet, an interpretable met-313

ric of gene constraint. Our approach uses powerful machine learning methods to leverage vast314

amounts of functional and evolutionary information about each gene while coupling them to a315

population genetics model.316

There are two advantages of this approach. First, the additional data sources result in substan-317

tially better performance than LOEUF across tasks, from classifying essential genes to identifying318

pathogenic de novo mutations. These improvements are especially pronounced for the large frac-319

tion of genes with few expected LOFs, where LOF data alone is underpowered for estimating320

constraint.321

Second, by inferring shet, our estimates of constraint are interpretable in terms of fitness, and322

we can directly compare the impact of a loss-of-function across genes, populations, species, and323

studies.324

As a selection coefficient, shet can also be directly compared to other selection coefficients, even325

for different types of variants [3, 4]. In general, we believe genes are close to their optimal levels326

of expression and experience stabilizing selection [54], in which case expression-altering variants327

decrease fitness, with larger perturbations causing greater decreases (Figure 5C). Estimating the328

fitness consequences of other types of expression-altering variants, such as duplications or eQTLs,329

will allow us to map the relationship between genetic variation and fitness in detail, deepening330

our understanding of the interplay of expression, complex traits, and fitness [10, 56, 67, 68].331
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A recent method, DeepLOF [15], uses a similar empirical Bayes approach, but by estimating332

constraint from the number of observed and expected unique LOFs, it inherits the same difficul-333

ties regarding interpretation as pLI and LOEUF, and loses information by not considering variant334

frequencies. On the other hand, another line of work [1, 2], culminating in [4], solved the issues335

with interpretability by directly estimating shet. Yet, by relying exclusively on LOFs, these esti-336

mates are underpowered for ∼25% of genes. Furthermore, by using the aggregate frequencies of337

all LOF variants, previous shet estimates [1,2,4] are not robust to misannotated LOF variants. Our338

approach eliminates this tradeoff between power and interpretability present in existing metrics.339

Our estimates of shet will be useful for many applications. For example, by informing gene-340

level priors, LOEUF, pLI, and previous estimates of shet have been used to increase the power of341

association studies based on rare or de novo mutations [5,6,69]. In such contexts, our shet estimates342

can be used as a drop-in replacement. Additionally, extremely constrained and unconstrained343

genes may be interesting to study in their own right. Genes of unknown function with particularly344

high values of shet should be prioritized for further study. Investigating highly constrained genes345

may give insights into the mechanisms by which cellular and organism-level phenotypes affect346

fitness [70].347

While we primarily used the posterior means of shet here, our approach provides the entire348

posterior distribution per gene, similar to [4]. In some applications, different aspects of the pos-349

terior may be more relevant than the mean. For example, when prioritizing rare variants for350

followup in a clinical setting, the posterior probability that shet is high enough for the variant to351

severely reduce fitness may be more relevant.352

As more exomes are sequenced, one might expect that we would be better able to more ac-353

curately estimate shet. Yet, in a companion paper [16], we show that increasing the sample size354

used for estimating LOF frequencies will provide essentially no additional information for the355

∼85% of genes with the lowest values of shet. This fundamental limit on how much we can learn356

about these genes from LOF data alone highlights the importance of approaches like ours that357

can leverage additional data types. By sharing information across genes, we can overcome this358

fundamental limit on how accurately we can estimate constraint.359

Here we focused on estimating shet, but our empirical Bayes framework, GeneBayes, can be360

used in any setting where one has a model that ties a gene-level parameter to gene-level observ-361

able data (Supplementary Note D). For example, GeneBayes can be used to find trait-associated362

genes using variants from case/control studies [71, 72], or to improve power to find differen-363

tially expressed genes in RNA-seq experiments [73]. We provide a graphical overview of how364

GeneBayes can be applied more generally in Figure 6. Briefly, GeneBayes requires users to specify365

a likelihood model and the form of a prior distribution for their parameter of interest. Then, using366

empirical Bayes and a set of gene features, it improves power to estimate the parameter by flexibly367

sharing information across similar genes.368

In summary, we developed a powerful framework for estimating a broadly applicable and369

readily interpretable metric of constraint, shet. Our estimates provide a more informative ranking370

of gene importance than existing metrics, and our approach allows us to interrogate potential371

causes and consequences of natural selection.372
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Posterior means and 95% credible intervals for shet are available in Supplementary Table 2. Poste-374
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4 Methods667

Empirical Bayes overview668

Many genes have few observed loss-of-function variants, making it challenging to infer constraint669

without additional information. Bayesian approaches that specify a prior distribution for each670

gene can provide such information to improve constraint estimates, but specifying prior distri-671

butions is challenging as we have limited prior knowledge about the selection coefficients shet.672

Empirical Bayes procedures allow us to learn a prior distribution for each gene by combining673

information across genes.674

To use the information contained in the gene features, we learn a mapping from a gene’s fea-675

tures to a prior specific for that gene. We parameterize this mapping using gradient-boosted trees,676

as implemented in NGBoost [17]. Intuitively, this approach learns a notion of “similarity” between677

genes based on their features, and then shares information across similar genes to learn how shet678

relates to the gene features. This approach has two major benefits. First, by sharing information679

between similar genes, it can dramatically improve the accuracy of the predicted shet values, par-680

ticularly for genes with few expected LOFs. Second, by leveraging the LOF data, this approach681

allows us to learn about how the various gene features relate to fitness, which cannot be modeled682

from first principles.683

For a more in-depth description of our approach along with mathematical and implementation684

details, see Supplementary Note A.685

Population genetic likelihood686

To model how shet relates to the frequency of individual LOF variants, we used the discrete-time687

Wright-Fisher model, with an approximation of diploid selection with additive fitness effects. We688

used a composite likelihood approach, assuming independence across individual LOF variants to689

obtain gene-level likelihoods. Within this composite likelihood, we model each individual variant690

as either having a selection coefficient of shet with probability 1 − pmiss, or having a selection691

coefficient of 0 with probability pmiss. That is, pmiss acts as the prior probability that a given variant692

is misannotated, and we assume that misannotated variants evolve neutrally regardless of the693

strength of selection on the gene. All likelihoods were computed using new machinery developed694

in a companion paper [16].695

Our model depends on a number of parameters—a demographic model of past population696

sizes, mutation rates for each site, and the probability of misannotation. The demographic model697

is taken from the literature [75] with modifications as described in [4]. The mutation rates account698

for trinucleotide context as well as methylation status at CpGs [12]. Finally, we estimated the699

probability of misannotation from the data.700

For additional technical details and intuition see Supplementary Note B.701
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Curation of LOF variants702

We obtained annotations for the consequences of all possible single nucleotide changes to the703

hg19 reference genome from [76]. The effects of variants on protein function were predicted us-704

ing Variant Effect Predictor (VEP) version 85 [77] using GENCODE v19 gene annotations [78] as705

a reference. We defined a variant as a LOF if it was predicted by VEP to be a splice acceptor,706

splice donor, or stop gain variant. In addition, predicted LOFs were further annotated using LOF-707

TEE [12], which implements a series of filters to identify variants that may be misannotated (for708

example, LOFTEE considers predicted LOFs near the ends of transcripts as likely misannotations).709

