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Abstract

Continuous biomarkers are common for disease screening and diagnosis. To reach a dichotomous 

clinical decision, a threshold would be imposed to distinguish subjects with disease from 

nondiseased individuals. Among various performance metrics, specificity at a controlled 

sensitivity level (or vice versa) is often desirable because it directly targets the clinical utility 

of the intended clinical test. Meanwhile, covariates, such as age, race, as well as sample collection 

conditions, could impact the biomarker distribution and may also confound the association 

between biomarker and disease status. Therefore, covariate adjustment is important in such 

biomarker evaluation. Most existing covariate adjustment methods do not specifically target the 

desired sensitivity/specificity level, but rather do so for the entire biomarker distribution. As such, 

they might be more prone to model misspecification. In this paper, we suggest a parsimonious 

quantile regression model for the diseased population, only locally at the controlled sensitivity 

level, and assess specificity with covariate-specific control of the sensitivity. Variance estimates 

are obtained from a sample-based approach and bootstrap. Furthermore, our proposed local model 

extends readily to a global one for covariate adjustment for the receiver operating characteristic 

(ROC) curve over the sensitivity continuum. We demonstrate computational efficiency of this 

proposed method and restore the inherent monotonicity in the estimated covariate-adjusted ROC 

curve. The asymptotic properties of the proposed estimators are established. Simulation studies 

show favorable performance of the proposal. Finally, we illustrate our method in biomarker 

evaluation for aggressive prostate cancer.
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1 | INTRODUCTION

Continuous biomarker is often utilized for disease screening and diagnosis, where a 

threshold is imposed to reach a dichotomous clinical decision. For its performance 

assessment, the receiver operating characteristic (ROC) curve provides a comprehensive 

evaluation across all possible thresholds. Area under the ROC curve (AUC) is a popular 

performance metric, but it may not be clinically sensible (Hanley and McNeil, 1982). 

Obviously, a continuous biomarker would not operate at all thresholds, because a diagnostic 

test typically needs to reach a certain sensitivity (or specificity) level to be clinically useful. 

Therefore, specificity at a controlled sensitivity level (or vice versa) would be a more 

desirable performance metric in practice. For example, for the noninvasive diagnosis of 

aggressive prostate cancer, the cost of a false negative is usually much higher than that of 

a false positive as a positive test result would be confirmed with biopsy. Thus, the clinical 

utility of a continuous biomarker would be best measured with specificity at a controlled 

high sensitivity level, for example, 95% (Sanda et al., 2017). In this work, we mainly focus 

on specificity at a controlled sensitivity level. The same methods proposed can be directly 

applied to sensitivity at a controlled specificity level by switching the roles of cases and 

controls.

Platt et al. (2000) and Zhou and Qin (2005), among others, studied the estimation of such 

a metric, in the absence of covariates. However, factors, such as age and ethnicity as well 

as specimen collection condition, may influence a biomarker. For example, prostate-specific 

antigen (PSA), as a prostate cancer biomarker, tends to be higher in older men (Partin et 

al., 1996). In addition, African American men have higher PSA than men of other racial 

backgrounds (Henderson et al., 1997; Sanda et al., 2017). While intrinsically they do not 

discriminate diseased from nondiseased, these covariates may impact the performance of 

a biomarker in a number of ways (Pepe, 2003). In fact, covariates may confound the 

association between the biomarker and disease status when the covariate distributions differ 

between diseased and nondiseased individuals. Even when the two covariate distributions 

are the same, ignoring the covariates may lead to biased accuracy assessment. At a 

minimum, when a test is intended to operate at a controlled sensitivity level, covariate 

adjustment for the threshold would be necessary to ensure a uniform sensitivity level across 

subpopulations.