For our analyses, we only kept predicted LOFs labelled as High Confidence by LOFTEE, which710

are LOFs that passed all of LOFTEE’s filters.711

Next, we considered potential criteria for further filtering LOFs: cutoffs for the median ex-712

ome sequencing read depth, cutoffs for the mean pext (proportion expressed across transcripts)713

score [76], whether to exclude variants that fall in segmental duplications or regions with low714

mappability [79], and whether to exclude variants flagged by LOFTEE as potentially problematic715

but that passed LOFTEE’s primary filters.716

We trained models with these filters one at a time and in combination, and chose the model717

that had the best AUPRC in classifying essential from nonessential genes in mice. The filters718

we evaluated and chose for the final model are reported in Table 2. Since we used mouse gene719

essentiality data to choose the filters, we do not further evaluate shet on these data.720

We considered genes to be essential in mice if they are heterozygous lethal, as determined721

by [12] using data from heterozygous knockouts reported in Mouse Genome Informatics [80].722

We classify genes as nonessential if they are reported as “Viable with No Phenotype” by the723

International Mouse Phenotyping Consortium [81] (annotations downloaded on 12/08/22 from724

https://www.ebi.ac.uk/mi/impc/essential-genes-search/).725

Filtering criterion Tested values Best value

Cutoff for sequencing read depth (median across exomes) 5×, 10×, 20× 20×
Cutoff for mean pext across tissues 0.05, 0.1 0.05

Filter if variant falls in a segmental duplication or low mappability region True, False False

Filter if variant is flagged as potentially problematic True, False True

Table 2: Filtering criteria for LOF curation

Finally, we annotated each variant with its frequency in the gnomAD v2.1.1 exomes [12], a726

dataset of 125,748 uniformly-analyzed exomes that were largely curated from case–control stud-727

ies of common adult-onset diseases. gnomAD provides precomputed allele frequencies for all728

variants that they call.729

For potential LOFs that are not segregating, gnomAD does not release the number of indi-730

viduals that were genotyped at those positions. For these sites, we used the median number of731

genotyped individuals at the positions for which gnomAD does provide this information. We732

performed this separately on the autosomes and X chromosome.733

Data sources for the variant annotations, filters, and frequencies, as well as additional infor-734

mation used to compute likelihoods are listed in Table 3.735
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Resource Link

Annotations for possible LOFs

gs://gnomad-public/papers/2019-tx-annotation/pre_

computed/all.possible.snvs.tx_annotated.GTEx.v7.

021520.tsv

Mean methylation for CpG sites gs://gcp-public-data--gnomad/resources/methylation

Exome sequencing coverage
gs://gcp-public-data--gnomad/release/2.1/coverage/

exomes/gnomad.exomes.coverage.summary.tsv.bgz

Variant frequencies
gs://gcp-public-data--gnomad/release/2.1.1/vcf/

exomes/gnomad.exomes.r2.1.1.sites.vcf.bgz

Low mappability and segmental duplications

https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/

giab/release/genome-stratifications/v3.1/GRCh37/Union/

GRCh37_alllowmapandsegdupregions.bed.gz

Table 3: Sources for LOF data

Feature processing and selection736

We compiled 10 types of gene features from several sources:737

1. Gene structure (e.g., number of transcripts, number of exons, GC content)738

2. Gene expression across tissues and cell lines739

3. Biological pathways and Gene Ontology terms740

4. Protein-protein interaction networks741

5. Co-expression networks742

6. Gene regulatory landscape (e.g., number and properties of enhancers and promoters)743

7. Conservation across species744

8. Protein embeddings745

9. Subcellular localization746

10. Missense constraint747

Additionally, we included an indicator variable that is 1 if the gene is on the non-pseudoautosomal748

region of the X chromosome and 0 otherwise.749

For a description of the features within each category and where we acquired them, see Sup-750

plementary Note C.751

Training and validation752

We fine-tuned a set of hyperparameters for our full empirical Bayes approach, using the best hy-753

perparameters from an initial feature selection step (described in Supplementary Note C) as a754

starting point. To minimize overfitting, we split the genes into three sets—a training set (chromo-755

somes 7-22, X), a validation set for hyperparameter tuning (chromosomes 2, 4, 6), and a test set756
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to evaluate overfitting (chromosomes 1, 3, 5). During each training iteration, one or more trees757

were added to the model to fit the natural gradient of the loss on the training set. We stopped758

model training once the loss on the validation set did not improve for 10 iterations in a row (or the759

maximum number of iterations, 1,000, was reached). Using this approach, we performed a grid760

search over the hyperparameters listed in Table 4 and used the combination that minimized the761

validation loss.762

Parameter(s) Tested values Best value

Learning rate 0.0125, 0.05, 0.2 0.0125

Maximum tree depth (max_depth) 3, 4, 5 3

Data subsampling ratio (subsample) 0.6, 0.8, 1 0.8

Minimum weight of a leaf node (min_child_weight) 1, 2, 4 1

L1 regularization (alpha) 0, 1, 2 2

L2 regularization (lambda) 1, 2, 4 1

Number of trees to fit per iteration (n_estimators) 1, 2, 4 4

Table 4: Parameters for fitting the gradient-boosted trees

For Figure 2B, we reported results from the best model learned using the training set. For all763

other results, we trained a model on all genes using the hyperparameters and number of training764

iterations learned during this hyperparameter fine-tuning step.765

Choosing genes for Table 1766

To identify genes that are considered constrained by shet but not by LOEUF, we filtered for genes767

with shet > 0.1 (top ∼17% most constrained genes, analogous to the recommended LOEUF cutoff768

of 0.35 [14], which corresponds to the top ∼16% of genes) and LOEUF > 0.5 (least constrained769

∼73% of genes). Of these, we identified genes where heterozygous or hemizygous mutations that770

decrease the amount of functional protein (e.g. LOF mutations) are associated with Mendelian771

disorders in the Online Mendelian Inheritance in Man (OMIM) database [36]. We chose genes for772

Table 1 primarily based on their prominence in the existing literature.773

Evaluation on additional datasets774

Definition of human essential and nonessential genes775

We obtained data from 1,085 CRISPR knockout screens quantifying the effects of genes on cell776

survival or proliferation from the DepMap portal (22Q2 release) [37, 38]. Scores from each screen777

are normalized such that nonessential genes identified by [82] have a median score of 0 and that778

common essential genes identified by [82, 83] have a median score of −1.779

In classifying essential genes (Figure 3A), we define a gene as essential if its score is < − 1780

in at least 25% of screens, and as not essential if its score is > − 1 in all screens. In classifying781

nonessential genes, we define a gene as nonessential if it has a minimal effect on growth in most782

cell lines (score >− 0.25 and <0.25 in at least 99% of screens), and as not nonessential if its score783

is <0 in all screens.784
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Definition of developmental disorder genes785

Through the Deciphering Developmental Disorders (DDD) study [39], clinicians have annotated786

a subset of genes with the strength and nature of their association with developmental disor-787

ders. We classify genes as developmental disorder genes if they are annotated by the DDD study788

with confidence_category = definitive and allelic_requirement = monoallelic_autosomal,789

monoallelic_X_hem (hemizygous), or monoallelic_X_het (heterozygous).790

We classify genes as not associated with developmental disorders if they are annotated by the791

DDD study, do not meet the above criteria, and are not annotated with confidence_category =792

strong or moderate and allelic_requirement = monoallelic_autosomal, monoallelic_X_hem,793

or monoallelic_X_het.794

We downloaded genes with DDD annotations from https://www.deciphergenomics.org/ddd/795

ddgenes on 05/06/2023.796

Enrichment/depletion of Human Phenotype Ontology (HPO) genes797

The Human Phenotype Ontology (HPO) provides a structured organization of phenotypic abnor-798

malities and the genes associated with them, with each HPO term corresponding to a phenotypic799

abnormality. We calculated the enrichment of constrained genes in each HPO term with at least800

200 genes as the ratio (fraction of HPO genes under constraint)/(fraction of background genes801

under constraint). We defined genes under constraint to be the decile of genes considered most802

constrained by shet or LOEUF. To choose background genes, we sampled from the set of all genes803

to match each HPO term’s distribution of expected unique LOFs. Similarly, we calculated the de-804

pletion of unconstrained genes in each HPO term as the ratio (fraction of HPO genes not under805

constraint)/(fraction of background genes not under constraint), where we define genes not under806

constraint to be the decile of genes considered least constrained by shet or LOEUF.807

We downloaded HPO phenotype-to-gene annotations from http://purl.obolibrary.org/808

obo/hp/hpoa/phenotype_to_genes.txt on 01/27/2023.809

Enrichment of de novo mutations in developmental disorder patients810

We used the enrichment metric developed by [5] in their analysis of de novo mutations (DNMs)811

identified from exome sequencing of 31,058 developmental disorder patients and their unaffected812

parents. Enrichment of DNMs in developmental disorder patients was calculated as the ratio813

of observed DNMs in patients over the expected number under a null mutational model that814

accounts for the study sample size and triplet mutation rate at the mutation sites [84].815

For Figure 3D, we calculated the enrichment of DNMs in constrained genes, defined as the816

decile of genes considered most constrained by shet or LOEUF. For Supplementary Figure 2C, we817

calculated the enrichment of DNMs in constrained genes with and without known associations818

with development disorders. We defined a gene as having a known association if it is anno-819

tated by the DDD study (see Methods section “Definition of developmental disorder genes”) with820

confidence_category = definitive or strong and allelic_requirement = monoallelic_autosomal,821

monoallelic_X_hem (hemizygous), or monoallelic_X_het (heterozygous).822
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For each set of genes, we computed the mean enrichment over sites and 95% Poisson confi-823

dence intervals for the mean using the code provided by [5].824

Expression variability across species825

To understand the variability in expression between humans and other species, we focused on826

gene expression differences between human and chimpanzee as estimated from RNA sequencing827

of an in vitro model of the developing cerebral cortex for each species [42]. As a metric of vari-828

ability between the two species, we used the absolute log-fold change (LFC) in gene expression829

between human and chimpanzee cortical spheroids, which was calculated from samples collected830

at several time points throughout differentiation of the spheroids. LFC estimates were obtained831

from Supplementary Table 9 of [42].832

To visualize the relationship between constraint and absolute LFC, we plotted a LOESS curve833

between the constraint on a gene (gene rank from least to most constrained using either shet or834

LOEUF as the constraint metric) and the absolute LFC for the gene. Curves were calculated using835

the LOWESS function from the statsmodels package with parameters frac = 0.15 and delta = 10.836

Expression variability across individuals837

We used the coefficient of variance (CV) as a metric for gene expression variability across individ-838

uals, defined as CV = σi/µi where σi and µi are the standard deviation and mean of the expression839

level of gene i respectively. Here, expression is in units of Transcripts Per Million. We calculated840

CV using 17,398 RNA-seq samples in the GTEx v8 release [43], with data from 838 donors and 52841

tissues/cell lines.842

Another potential metric for gene expression variability is the standard deviation for a gene, σi.843

However, as the mean expression for a gene, µi, is strongly correlated with σi (Spearman ρ = 0.73844

in GTEx), the relation between σi and s
(i)
het may be confounded by the relation between µi and s

(i)
het.845

In contrast, we found that CV is only slightly correlated with µi (Spearman ρ = −0.06 in GTEx).846

LOESS curves were computed as in “Expression variability across species.”847

Feature interpretation848

Training models on feature subsets849

We grouped features into categories (see Supplementary Table 4 for the features in each category),850

and trained a model for each category to predict shet from the corresponding features. For each851

model, we tuned hyperparameters over a subset of the values we considered for the full model852

(Table 5), and chose the combination of hyperparameters that minimized the loss over genes in853

the validation set. As a baseline, we trained a model with no features, such that all genes have a854

shared prior distribution that is learned from the LOF data—this model is analogous to a standard855

empirical Bayes model.856
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Parameter(s) Tested values

Learning rate 0.0125, 0.05

Maximum tree depth (max_depth) 3

Data subsampling ratio (subsample) 0.8, 1

Minimum weight of a leaf node (min_child_weight) 1

L1 regularization (alpha) 0, 1, 2

L2 regularization (lambda) 1

Number of trees to fit per iteration (n_estimators) 1, 2, 4

Table 5: Parameters for feature subsets

Definition of expression feature subsets857

We grouped gene expression features into 24 categories representing tissues, cell types, and de-858

velopmental stage using terms present in the feature names (Table 6).859

Category Terms in the feature (not case sensitive)

Brain brain, nerve, microglia, hippocampus

Digestive digestive, gut, gutendoderm, intestine, colon, ileum

Development development, gastrulation, embryo

Lung lung, airway

Eye eye, retina

Endothelium endothelium

Muscle muscle

Hair follicle hairfollicle

Kidney kidney

Immune immune, monocytes, nk, tcell, pbmc

Prostate prostate

Blood blood, heme, fetalblood

Adipocyte adipocyte

Heart heart, aorta

Thymus thymus

Pancreas pancreas, islets, pancreasductal

Liver liver

Testis testis

Synovial fibroblast synovialfibroblast

Bladder bladder

Placenta placenta

Bone marrow bonemarrow

CSF csf

Lymph nodes lymphnodes

Table 6: Terms used to define tissues for expression features

Scoring individual features860

To score individual gene features, we varied the value of one feature at a time and calculated861

the variance in predicted shet as a feature score. In more detail, we fixed each feature to val-862

ues spanning the range of observed values for that feature (0th, 2nd, ..., 98th, and 100th per-863

centile), such that all genes shared the same feature value. Then, for each of these 51 feature864

values, we averaged the shet values predicted by the learned priors over all genes, where the865
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predicted shet for each gene is the mean of its prior. We denote this averaged prediction by866

s
( f )
het{p} for some feature f and percentile p. Finally, we define the score for feature f as score f =867

sd(s
( f )
het{0}, s

( f )
het{2}, ..., s

( f )
het{98}, s

( f )
het{100}), where sd is a function computing the sample standard868

deviation. In other words, a feature with a high score is one for which varying its value causes869

high variance in the predicted shet.870

For the lineplots in Figures 4C-4F, we scale the predictions s
( f )
het{p} for each feature f by sub-871

tracting (s
( f )
het{0}+ s

( f )
het{100})/2 from each prediction.872

Pruning features before computing feature scores873

While investigating the effects of features on predicted shet, we found that including highly corre-874

lated features in the model could produce unintuitive results, such as opposite correlations with875

shet for highly similar features. Therefore, for Figures 4C-4F, we first pruned the set of features876

to minimize pairwise correlations between the remaining features. To do this, we randomly kept877

one feature in each group of correlated features, where such a group is defined as a set of features878

where each feature in the set has an absolute Spearman ρ > 0.7 to some other feature in the set.879