There are many existing methods for covariate adjustment in the assessment of 

continuous biomarkers. Most of them model covariate effects on biomarker beyond the 

specific sensitivity/specificity level of interest. As such, they might be prone to model 

misspecification. For example, Tosteson and Begg (1988) and Pepe (1998) modeled the 

covariate effects on the diseased and nondiseased populations, and then derived covariate-

specific ROC curve. Some other methods directly estimate covariate-adjusted ROC curve 

through generalized linear regression, for example, Pepe (1997, 2000); Cai and Pepe 

(2002). However, the covariate effects could be different at different sensitivity levels, 

as recognized by some of these authors. For example, Cai and Pepe (2002) discussed 

the possibility of including interactions between false-positive rates and covariates. An 

exception is Janes and Pepe (2009), who developed a nonparametric estimator in the 

case of discrete covariates. Nevertheless, when continuous covariates are involved, they 
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used a semiparametric estimator to adjust for covariate effects over the entire biomarker 

distribution, not specifically targeting the sensitivity/specificity of interest. A few previous 

works have also adopted Bayesian modeling framework by incorporating the covariate 

effects in the parameters of the ROC curve associated data distributions (de Carvalho et al., 

2013; de Carvalho and Rodriguez-Alvarez, 2018).

In this paper, we develop a covariate adjustment method for specificity at a controlled 

sensitivity level, by adopting the quantile regression model (Koenker and Bassett, 1978) at 

the given sensitivity for the diseased population. As such, minimal assumptions are imposed. 

The proposal also extends readily to the continuous spectrum of sensitivity levels so as 

to address covariate adjustment for the ROC curve. In the special case that the covariates 

have a finite number of values, the quantile regression model becomes saturated and thus 

does not actually impose any assumptions. Accordingly, our method then reduces to the 

nonparametric method as considered by Janes and Pepe (2009). However, with continuous 

covariates, the semiparametric model of Janes and Pepe (2009) is different as indicated 

before. This seemingly natural model has not been favorably considered previously due to 

a few technique difficulties particularly in the circumstance of covariate adjustment for the 

ROC curve (Pepe, 2003, p. 139). First, the computation burden may be of concern as the 

covariate effects are allowed to vary over quantiles. Second, the standard quantile regression 

of Koenker and Bassett (1978) does not respect the inherent monotonicity of the conditional 

quantile functions. Subsequently, the estimated ROC after covariate adjustment may not 

even be monotone. Both issues are resolved in our proposal.

This paper is organized as follows. Section 2 presents the proposed covariate adjustment 

method for specificity at a controlled sensitivity level. Section 3 extends the proposal to 

global covariate adjustment over all sensitivity levels, resulting in a covariate-adjusted ROC 

curve. Simulation studies are presented in Section 4, and a real data illustration given in 

Section 5. Final discussions are provided in Section 6. Technical proofs are relegated to 

the Web Appendix. The proposed methods are implemented and available as a user-friendly 

R/CRAN package caROC (https://cran.r-project.org/web/packages/caROC/index.html).

2 | SPECIFICITY AT A CONTROLLED SENSITIVITY LEVEL

Denote the case biomarker of interest by M1 and its associated covariate by Z1. The case 

sample consists of n1 i.i.d. replicates of M1, Z1 , M1i, Z1i , i = 1, …, n1. Similarly, denote the 

control biomarker by M0 and its associated covariate by Z0, and the control sample consists 

of n0 i.i.d. replicates M0j, Z0j , j = 1, …, n0. These covariates may be discrete or continuous.

Write the conditional distribution function of the cases as F1 t; z ≡ Pr M1 ≤ t ∣ Z1 = z . The 

corresponding conditional quantile function is F1
−1 · ; z . Controlling sensitivity level at ρ0, 

between 0 and 1, yields a test threshold to be the 1 − ρ0  th quantile, F1
−1 1 − ρ0; z . We adopt 

the following quantile regression model for the relationship between ρ0-level sensitivity and 

the covariates:

F1
−1 1 − ρ0; z = 1, zT β, (1)
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where β is the regression coefficient; note that 1 is added to the covariate vector to 

incorporate an intercept. This model imposes a structure only at the controlled sensitivity 

level ρ0. In the case of the K-sample problem, that is, with K − 1 dummy indicator covariates 

denoting these K samples, this model becomes saturated and no model structure is actually 

imposed. For controls, we similarly define F0 t; z  as the conditional distribution function, 

that is, F0 t; z ≡ Pr M0 ≤ t ∣ Z0 = z . Write β0 as the true value of β. The covariate-adjusted 

specificity at controlled sensitivity ρ0 is given by

ϕ0 = Pr M0 ≤ 1, Z0
T β0 = E F0 1, Z0

T β0; Z0 .