For Figures 4C-4F, we trained models on the relevant features in this pruned set (gene ontol-880

ogy, network, gene regulatory, and gene structure features for Figures 4C, 4D, 4E, and 4F respec-881

tively). After feature pruning, we found the directions of effect for the features were consistent882

with their marginal directions of effect.883
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Supplementary Material884

A Empirical Bayes with NGBoost885

Empirical Bayes overview886

In the simplest version of empirical Bayes, we specify the form of the prior distribution and as-

sume that that prior is shared across all genes—for example, for gene i we might assume the prior

distribution is s
(i)
het ∼ LogitNormal(µ, σ) with density pµ,σ(s

(i)
het), where the LogitNormal(µ, σ) dis-

tribution is defined such that logit(s
(i)
het) = log(s

(i)
het/(1 − s

(i)
het)) is normally distributed with mean

µ and variance σ2. We can then estimate µ and σ using the observed LOF data for each gene,

yyy1, . . . , yyyM, by maximizing the marginal likelihood:

M

∏
i=1

∫ 1

0
p
(

yyyi | s
(i)
het

)
pµ,σ

(
s
(i)
het

)
ds

(i)
het. (1)

Next, we can compute the posterior distribution of s
(i)
het for each gene,

p
(

s
(i)
het | yyyi

)
=

p
(

yyyi | s
(i)
het

)
pµ,σ

(
s
(i)
het

)

∫ 1

0
p
(

yyyi | s
(i)
het

)
pµ,σ

(
s
(i)
het

)
ds

(i)
het

. (2)

However, rather than learning the parameters for the prior from only the LOF data, we can also887

use gene features to learn gene-specific prior parameters, µi and σi. To do this, we used a machine888

learning approach, NGBoost, to learn functions f and g such that µi = f (xxxi) and σi = g(xxxi), where889

xxxi is a vector of gene features associated with gene i. In the next few sections, we will describe890

how we learned f and g.891

NGBoost892

NGBoost (Natural Gradient Boosting) is an approach for training gradient boosted trees to predict893

the parameters of a probability distribution [17]. Gradient boosted trees are a type of machine894

learning model typically used to predict outcomes y, from features X, producing point estimates895

such as predictions of E[y | X]; in contrast, NGBoost uses gradient boosted trees to predict p(y |896

X = xxx) by learning parameters of p(y | X = xxx) as functions of xxx—in other words, NGBoost allows897

us to learn the full distribution of y conditioned on observing the features xxx.898

Specifically, for gene i, we assume the prior distribution is s
(i)
het ∼ LogitNormal(µi, σi), with

density pµi ,σi
(s

(i)
het). µi = f (xxxi) and σi = g(xxxi) are functions of the vector of gene features xxxi,

where f and g are parameterized as gradient-boosted trees. We chose this distribution as previous

work has suggested that s
(i)
het is distributed on a logarithmic scale [1, 2, 4], yet, s

(i)
het is also bounded

between 0 and 1. Both of these properties are enforced by the LogitNormal distribution. In Sup-

plementary Note B, we develop a population genetic likelihood p(yyyi | s
(i)
het), where yyyi is a vector

that represents the observed frequencies of each possible loss of function variant for the gene.
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Then, with M genes in the training set, the score that NGBoost maximizes during training is:

M

∑
i=1

S (yyyi; µi, σi) =
M

∑
i=1

log p (yyyi) =
M

∑
i=1

log

(∫ 1

0
p
(

yyyi | s
(i)
het

)
pµi ,σi

(
s
(i)
het

)
ds

(i)
het

)
. (3)

To do this, NGBoost first initializes the parameters of f and g such that all genes have the same

prior distribution. Next, NGBoost adopts a gradient descent approach to maximize the score func-

tion: for each iteration until training ends, NGBoost first computes the natural gradient of gene

i’s score with respect to the parameters µi and σi of pµi ,σi
(s

(i)
het), where the natural gradient of

S = S(yyyi; µi, σi), is defined as:

∇̃S ∝ I−1
µi ,σi

∇µi ,σi
S (4)

where

Iµi ,σi
= E

s
(i)
het∼pµi ,σi

[(
∇µi ,σi

log pµi ,σi

(
s
(i)
het

)) (
∇µi ,σi

log pµi ,σi

(
s
(i)
het

))T
]

(5)

is the Fisher Information Matrix for pµi ,σi
(s

(i)
het) and ∇µi ,σi

represents differentiation with respect to899

µi and σi. Natural gradients take into account the underlying “information geometry” of the space900

of distributions in a way that standard gradients do not [85]. As an example, changing the variance901

of a Normal distribution from 0.1 to 0.2 is much more dramatic than changing the variance from902

10.1 to 10.2. After computing the natural gradient, NGBoost fits a decision tree to each dimension903

of the natural gradient, updating µi and σi in the direction that most steeply increases the gene’s904

score. While gradient-boosting algorithms (including NGBoost, by default) typically fit a single905

decision tree at each iteration, we allow NGBoost to fit one or more trees, which performs slightly906

better in practice (see “Training and Validation” in Methods).907

Below, we summarize the training algorithm. Let µ
(t)
i , σ

(t)
i denote the parameters of the prior at908

training iteration t.909

1. Initialize parameters for all genes, i = 1, ..., M:910

µ
(0)
i , σ

(0)
i = argmaxµ,σ ∑

M
i=1 S(yyyi; µ, σ)911

2. For iterations t = 1, ..., T:912

(a) For each gene, calculate natural gradients of the score:913

∇̃S
(

yiyiyi; µ
(t)
i , σ

(t)
i

)
, whose two components we denote as ∇̃Sµ and ∇̃Sσ914

(b) Fit decision trees f (t) and g(t) on the natural gradients:915

f (t) = fit

({
xxxi, ∇̃Sµi

}M

i=1

)
916

g(t) = fit

({
xxxi, ∇̃Sσi

}M

i=1

)
917

(c) Update the parameters for each gene, where η is a learning rate that is chosen by the918

user as a hyperparameter919

µ
(t)
i = µ

(t−1)
i − η f (t)(xxxi)920

σ
(t)
i = σ

(t−1)
i − ηg(t)(xxxi)921
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Once training is complete, we obtain a learned prior with parameters µ
(T)
i , σ

(T)
i , and can com-

pute the posterior distribution of shet

p
(

s
(i)
het | yyyi

)
=

p
(

yyyi | s
(i)
het

)
p

µ
(T)
i ,σ

(T)
i

(
s
(i)
het

)

p (yyyi)
(6)

as well as the mean of this distribution

E

[
s
(i)
het | yyyi

]
=

∫ 1

0
s
(i)
het p(s

(i)
het | yyyi)ds

(i)
het (7)

To compute 95% Credible Intervals, we compute the CDF of the posterior distribution using922

Pytorch’s cumulative_trapezoid function [86]. Then, the 95% Credible Interval per gene is de-923

fined as [lb(i), ub(i)] such that P(s
(i)
het < lb(i)) = 0.025 and P(s

(i)
het < ub(i)) = 0.975.924

NGBoost— implementation details925

To initialize parameters (step 1 in the training algorithm), we perform gradient descent with the926