This measure gives the overall specificity with covariate-specific threshold so as to keep the 

same controlled sensitivity level for covariate-specific subpopulations.

Standard quantile regression of Koenker and Bassett (1978) gives a point estimator β̂, which 

is a solution to the following estimating equation:

n1
−1

i = 1

n1 1
Z1i

I M1i > 1, Z1i
T β − ρ0 = O n1

−1 .

Then an estimator of ϕ0 can be obtained via the plug-in principle 

ϕ̂ = n0
−1∑j = 1

n0 I{M0j ≤ 1, Z0j
T β̂}. In the special case of the K-sample problem, our estimator 

reduces to the nonparametric estimator of Janes and Pepe (2009).

2.1 | Asymptotic study

Now we consider the asymptotic properties of our proposed estimator. The following 

regularity conditions are imposed:

• Condition 1. The control and case size ratio n0/n1 approaches a constant c > 0 as 

n0 + n1 ∞.

• Condition 2. Covariates Z1 and Z0 are bounded.

• Condition 3. E(Z1
⊗ 2) is nonsingular, where Z1 = 1, Z1

T T  and v ⊗ 2 = vvT  for 

vector v.

• Condition 4a. Both F1 t; z  and F0 t; z  are differentiable at the threshold 

t = 1, zT β0 with derivative bounded away from 0 and ∞ uniformly in z over 

the supports of Z1 and Z0, respectively.

These conditions are standard and mild. In particular, the differentiability assumption in 

Condition 4a is only imposed at the threshold of interest, whereas F1 and F0 could be 

discontinuous elsewhere.

Theorem 1.—Suppose that the quantile regression model for the cases as given in (1) holds 
locally at the 1 − ρ0 tℎ quantile, along witℎ conditions 1, 2, 3, and 4a . Tℎen, ϕ̂ is consistent 
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for ϕ0 . In addition, n0
1/2(ϕ̂ − ϕ0) converges to a normal distribution with mean zero and 

variance

V = cρ0 1 − ρ0 D2
TD1

−1D0D1
−1D2 + ϕ0 1 − ϕ0 , (2)

where

Z0 = 1, Z0
T T, D0 = EZ1

⊗ 2, D1 = E{F1
′(Z1

Tβ0; Z1)Z1
⊗ 2},

D2 = E{F0
′(Z0

Tβ0; Z0)Z0},

and F1
′ ⋅ ; z , F0

′ ⋅ ; z are tℎe derivatives of F1 ⋅ ; z , F0 ⋅ ; z , respectively.

The second component of V  is the variance if β0 is known and used instead of β̂. Meanwhile, 

the additional variability as given by the first component arises from the estimation of β0.

2.2 | Inference

Theorem 1 provides the asymptotic variance for the proposed estimator. As derivatives of the 

distribution functions are involved, direct estimation, however, is difficult. To overcome this 

difficulty, we adopt the method of Huang (2002) for variance estimation with nonsmooth 

estimating functions. Recast the estimator (β̂, ϕ̂) as the solution to the following set of 

estimating equations:

Gn(ν) =
n1

−1∑i = 1

n1 1
Z1i

I M1i > 1, Z1i
T β − ρ0

n0
−1∑j = 1

n0 I M0j ≤ 1, Z0j
T β − ϕ

, (3)

where ν = βT , ϕ T
. Denote the true value by ν0 = β0

T, ϕ0
T . The asymptotic variance of 

(β̂T , ϕ̂)
T

 is Γ−1Σ Γ−1 T
, where Σ is the asymptotic variance of Gn ν0  and Γ is the derivative 

of the limit of Gn ν  at ν0. Note that V  in (2) corresponds to the last diagonal element of 

n1Γ−1Σ Γ−1 T
. Sandwich variance estimation cannot be directly applied, because Gn ν  is not 

differentiable in β. The method of Huang (2002) resolves this issue. Specifically, start with 

an estimator for Σ as

Σ =

n1
−2∑i = 1

n1 1
Z1i

⊗ 2
I{M1i > 1, Z1i

T β} − ρ0
2 0

0 n0
−2∑j = 1

n0 I{M0j ≤ 1, Z0j
T β} − ϕ 2

.

(4)
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Perform the Cholesky decomposition to give Σ = C ⊗ 2. Write C = c1, …, cL  with column 

vectors c1, …, cL, where L is the length of v. Then, a sample-based variance estimator 

for β0
T, ϕ0

T  is given by (Gn
−1 c1 − ν, …, Gn

−1 cL − v̂) ⊗ 2. This method overcomes the 

nondifferentiability issue discussed before effectively by a numerical differentiation of the 

inverse estimating equation Gn
−1 ⋅  using a data-adaptive bandwidth.

For the variance estimation, a computationally more intensive alternative is bootstrap with 

resampling for cases and controls drawn separately. This approach has been commonly 

adopted for related problems (e.g., Janes and Pepe 2009).

3 | ROC CURVE

The preceding methods target a particular sensitivity level of interest. The same modeling 

strategy readily extends to each and every sensitivity level in a continuum, resulting in a 

covariate-adjusted ROC curve. As such, we impose the global model,

F1
−1 1 − ρ; z = 1, zT β0 ρ ∀ρ ∈ 0, 1 , (5)

where the regression coefficient function β0 ρ  may vary with ρ. The covariate-adjusted 

specificity also varies with ρ,

ϕ0 ρ = Pr M0 ≤ 1, Z0
T β0 ρ . (6)

Clearly, the global model is a submodel of the local one given by (1). Nevertheless, the 

global model is fairly general itself as being nonparametric. Just the same as the local 

model, this global model actually imposes no structure whatsoever in the special case of the 

K-sample problem (Huang, 2010).

As the global model implies local models for each ρ value in (0, 1), we apply the estimation 

procedure described in Section 2 in a pointwise fashion to obtain the estimators. The 

regression coefficient estimator β(ρ) is the solution of

n1
−1

i = 1

nl 1
Z1i

I{M1i > 1, Z1i
T β(ρ)} − ρ = O n1

−1 .

and an estimator of ϕ(ρ) is ϕ(ρ) = n0
−1∑j = 1

n0 I{M0j ≤ 1, Z0j
T β̂(p)}. The computation might be 

perceived as intensive to have a solution at each and every ρ. Nevertheless, the estimator 

β̂(ρ) is a step function and its computation can be formulated as a parametric programming 

problem with n log n  breakpoints to examine (Koenker 2005, Section 6.3). Starting from 

ρ = 0 upward, this algorithm involves alternately solving the equation at the current ρ value 

and finding the next breakpoint. The computation burden does not impose a real concern for 

most applications.

3.1 | Asymptotic study

For the asymptotic study with the global model, we strengthen Condition 4a.
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• Condition 4b. Both F1 t; z  and F0 t; z  have density functions f1 t; z  and f0 t; z , 

respectively, which are continuous in t for given z and bounded uniformly 

in t and z over the supports of Z1 and Z0, respectively. Meanwhile, β0 ⋅  is 

continuously differentiable on ρ1, ρ2  for any ρ1 and ρ2 such that 0 < ρ1 < ρ2 < 1.

The existence of density function is a standard condition when ROC curve is of interest 

(Janes and Pepe, 2009). The differentiability of β0 ⋅  is also mild and commonly imposed 

(Koenker, 2005). Under the condition, there is no zero-density intervals and thus no jump in 

quantile.

Theorem 2.—Suppose that the quantile regression model 
for the cases as given in (5) holds globally over 
1 − ρ2 tℎ tℎrougℎ 1 − ρ1 tℎ quantile for 0 < p1 < p2 < 1, along witℎ Conditions 1, 2, 3, and 4b .
Tℎen, ϕ̂(ρ)
converges in probability to ϕ0(ρ) uniformly over ρ ∈ ρ1, ρ2 . Furtℎermore, n0

1/2{ϕ̂(ρ) − ϕ0(ρ)}
converges weakly to a Gaussian process over ρ ∈ ρ1, ρ2 .

3.2 | Monotonization of the estimated ROC curve

As mentioned in the Introduction, lack of monotonicity in the estimated conditional quantile 

functions could result in that of the estimated covariate-adjusted ROC curve. In fact, a 

few existing works adopted location-scale models to avoid illogical results in estimating 

quantiles, for example, He (1997) and Heagerty and Pepe (1999). However, their models 

become more restrictive. We rather restore monotonicity in the ROC estimation under the 

original quantile regression model and suggest two approaches below.

The root of the issue is the lack of monotonicity-respecting with the estimated 

quantile regression coefficient process. Huang (2017) developed a method to restore the 

monotonicity-respecting property by identifying and interpolating monotonicity-respecting 

breakpoints of the original estimated coefficient process. We apply this approach to obtain 

a monotonicity-respecting estimator β ⋅ . Plugging this estimator β ⋅  in (6) results in an 

estimated ROC curve that is monotone. As a note, the resulting monotonized ROC curve 

is still a step function. The second strategy is to directly apply the method of Huang 

(2017) to the estimated ROC curve {ϕ(ρ), 0 ≤ ρ ≤ 1}. This method results in a piecewise-

linear monotonized ROC curve. Web Appendix Section S3 provides more details about the 

two monotonization methods. We refer these two methods as regression- and ROC-based 

monotonizations thereafter.

The monotonized estimators are asymptotically equivalent to the original estimators as 

shown in Huang (2017). For finite sample, the monotonized estimators may have efficiency 

gain.

3.3 | Inference

For a point on the estimated ROC curve, one may adopt the same inference procedure with 

the local model as described in (1). However, note the availability of several point estimates, 
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depending on whether a monotonized ROC is employed. Nevertheless, any choice of these 

estimates does not make a difference because they are all asymptotically equivalent.

If the whole ROC curve is of interest, it is possible to construct confidence band using 

bootstrap. To estimate the distribution of n0
1/2{ϕ̂( ⋅ ) − ϕ0( ⋅ )}, we can use the same bootstrap 

approach in local model except that the estimand now is functional. Denote the bootstrap 

estimator by ϕ*( ⋅ ). The distribution of n0
1/2{ϕ*( ⋅ ) − ϕ̂( ⋅ )} conditioning on the data is 

asymptotically the same as n0
1/2{ϕ̂( ⋅ ) − ϕ0( ⋅ )}. For ρ ∈ ρ1, ρ2  with ρ1 and ρ2 satisfying 

0 < ρ1 < ρ2 < 1, the 95% equal-precision confidence band of ϕ̂(ρ) is given by

ϕ ρ ± η0.95SE{ϕ ρ },

where SE{ϕ̂(ρ)} is the standard error of ϕ̂(ρ) and η0.95 is the estimated 95% percentile of 

supρ ∈ ρ1, ρ2 [ ∣ ϕ*(ρ) − ]ϕ̂(ρ) ∣ /SE{ϕ̂(ρ)}]. SE{ϕ̂(ρ)} is also based on bootstrap resamples. One 

may construct a confidence band based on a monotonized ROC curve as in Section 3.2 in the 

same fashion, simply with ϕ( ⋅ ) replaced by the monotonized version.

4 | SIMULATIONS

We evaluate the finite sample properties of our proposal under practical sample sizes. 