AdamW optimizer [87] implemented in PyTorch [86] with a learning rate of 5 × 10−4 and other-927

wise default settings. We initialize the optimization at µ = −5 and σ = 0.5.928

To compute the integrals in the score calculation, we use the torchquad package for numerical929

integration [88], which allows us to use PyTorch’s automatic differentiation system to compute930

gradients. We perform integration using Boole’s rule, integrating from 5 × 10−8 to 1 − 5 × 10−8
931

with 106 sample points.932

The Fisher Information Matrix is approximated using a Monte Carlo approach: we sample shet933

from the prior 1,000 times, compute the gradient for each sample, and approximate the expectation934

using the sample mean.935

To flexibly fit decision trees at each training iteration, we use the XGBoost package, a library936

used for fitting standard gradient boosted trees [89]. In comparison to the default NGBoost learner,937

XGBoost supports missing features and allows for adjustment of numerous hyperparameters (see938

“Training and Validation” in Methods). In contrast to typical applications of XGBoost, we only939

allow a few (1-4) trees to be fit at each training iteration, as we are using XGBoost within a training940

loop rather than as a standalone approach for model fitting.941

All distributions were implemented using PyTorch, and training was conducted with GPU942

support when available, with tree_method = "gpu_hist" for the XGBoost learners.943
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B Population Genetics Model944

Overview of model945

Some of the most commonly used measures of gene constraint (pLI [11], LOEUF [12]) are framed946

in terms of the number of unique LOFs observed in gene, O, relative to the number expected947

under a null model, E. While operationalizing constraint as some function of O and E captures the948

intuition that seeing fewer LOFs than expected is evidence that a gene is conserved, the numerical949

values of pLI and LOEUF are difficult to interpret. In practice this means that such measures950

can be useful for ranking which genes are important, but it makes it difficult to contextualize951

these results in terms of other types of variants, such as missense or noncoding variants, or copy952

number variants. Previous approaches have pioneered using a population genetics model in this953

context to obtain interpretable estimates, albeit with different technical details that we discuss954

below [1, 2, 4].955

In order to obtain a more interpretable measure of constraint, we formalize constraint as the

strength of natural selection acting against gene loss-of-function in a population genetics model.

That is, we can ask how much fitness is reduced on average for an individual with one or two non-

functional copies of a gene relative to individuals with two functional copies, following previous

work [1, 2, 4]. To tie this concept of constraint to observed allele frequency data, we use a slightly

simplified version of the discrete-time Wright Fisher model. This model contains mutation, se-

lection, and genetic drift, and assumes that there are only two alleles and that the population is

panmictic, monoecious, and has non-overlapping generations. While all of these assumptions are

violated in humans (there are four nucleotides, population structure, two sexes, and overlapping

generations), the model still provides a good approximation to allele frequency dynamics through

time. If the allele frequency in generation k is fk, then we model the allele frequency in the next

generation via binomial sampling:

2Nk+1 fk+1 ∼ Binomial (2Nk+1, p ( fk)) , (8)

where Nk+1 is the number of diploid individuals in generation k + 1, with956

p( fk) :=
(1 − shet) f̃k

(
1 − f̃k

)
+ (1 − shom) f̃k

2

(
1 − f̃k

)2
+ 2(1 − shet) f̃k

(
1 − f̃k

)
+ (1 − shom) f̃k

2
,

where f̃k = fk(1 − µ1→0) + µ0→1(1 − fk) is the allele frequency after alleles change from non-957

LOF to LOF at rate µ0→1 and from LOF to non-LOF at rate µ1→0. The function p(·) arises from958

considering bidirectional mutation and approximating a model of diploid selection where the959

relative reproductive success of individuals with 0, 1, or 2 copies of the LOF are 1, 1− shet, and 1−960

shom respectively [13]. In practice, most LOF variants are extremely rare, and so it is exceedingly961

unlikely to find individuals homozygous for the LOF. This makes estimating shom as a separate962

parameter very difficult, and so we instead assume that shom = min {2shet, 1}. This is equivalent963

to assuming genic selection (i.e., additive fitness effects) with the constraint that an individual’s964

relative fitness cannot be lower than 0.965

Equation 8 fully specifies the model except for an initial condition. That is, we need to know966

what the distribution of frequencies is in generation 0. One mathematically appealing choice967
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would be to assume that the population is at equilibrium at time 0, but this seemingly straight-968

forward choice results in nonsensical conclusions. To see why, if the mutation rates are low and969

selection is negligible, then at equilibrium, with extremely high probability the population will970

either be in a state where the frequency of the LOF allele is very close to zero or in a state where971

the frequency of the LOF allele is very close to one. If the mutation rates between the two alleles972

are close to equal, then these two cases happen roughly equally often. That is, we would expect973

there to be a ∼50% chance that the population is fixed or nearly fixed for the LOF mutation. If974

there are multiple independently evolving sites at which an LOF could arise (or if there are many975

more ways to mutate to an LOF state than a non-LOF state), then the chance that any of these sites976

is fixed or nearly fixed for an LOF rapidly approaches 100%. Under this equilibrium assumption,977

we thus reach the absurd conclusion that the mere act of observing a gene that is functional in a978

majority of the population is overwhelming evidence that the gene is strongly selected for. An-979

other way of viewing this is that in reality we can only observe genes that are functional in an980

appreciable fraction of the population, and so we should somehow be conditioning on this event,981

whereas the equilibrium assumption looks at a given randomly chosen stretch of DNA and asks982

whether it could be a gene given some set of mutations. Indeed, any randomly chosen stretch of983

DNA could be made a gene through a series of mutations, but for any given stretch it would be984

extremely unlikely to be a functional gene, and the equilibrium assumption exactly captures how985

rare this would be.986

We instead use the equilibrium of another process as the initial condition, which avoids these987

conceptual pitfalls. We assume the distribution of frequencies at generation 0 is the equilibrium988

conditioned on the LOF allele never reaching fixation in the population. We then compute the like-989

lihood of observing a given present-day frequency while continuing to condition on non-fixation990

of the LOF allele. This assumption implies that no matter the current frequency of the LOF vari-991

ant, we know that at some point in the past the population was fixed for the functional version of992

the gene, and the LOF variant can thus be thought of as being “derived” and the non-LOF variant993

“ancestral”. In the limit of infinitely low (but non-zero) mutation rates, this assumption become994

equivalent to the commonly assumed “infinite sites” model commonly used to compute frequency995

in population genetics [90]. In contrast to the infinite sites model, where the probability that any996

given site is segregating must be 0, our model allows us to compute the probability that a given997

site is segregating. Furthermore, we can easily model recurrent mutation which can be important998

for sites with large mutation rates (such as CpGs) and large sample sizes [91], whereas under the999

infinite sites model each mutation necessarily happens at a unique position in the genome, ruling1000

out the possibility of recurrent mutation. Below we will write pDTWF(y | shet) for the probability1001

mass function computed using this procedure, with “DTWF” representing Discrete-Time Wright-1002

Fisher, and y being an observed LOF allele frequency.1003

Equation 8 is easy to describe and simulate under, and a very similar model has been used1004

in an approximate Bayesian computation approach to estimate shet [4]. While simulation is easy,1005

computing likelihoods under this model is difficult for large sample sizes, and unfortunately we1006

need explicit likelihoods in our empirical Bayes approach. In recent work [16], we have developed1007

an efficient method for computing likelihoods under this model. The key idea is that the above1008

dynamics can be written as1009

vk+1 = MT
k vk

where vk is a vector of dimension 2N + 1 where entry i is the probability that there are i haploids1010
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that have the LOF allele in generation k, and Mk is a matrix where row i is the the probability mass1011

function of the Binomial distribution in Equation 8 given that the allele frequency in generation1012

k is i/2Nk. This formulation makes clear that we can obtain the likelihood of observing a given1013

frequency at present given some initial distribution by performing a series of matrix-vector multi-1014

plications. Naively this would be prohibitively slow as Mk can be as large as 107 × 107, but in [16]1015

we show that Mk is approximately highly structured — it is both approximately extremely sparse1016

and approximately extremely low rank. Combining these insights we can perform matrix-vector1017

multiplication that is provably accurate while reducing the runtime for matrix-vector multiplica-1018

tion from O(N2
k ) to O(Nk). Similar insights can be used to speed up the computation of equilibria,1019

which we discuss in detail in [16]. Furthermore, as discussed above, we actually want to com-1020

pute likelihoods conditioned on non-fixation of the LOF allele, but that is as simple as setting the1021

column of Mk corresponding to fixation to 0, and then renormalizing v. We precompute these1022

likelihoods for each possible pair of mutation rates (to and from the LOF allele) across a range of1023

shet values (100 log-linearly spaced points between 10−8 and 1, as well as 0). We describe how we1024

set the mutation rates and the population sizes implicit in Mk below.1025

Modeling misannotation of LOFs1026

Under the likelihood described above, and as seen in Figure 2A, positions where a LOF variant1027

could occur, but no LOF alleles are observed are slight evidence in favor of selection, while high1028

frequency variants are extremely strong evidence against selection. Meanwhile, we suspect that1029

many variants that are annotated as causing LOF actually have little to no effect on the gene prod-1030

uct due to some form of misannotation. If these misannotated variants evolve effectively neutrally,1031

they can reach high frequencies and cause us to artifactually infer artificially low levels of selec-1032

tion. These misannotated variants can be particularly problematic for approaches that combine1033

frequencies across all LOFs within a gene to obtain an aggregate gene-level LOF frequency [1,2,4].1034

LOEUF [12] and pLI [11] avoid this problem by throwing away all frequency information1035

except for whether an LOF is segregating or not. While this approach is more robust, the ignored1036

frequency information is extremely useful for estimating the strength of selection. For example,1037

consider a gene where we expect to see 5 unique LOFs under neutrality and we see 3 segregating1038

LOFs. This might seem like weak or negligible constraint (O/E = 0.6), but if those 3 sites are all1039

highly mutable and the variants at those sites are each only present in a single individual, then it1040

is plausible that this gene is quite constrained.1041

To take full advantage of the information in the LOF frequencies while remaining robust to1042

misannotation, we take a composite likelihood approach [92], closely related to the Poisson ran-1043

dom field assumption commonly used in population genetics [90]. We approximate gene-level1044

likelihoods as a product of variant level likelihoods1045

p(i)
(

yyy(i) | s
(i)
het

)
≈

Ji

∏
j=1

pvariant

(
yyy
(i)
j | s

(i)
het

)
,

where yyy(i) is a vector of the observed allele frequencies at each possible LOF site in gene i, and1046

s
(i)
het is the selection coefficient for having a heterozygous loss-of-function of gene i. Under this1047

formulation, we can easily model misannotation by assuming that each LOF independently has1048
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some probability of being misannotated, pmiss, and that misannotated variants evolve neutrally:1049

pvariant

(
y
(i)
j | s

(i)
het

)
= (1 − pmiss)pDTWF

(
y
(i)
j | s

(i)
het

)
+ pmiss pDTWF

(
y
(i)
j | 0

)
.

Using this formulation, we can take full advantage of the rich information included in the exact1050

sample frequencies of each LOF variant, while still being robust to occasional misannotation. In1051

practice, we precompute pvariant using a grid of pmiss values, and then to obtain the likelihood at1052

arbitrary values of shet and pmiss we linearly interpolate in log-likelihood space. Below, we discuss1053

our approach for setting pmiss.1054

Given a probability of misannoation, we can then calculate a posterior probability that any1055

given variant has been misannotated. We include a table of these misannotation probabilities for1056

all possible LOFs in Supplementary Table XXX.1057

As an example of the importance of correcting for misannotation, we consider the case of the1058

gene PPFIA3 (ENSG00000177380). This gene has a LOEUF score of 0.12 and so appears very1059

constrained, but in an early version of our model where we did not incorporate variant mis-1060

annotation, we inferred a posterior mean value of shet of ∼2 × 10−4, which is right at the bor-1061

der of being nearly neutral. Inspecting the LOF data for this gene, we find that all potential1062

LOFs are either not observed or observed in a single individual, except for a single splice donor-1063

disrupting variant at 16% frequency. There are no obvious signs indicating that this variant is1064

misannotated (e.g., in terms of coverage or mappability). If we model misannotation, however,1065

we find that this variant is likely misannotated (posterior probability of misannotation > 99.999%),1066

and as a result we estimate extremely strong selection against gene loss-of-function (posterior1067

mean shet of ∼ 0.234). Indeed, a single autosomal dominant missense variant in this gene is1068

suspected to have caused a number of severe symptoms including developmental delay, intel-1069

lectual disability, seizures, and macrocephaly in an Undiagnosed Diseases Network participant1070

(https://undiagnosed.hms.harvard.edu/participants/participant-159/) [93].1071

Modeling the X chromosome1072

We must slightly modify our model when applying it to the X chromosome. Because males only1073

have one copy of the X chromosome, there are only 3/4 as many X chromosomes as autosomes1074

(assuming an approximately equal sex ratio). As a result, when dealing with the X chromosome1075

we scale all population sizes to 3/4 of the size used for the autosomes (rounded to the nearest1076

integer). We also need to slightly modify the expected frequency in the next generation. We as-1077

sume haploid selection in males with strength shom, and diploid selection in females with selection1078

coefficients shet and shom for individuals heterozygous and homozygous for the LOF variant re-1079

spectively. This selection results in modified allele frequencies in the pool of males and females,1080

and the we assume that each chromosome in the next generation has 1/3 probability of coming1081

from a male, and 2/3 probability of coming from a female. This means that the expected fre-1082

quency in the next generation is 1/3 times the post-selection frequency in males plus 2/3 times1083

the post-selection frequency in females. Variants within the pseudoautosomal regions on the X1084

are modeled identically to variants on the autosomes. Agarwal and colleagues also considered1085

selection on the X in the context of LOF variants, with a model similar to that described here [4].1086
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Model parameters1087

Our model has three key parameters — the mutation rate, the demographic model (i.e., population1088

sizes through time), and the probability that different variants are misannotated.1089

We obtained mutation rates from gnomAD [12, Supplemental Dataset 10], which take into ac-1090

count trinucleotide context and methylation level (for CpG to TpG mutations). In our population1091

genetics model, we assume that there are only two alleles (a functional allele and an LOF allele),1092

whereas in reality there are four nucleotides. We approximate the rate of mutating from the func-1093

tional allele to the LOF allele as being the sum of the mutation rates from the reference nucleotide1094

to any nucleotide that might result in LOF. For example, if the reference allele is A, and either a1095