Assume that the biomarker relies on two independent covariates Z1 and Z2, both following 

uniform distribution between 0 and 1 among cases and controls. For cases, the biomarkers 

M1’s are generated from formulation (1) and β0 ·  consists of an intercept and two slopes 

β0(ρ) = [log −log ρ , 1 − ρ, (1 − ρ)2]. For controls, the biomarkers M0’s are generated from 

N − 1 − 0.5Z1 − 0.5Z2, 22 . The true specificities at controlled sensitivity levels 0.95, 0.90, 

0.85, and 0.80 are 0.24, 0.36, 0.45, and 0.52, respectively.

Table 1 reports the performance of the proposed method in this setting, including bias, 

sample- and bootstrap-based standard errors, as well as the coverage probability of 

confidence intervals. We also present the logit transformation-based confidence interval, 

which is obtained by backtransforming the Wald-type confidence interval of the logit-

transformed ϕ0. As a comparison, we present the results using the seimiparametric method 

by Janes and Pepe (2009) (Column “JP-SP”), implemented in R/CRAN package ROCnReg 
(Rodríguez-Álvarez and Inacio, 2020). All results are summarized over 5000 Monte Carlo 

datasets. The estimation bias of the proposed method is very small and decreases with 

the increase of sample size. Both sample- and bootstrap-based standard errors are close 

to standard deviations. In addition, the coverage rate of confidence intervals is close to 

the nominal level under all scenarios. These demonstrate the favorable performance of 

the proposed method. The semiparametric method by Janes and Pepe (2009) shows larger 

bias and worse coverage probability. Of course, this comparison is not completely fair 

because the two methods impose different models and the data are simulated under our 

model. Web Appendix Figure S1 presents the computational time for different sample sizes 

using sample-based inference versus bootstrap-based inference. We observe that sample-
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based variance estimation has comparable performance with the bootstrap-based estimation, 

whereas the sample-based inference has advantages in computational efficiency.

As discussed in Section 3.2, the estimator ϕ( ⋅ ) may not respect the monotonicity of ϕ0( ⋅ ), 
leading to illogical results. We implement the two monotonization methods described in 

Section 3.2 and evaluate their performance. Table 2 reports the bias and coverage rate 

related with these two methods where ϕ̂reg and ϕROC correspond to the estimators after 

adopting regression- and ROC-based monotonization methods, respectively. The confidence 

intervals of the monotonized estimators are constructed with the sample-based standard 

error estimates. We find both regression- and ROC-based methods show small bias 

and good coverage rate under different sample sizes and sensitivity levels. ROC-based 

approach generally results in better coverage probability than regression-based method. The 

coverage probability of ROC-based method is comparable or even better than that without 

applying monotonicity-restoration method (results presented in Table 1). Lastly, applying 

monotonicity-restoration method may lead to smaller variance than original estimator, as 

shown for the ROC-based method and largely so for the regression-based method. This 

observation is consistent with the finding in Huang (2017).

We also consider the case with discrete covariates only. In this case, our proposed 

estimator coincides the nonparametric estimator in Janes and Pepe (2009) as indicated in 

the Introduction. The focus is on comparing the performance of our inference methods to 

Janes and Pepe (2009), under their simulation setup. The details of this simulation study 

are presented in Web Appendix Section S1 and the results in Web Tables S1 and S2. Our 

sample-based variance estimation shows comparable coverage rate as our bootstrap-based 

inference, whereas their kernel density-based inference has worse performance than the 

bootstrap-based approach. Thus, our sample-based method outperforms the kernel density-

based variance estimation in Janes and Pepe (2009). Such advantage is especially obvious 

when the controlled specificity is large (ϕ0 = 0.95 and 0.90).

5 | ILLUSTRATION WITH A CLINICAL STUDY

Data from a clinical study for aggressive prostate cancer (Sanda et al., 2017) are used for 

illustration. This was a prospective, multicenter cohort of male participants for first-time 

prostate biopsy without preexisting prostate cancer. After excluding 14 subjects with missing 

values, the data consist of 150 subjects with aggressive (Gleason score ≥ 7) prostate cancer, 

per biopsy, and 352 controls. The biomarker under consideration herein is PSA. Figure 1a 

shows the density of PSA from cases and controls.