C or a T would result in LOF, then we say that the rate at which the functional allele mutates to1096

the LOF allele is the rate at which A mutates to C in this context plus the rate at which A mutates1097

to T in this context. For the rate of back mutation from the LOF allele to the functional allele, we1098

compute a weighted average of the rates of each possible LOF nucleotide back-mutating to any1099

possible non-LOF nucleotide, weighed by the probability that the original non-LOF nucleotide1100

mutated to that particular LOF nucleotide. Continuing our previous example, suppose A mutates1101

to C at rate 1 × 10−8 and A mutates to T at a rate 1.5 × 10−8. Then conditioned on there having1102

been a single mutation resulting in a LOF variant, there is a 1/2.5 = 0.4 chance that the LOF is C1103

and 0.6 chance that the LOF is T. We then compute the back mutation rate as 0.4 times the rate at1104

which C mutates to A in this context plus the rate at which C mutates to G in this context (since1105

both A and G do not result in LOF) plus 0.6 times the rate at which T mutates to A in this con-1106

text plus the rate at which T mutates to G in this context. Implicitly this scheme assumes that the1107

flanking nucleotides in the trinucleotide context do not change, and we further assume that all1108

mutations resulting in CpGs result in unmethylated CpGs.1109

For the population sizes in each generation, we used the “CEU” model inferred in [75] using1110

the 1000 Genomes Project data [94]. This model was also used in [4]. Population sizes under this1111

model are relatively constant before 5156 generations ago (approximately 155 thousand years ago)1112

and the effects of strong selection are relatively insensitive to all but the most recent population1113

sizes, so for a computational speedup we assumed that the population size was constant prior1114

to 5156 generations ago. Recently, [4] found that this CEU model underestimates the number1115

of low frequency variants and that changing the population size to 5,000,000 for the most recent1116

50 generations provides a better fit to the data. We used both demographic models and found1117

qualitatively similar results, with slightly better fit provided by the modified model, so we used1118

that demographic model for all subsequent analyses. In both cases, we modified the most ancient1119

population sizes, which are relatively constant, to be actually constant to speed up likelihood1120

calculations. The demographic models are presented in Supplementary Figure 1.1121

The only remaining model parameter is pmiss the probability that any given LOF is misan-1122

notated. Throughout we focus on LOFs that either introduce early stop codons, disrupt splice1123

donors, or disrupts splice acceptors. Given that predicting which variants have these different1124

consequences involves different bioinformatic challenges, we inferred separate misannoatation1125

probabilities pc
miss for c ∈ {stop codon, splice donor, splice acceptor}. Below we write pmiss for the1126

collection of these three misannotation parameters. To get a rough estimate of these parameters1127

and avoid excessive computational burden, we took an h-likelihood approach [95,96]. That is, we1128

jointly maximized the likelihood across all genes with respect to their selective constraints as well1129
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Supplementary Figure 1: CEU Demography inferred by Schiffels and Durbin [75], modified by

Agarwal and colleagues [4], and further modified for this paper.

as the the three misannotation probabilities that are shared across all genes:1130

max
pmiss,s

(1)
het,...,s

(M)
het

M

∑
i=1

log p
(

y(i) | s
(i)
het, pmiss

)
.

This approach of just using the maximum likelihood estimates of shet for each gene contrasts with1131

the standard empirical Bayes approach, which would involve marginalizing out the unknown shet1132

values. Yet, this marginalization step depends on the prior on shet, which we learn via our NGBoost1133

framework. As a result, we would need to repeatedly run our NGBoost framework as an inner loop1134

to perform the standard empirical Bayes approach on pmiss. For our application, these values are1135

nuisance parameters, and the results are relatively insensitive to their exact values so we opted for1136

this simpler h-likelihood approach. Ultimately, we estimate that the probability of misannotation1137

is 0.7%, 6.1%, and 8.4% for stop codons, splice donors, and splice acceptors respectively.1138
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C Feature processing and selection1139

We compiled 10 types of gene features from several sources:1140

1. Gene structure. Gene structure features were derived from GENCODE gene annotations (Re-1141

lease 39) [78]. Such features include the number of transcripts and, for the primary transcript1142

of each gene (the transcript tagged Ensembl_canonical), the number of exons as well as the1143

length and GC content of the transcript, total coding region, 5’ UTR, and 3’ UTR.1144

2. Gene expression. We used gene features from 77 bulk and single-cell RNA-seq datasets, pro-1145

cessed and derived in [97]. These datasets can be grouped into 24 categories representing1146

tissues, cell types, and developmental stage (Table 6). For each dataset, features were de-1147

rived separately from all data and from individual cell clusters (for example, gene loadings1148

on principal components). In addition, features were derived from comparisons between1149

clusters (for example, t-statistics for differential expression). Finally, we include a metric, τ,1150

that summarizes the tissue-specificity of gene expression [98].1151

3. Biological pathways and Gene Ontology terms. First, we included previously curated biological1152

pathway features [97, 99]. In addition, to include GO terms that capture additional known1153

relationships between genes, we downloaded Biological Pathway (BP), Molecular Function1154

(MF), and Cellular Component (CC) terms [100] with at least 10 member genes using the1155

procedure described in [10]. Features for each gene were encoded as binary indicators of the1156

gene’s membership in the pathways and GO terms.1157

4. Connectedness in protein-protein interaction (PPI) networks. We included previously computed1158

measures of the connectedness of protein products of genes in PPI networks [10]. Connect-1159

edness was calculated as the number of interactions per protein weighted by the interaction1160

confidence scores.1161

5. Co-expression. First, we included previously computed measures of the connectedness of1162

genes in co-expression networks [10], where connectedness measures the relative number1163

of neighbors of each gene in the network, averaged over tissues. Next, for each gene, we1164

derived features representing its co-expression with other genes (i.e. correlation in their ex-1165

pression levels across samples). To do this, we downloaded from the GeneFriends database1166

a co-expression network derived from GTEx RNA-seq samples [101,102], calculated the vari-1167

ance in the co-expression for each gene, and kept the 6,000 most variable genes. Then, we1168

included the co-expression with each of these 6,000 genes as a feature.1169

6. Gene regulatory landscape. Gene regulatory features include the counts and properties of the1170

enhancers and promoters that regulate each gene. First, we included the number of pro-1171

moters per gene estimated by the FANTOM consortium using Cap Analysis of Gene Ex-1172

pression [10, 103]. Next, for each gene, we calculated the number, summed length, and1173

summed score of enhancer-to-gene links predicted using the Activity-By-Contact (ABC) ap-1174

proach [49,104], where an enhancer is considered linked to a gene if its ABC score is ≥ 0.015.1175

We computed separate features for each of 131 biosamples. We also included features de-1176

rived by aggregating over all biosamples for both ABC enhancers and predicted enhancers1177
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from the Roadmap Epigenomics Consortium [10, 105, 106]—these feature include the num-1178

ber of biosamples with an active enhancer element, the total number of enhancer elements,1179

the total number of enhancer elements after taking merging enhancer domains, the total1180

length of the merged domains, and the average total enhancer length in an active cell type.1181

Finally, we included the enhancer-domain score for each gene [9] as a feature.1182

7. Conservation across species. For each gene, we calculated the mean and 95th percentile phast-1183

Cons scores over the gene’s exons for multiple alignments of 7, 17, 20, 30, and 100 verte-1184

brate species to the human genome [107]. We downloaded phastCons Scores from https:1185

//hgdownload.soe.ucsc.edu/goldenPath/hg38/. In addition, we included the fraction of1186

coding sequence (CDS) or exons constrained across 240 mammals or 43 primates sequenced1187

in the Zoonomia project [108], with constraint determined by the per-base phyloP [109] or1188

phastCons score. Zoonomia data were downloaded from https://figshare.com/articles/1189

dataset/geneMatrix/13335548.1190

8. Protein embedding features. We included as features the embeddings learned by an autoen-1191

coder (ProtT5) trained on protein sequences [110]. Embeddings were downloaded from1192

https://zenodo.org/record/5047020. The embedding for each protein is a fixed-size vec-1193

tor that captures some of the protein’s biophysical and functional properties. For each gene1194

with more than one protein product, we averaged the embeddings of the proteins for that1195

gene.1196

9. Subcellular localization. We included as features the subcellular localization of each pro-1197

tein and whether the protein is membrane-bound or soluble, as predicted by deep neu-1198

ral networks trained on the ProtT5 protein embeddings [110, 111]. Possible subcellular1199

classes included nucleus, cytoplasm, extracellular space, mitochondrion, cell membrane,1200

endoplasmatic reticulum, plastid, Golgi apparatus, lysosome or vacuole, and peroxisome.1201

Predictions were one-hot encoded, and for each gene with more than one protein product,1202

we summed the predictions for the gene’s proteins. Predictions were downloaded from1203

https://zenodo.org/record/5047020.1204

10. Missense constraint. We included a measure of each gene’s average intolerance to missense1205

variants (UNEECON-G score) [112]. UNEECON-G scores incorporate variant-level features1206

to account for differences in the effects of missense variants on gene function.1207

In addition to these 10 groups of features, we included a binary indicator for whether the1208

gene is located on the X chromosome. Genes in the pseudoautosomal regions were categorized as1209

autosomal.1210

After compiling these features (total of 65,383), we performed feature selection to minimize1211

the practical complexity of training on such a large feature set and the complexity of the resulting1212

model. First, we removed features with zero variance and features where the Spearman corre-1213

lation of the feature values with O/E (the ratio of observed over expected unique LOF variants,1214

computed using gnomAD data) was less than 0.1 or had a nominal p-value ≥ 0.05. Next, we per-1215

formed simultaneous feature selection and an initial round of hyperparameter tuning using the1216

shap-hypetune package, which uses Bayesian optimization to identify a set of features and hyper-1217

parameters that minimize the loss of a machine learning model fit on the training data. Specifically,1218

we fit gradient-boosted trees using XGBoost to predict O/E from the gene features; we chose to1219
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perform feature selection using XGBoost rather than NGBoost as training XGBoost models is sub-1220

stantially faster, and because we expect features/hyperparameters that perform well for XGBoost1221

to also perform well for NGBoost. For each set of hyperparameters, shap-hypetune performs back-1222

ward step-wise selection by removing the k least influential features (we chose k = 1000 and1223

calculated influence using SHAP scores) at each step. Finally, we performed further feature se-1224

lection using shap-hypetune by fixing the hyperparameters and performing backward step-wise1225

selection with k = 50. Ultimately, we included 1,248 features in the model.1226
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D Estimating additional gene properties using GeneBayes1227

GeneBayes is a flexible framework that can be used to infer other gene-level properties of interest1228

beyond shet. In Figure 6, we presented a schematic of the key components of GeneBayes that users1229

should specify, which we describe in more detail now.1230

First, users should specify the gene features to use as predictors. We expect the gene features1231

we use for shet estimation to work well for other applications, but GeneBayes supports any choice1232

of features. In particular, GeneBayes can handle categorical and continuous features without fea-1233

ture scaling, as well as features with missing values.1234

Next, users should specify the form of the prior distribution. GeneBayes supports the distri-1235

butions defined by the distributions package of PyTorch. GeneBayes also supports custom dis-1236

tributions, as long as they implement the methods used by GeneBayes (i.e. log_prob and sample)1237

and are differentiable within the PyTorch framework.1238

Finally, users need to specify a likelihood function that relates their gene property of interest to1239

observed data. The likelihood can be specified in terms of a PyTorch distribution, or as a custom1240

function.1241

After model training, GeneBayes outputs a per-gene posterior mean and 95% credible interval1242

for the property of interest. For each parameter in the prior, GeneBayes also outputs a metric for1243

each feature that represents the contribution of the feature to predictions of the parameter.1244

In the next section, we describe in more detail the two example applications that we outlined1245

in Figure 6.1246

Example applications1247

Differential expression1248

In this example, users have estimates of log-fold changes in gene expression between conditions1249

and their standard errors from a differential expression workflow, and would like to estimate log-1250

fold changes with greater power (e.g. for lowly-expressed genes with noisy estimates).1251

Likelihood We define ℓ
(i)
DE and ℓi as the estimated and true log-fold change in expression respec-1252

tively for gene i, and si as the standard error for the estimate. Then, we define the likelihood for ℓi1253

as1254

ℓ
(i)
DE | ℓi ∼ Normal(ℓi, s2

i ).

Prior We describe two potential priors that one may choose to try. The first is a normal prior1255

with parameters µi and σi:1256

ℓi ∼ Normal(µi, σ2
i ).

The second is a spike-and-slab prior with parameters πi, µi, and σi, which assumes that gene i1257
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only has a πi probability of being differentially expressed:1258

zi ∼ Bernoulli(πi)

ℓi|zi ∼

{
0, if zi = 0

Normal(µi, σ2
i ), if zi = 1

Variant burden tests1259

In this example, users have sequencing data from patients with a disease or (if calling de novo1260

mutations) sequencing data from family trios, and would like to identify genes with excess muta-1261

tional burden in patients (e.g. an excess of missense or LOF variants). One approach is to infer the1262

relative risk for each gene (denoted as γi for gene i), defined as the expected ratio of the number1263

of variants in patients to the number of variants in healthy individuals.1264

Likelihood Let Ei be the number of variants we expect to observe for gene i given the study1265

sample size and sequence-dependent mutation rates (e.g. expected counts obtained using the1266

mutational model developed by [84]). Next, let Oi be the number of variants observed in patients1267

for gene i. Then, we define the likelihood for ηi as1268

Oi | ηi ∼ Poisson(ηiEi).

Prior Because ηi is non-negative, one may want to choose a gamma prior with parameters αi1269

and βi:1270

ηi ∼ Gamma(αi, βi).
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Gene shet LOEUF

RPL11 0.75 0.3

RPL18 0.72 0.28

RPL5 0.71 0.17

RPL35A 0.67 0.41

RPL15 0.61 0.27

RPL26 0.61 0.38

RPS15A 0.61 0.56

RPS7 0.60 0.31

RPS10 0.60 0.27

RPS26 0.58 0.48

RPL27 0.56 0.48

RPS24 0.48 0.59

RPS29 0.40 1.2

RPS27 0.31 0.64

RPS28 0.26 0.8

RPL35 0.25 0.72

Supplementary Table 1: LOEUF and shet for ribosomal proteins associated with Diamond-Blackfan

anemia
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Supplementary Figure 2: Additional validation analyses. A) Precision-recall curves comparing the per-
formance of shet estimates from GeneBayes against other constraint metrics in classifying non-essential genes. B)

Precision-recall curves comparing the performance of shet against other constraint metrics in classifying developmen-
tal disorder genes. C) Enrichment of de novo mutations in patients with developmental disorders, calculated as the
observed number of mutations over the expected number under a null mutational model. We plot the enrichment of
missense, splice, and nonsense variants in the 10% of genes considered most constrained by shet (blue) and in all
other genes (gray), including (left) and excluding (right) known developmental disorder genes. Bars represent 95%
confidence intervals.
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