As mentioned in the Introduction, elder men tend to have higher PSA values than younger 

men (Oesterling et al., 1993; Lilja et al., 2008). Among the cases of our study, we observe 

significant p = 0.038  elevation in PSA with the increase of age (Figure 1b). In addition 

to age, African-American men were also reported to have higher PSA than white men 

(Henderson et al., 1997). Figure 1c shows a small increase in PSA among African American 

cases compared to non-African American cases, although the increase is not statistically 

significant. In the following analysis, age and being African-American (AA) are included 

as covariates. For model checking, we have considered additional terms of squared age and 
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the interaction of age and AA. They are not significant at the sensitivity levels of interest, 

ρ0 = 0.80, 0.85, 0.90, and 0.95, and thus not included in the model.

The ROC curves with and without adjusting for covariates are shown in Figure 2a (black 

and blue curves; this figure appears in color in the electronic version of this article, and 

any mention of color refers to that version). The adjusted ROC curves after regression- 

and ROC-based monotonization are also presented (red and purple curves). Adjusting for 

covariates leads to different ROC curve compared to the one without covariate adjustment. 

Covariate-adjusted specificity is higher than no-adjustment when sensitivity is between 0.7 

and 0.9, and lower when that is between 0.2 and 0.7. Imposing the monotonicity does not 

make much difference. The exact specificity estimations for all the methods at controlled 

sensitivity levels 95%, 90%, 85%, and 80% are reported in Table 3. Consistent with 

the observations in Figure 2a, the covariate-adjusted specificity is lower than no-adjusted 

specificity for ρ0 = 95% but higher for ρ0 = 90%, 85%, and 80%.

In contrast to pointwise confidence intervals, we also construct 95% confidence bands for 

the covariate-adjusted ROC curves. As the confidence bands are similar for the ROC curves 

with or without monotonicity restorations, we only present the confidence band for the ROC 

curve after applying ROC-based monotonization in Figure 2b. The confidence band works 

well in providing inference for the whole ROC curve.

Lastly, we present the estimated covariate-adjusted thresholds for PSA at controlled 

sensitivity level 95%in Figure 2c. Such thresholds could be useful for physicians to identify 

subjects with aggressive prostate cancer. For example, given a non-African American patient 

of age 50, an estimated PSA threshold of 2.2 may be used for controlled sensitivity level 

of 0.95. The design of our method ensures that the sensitivity is equally controlled among 

covariate-specific subpopulations. The covariate-adjusted threshold increases with age and is 

higher in African Americans, which aligns with existing understanding of these covariates.

Our implementation has excellent computational performance. With this prostate cancer 

data, which contain 150 diseased and 352 nondiseased samples, computing a covariate-

adjusted ROC curve takes less than 1 s on a laptop computer with 4GB RAM and Intel Core 

i5 CPU. Computing the confidence band takes less than 3 s.

6 | DISCUSSION

Our contributions are fourfold. First, we provide a covariate adjustment approach for a 

clinical utility-sensible performance metric, specificity at controlled sensitivity or vice 

versa, with minimal modeling assumptions. Compared with existing methods that assume 

uniform covariate effects across the ROC curve, our method only models the covariate effect 

specific to the corresponding threshold and thus is less prone to model misspecification. 

Second, this method extends to covariate adjustment for the whole ROC curve, where the 

issues of computation and monotonicity have been addressed. Third, we develop a sample-

based variance estimation using a numerical differentiation with data-adaptive bandwidth. 

The proposed samples-based inference demonstrates comparable performance as bootstrap-

based inference but is more computationally efficient. Lastly, we adopt the monotonization 
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restoration methods of Huang (2017) and develop two strategies for restoring monotonicity 

in the covariate-adjusted ROC curves. These strategies are generally applicable in ROC 

estimation.

It is worthwhile to point out that our methods focus on the overall specificity with 

covariate-adjusted threshold at a controlled sensitivity level. This is different from covariate-

specific performance evaluation as for subpopulations, as considered by Toledano and 

Gatsonis (1995), Pepe (1997), Pepe (1998), Pepe (2000), Cai and Pepe (2002), and 

Cai and Moskowitz (2004). Our notion of covariate adjustment is similar to that in 

Janes and Pepe (2009). As pointed by one of the reviewers, by analogy to Janes and 

Pepe (2009), the pooled specificity at the controlled sensitivity can be formulated as 

ϕ0(ρ) = ∫ ROCSp ρ ∣ z dH0 z . ROCSp denotes the covariate-specific specificity at sensitivity 

ρ and is defined as ROCSp ρ ∣ z = F0 F1
−1 1 − ρ; z ; z , where H0 z = Pr Z0 ≤ z  is the 

distribution function of Z0.

Our model may be extended to accommodate nonlinear covariate effects. Koenker (2005, 

14, Chapter 6.6 and 7) discussed nonparametric quantile regression methods, including 

kernel-based approximation, additive models, penalized splines, and penalized triogram. In 

addition, a few recent works have also developed strategies to solve quantile regression with 

splines (Yoshida, 2013; Andriyana et al., 2014; Lian et al., 2015). They may be incorporated 

in our proposed method.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Exploratory plots for the clinical study. Panel (a): Histograms of PSA for cases and controls 

with density curves overlaid. Panel (b): Scatterplot of PSA versus age, cases only. The 

red solid line is fitted by loess and the p-value is obtained from testing zero Pearson’s 

correlation coefficient. Panel (c): Boxplot of PSA of African American population and 

non-African American group, cases only. This figure appears in color in the electronic 

version of this article, and any mention of color refers to that version
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FIGURE 2. 
ROC curve and threshold results for the prostate study. Panel (a): ROC curve without 

and with adjustment for covariates (black and blue curve, respectively). Red and purple 

curves are adjusted ROC curves after applying regression- and ROC-based monotonization. 

Panel (b): Covariate-adjusted ROC curve with ROC-based monotonization is in solid purple. 

Dashed purple lines are the 95% confidence band. Panel (c): Estimated PSA threshold at 

controlled 95% sensitivity level by age based on the local model. This figure appears in 

color in the electronic version of this article, and any mention of color refers to that version
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TABLE 2

Comparison of two monotonization methods in the simulation study

Φ̂reg ΦROC

n1 = n0 Bias SD Cov LCov Bias SD Cov LCov

ρ0 = 0.95, ϕ0 = 0.24
 100 419 973 88.82 88.64 276 776 94.68 94.58

 200 84 616 92.96 93.48 154 562 94.76 94.94

 500 27 363 94.52 95.24 56 363 94.58 94.70

 1000 26 259 94.94 95.18 34 260 95.02 95.10

ρ0 = 0.90, ϕ0 = 0.36
 100 52 810 94.44 95.44 131 768 95.00 95.96

 200 24 556 94.90 95.60 69 551 95.30 95.82

 500 20 349 95.22 95.34 27 350 95.02 95.18

 1000 16 246 95.14 95.28 18 248 95.08 95.12

ρ0 = 0.85, ϕ0 = 0.45
 100 6 732 95.66 96.46 66 724 95.86 96.72

 200 24 525 95.22 95.78 43 526 95.46 96.00

 500 14 328 95.32 95.56 16 329 95.24 95.54

 1000 10 231 95.44 95.52 10 232 95.20 95.34

ρ0 = 0.80, ϕ0 = 0.52
 100 −14 685 95.92 96.68 22 685 96.08 96.96

 200 13 495 95.96 96.40 21 499 95.74 96.16

 500 5 311 95.82 95.98 5 312 95.80 95.94

 1000 7 218 95.64 95.74 7 218 95.82 95.90

ϕ̂reg, the estimator with regression-based monotonization; ϕ̂ROC, the estimator with ROC-based monotonization; Bias, (ϕ̂ . − ϕ0) × 104; SD, 

standard deviation ×104; Cov (%) and LCov (%), coverage rates of 95% confidence interval and logit transformation-based confidence interval.
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