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Abstract
Motivation: Deep learning has moved to the forefront of tandem mass spectrometry-driven proteomics and authentic prediction for peptide
fragmentation is more feasible than ever. Still, at this point spectral prediction is mainly used to validate database search results or for confined
search spaces. Fully predicted spectral libraries have not yet been efficiently adapted to large search space problems that often occur in metapro-
teomics or proteogenomics.

Results: In this study, we showcase a workflow that uses Prosit for spectral library predictions on two common metaproteomes and implement
an indexing and search algorithm, Mistle, to efficiently identify experimental mass spectra within the library. Hence, the workflow emulates a
classic protein sequence database search with protein digestion but builds a searchable index from spectral predictions as an in-between step.
We compare Mistle to popular search engines, both on a spectral and database search level, and provide evidence that this approach is more ac-
curate than a database search using MSFragger. Mistle outperforms other spectral library search engines in terms of run time and proves to be
extremely memory efficient with a 4- to 22-fold decrease in RAM usage. This makes Mistle universally applicable to large search spaces, e.g.
covering comprehensive sequence databases of diverse microbiomes.

Availability and implementation: Mistle is freely available on GitHub at https://github.com/BAMeScience/Mistle.

1 Introduction

Metaproteomics is a key technology for characterizing pro-
teins in complex microbial samples at a given time point
(Wilmes and Bond 2004) and can provide pivotal information
about taxon-specific functional activity, as well as signaling
and metabolic pathways within the microbial community
(Hettich et al. 2013, Tanca et al. 2017). This enables studying
health and disease cases of host species, and ecological dy-
namics in all kinds of biological systems and microbiomes
(Hettich et al. 2013, Scholz et al. 2015, Callieri et al. 2018).
Inherent to the proteomic investigation of microbial commu-
nities is a large search space, because many species, often pre-
viously unknown ones, are present in a typical microbiome
sample and need to be queried (Schiebenhoefer et al. 2019).

Peptide identification lies at the heart of high-throughput pro-
teomics workflows, where the collected sample of proteins is
usually subjected to enzymatic digestion and liquid chromatog-
raphy (LC) coupled with tandem mass spectrometry (MS/MS)
(Coon et al. 2005, Hettich et al. 2013). Various search algo-
rithms have been designed to identify the underlying peptides
from the MS/MS spectra in a protein sequence database, assign-
ing quality scores for so-called peptide spectrum matches
(PSMs) (Verheggen et al. 2020). However, distinguishing true
identifications from false positive hits becomes increasingly
hard with increasing size of the protein database that is used as

a reference for peptide identification (Verbruggen et al. 2021).
A greater number of potential matches make it statistically
more likely that a random false match receives a higher score
than the true match (Nesvizhskii 2010, Verbruggen et al. 2021).
When filtering for false positives, an increase in database size
may lead to a reduced number of peptides identified. Even
multi-stage search strategies, which aim to reduce the search
space by tailoring the database through multiple search steps,
may at the same time invoke more false discoveries (Muth et al.
2015, Verheggen et al. 2020). Evidently, there is a demand to
overcome this inherent weakness of database search when fac-
ing large search spaces.

Due to the diversity of species and genera found in micro-
bial communities, metaproteomic studies are especially
resource-straining for common database search engines, such
as MSFragger (Kong et al. 2017), which compare MS/MS
scans to theoretical fragment ions of peptides in the sequence
database. This is noticeable not just in terms of reduced sensi-
tivity in peptide identification, but also in increased run time,
and even more prominently in memory requirements by the
algorithms, due to the large candidate spaces.

Machine learning approaches have been implemented to
enhance peptide identification, e.g. by post-processing the
database search results (Verbruggen et al. 2021). A particu-
larly prominent example of this is Percolator (Käll et al.
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2007), which uses semi-supervised learning with support vec-
tor machines. More recently, deep learning models such as
pDeep (Zhou et al. 2017) and Prosit (Gessulat et al. 2019)
predict complete mass spectra including fragment intensities
and retention time from peptide sequences, and thus offer a
method to rescore database search results based on these pre-
dicted spectral features, coupled with Percolator.

Consequently, Prosit also provides the means to predict
spectral libraries for entire proteomes, which can then be que-
ried. As of now, metaproteomics has not yet had a chance to
fully make use of such comprehensive prediction workflows
covering the proteomes of many species, as this leads to mas-
sive spectral libraries. Current spectral library search soft-
ware, such as SpectraST (Lam et al. 2007), is not equipped to
meet run time and memory constraints imposed by such large
MS/MS databases, covering >10 000 000 peptide spectrum
predictions. At the same time, metaproteomics could benefit
from more precise search algorithms, as the large search space
has been shown to reduce sensitivity and exacerbates chal-
lenges with false discovery estimation in large metaproteomic
settings (Muth et al. 2015). In fact, Gessulat et al. (2019) men-
tion the use case of Prosit for metaproteomics, and manage to
improve database search results by rescoring the top
Andromeda hits (Cox et al. 2011) using the spectral predic-
tions. In 2021, Verbruggen et al. presented a solution for large
search spaces in proteogenomics, for ribosomal profiling, by
using predicted spectral features to enhance identification rate
and stringency in PSMs. However, to this day there is no effi-
cient workflow to apply complete spectral library predictions
to metaproteomics and efficiently search such substantial
amounts of MS/MS data.

We propose such a workflow using a predicted library and
directly search for the best matching peptide using spectral
similarity measures. First, we digest the complete metapro-
teome sequence database (in silico) with EncyclopeDIA
(Searle et al. 2020) and then use Prosit to predict MS/MS
spectra for every peptide and charge configuration that is rea-
sonably likely to occur in an MS/MS run. Finally, we use our
novel Metaproteomic index and spectral library search en-
gine, short Mistle, to query the spectral library.

Mistle creates a small, searchable index and is extremely
run time and memory efficient. We achieve this by adapting
the fragment index of MSFragger to spectral intensity match-
ing. Additionally, we introduce an advanced index partition-
ing and query scheduling method to the algorithm and add
hardware optimization, such as SIMD intrinsics in combina-
tion with multithreading, to greatly reduce memory footprint
and run time.

This workflow virtually turns the sequence database search
problem into a spectral library search problem. We bench-
mark the algorithmic performance of Mistle with state-of-the-
art methods and examine the potential of our workflow to
qualitatively and quantitatively improve metaproteomic stud-
ies on the peptide identification level, based on two sample
metaproteomes, the lab-assembled nine-organism microbial
mixture (9MM) by Tanca et al. (2013) and the extended sim-
plified human intestinal microbiota (SIHUMIx) sample by
Krause et al. (2020).

2 Materials and methods

Mistle is inspired by the fragment index data structure intro-
duced by Kong et al. (2017) and employed in MSFragger.

Instead of iteratively matching experimental spectra with ev-
ery theoretical spectrum calculated from candidate peptide
sequences, MSFragger constructs an index that stores theoret-
ical fragment ions in a rapidly searchable format, enabling
fast and simultaneous peak matching for peptide candidates.
We adapt the core idea to the spectral search problem, where
instead of a protein sequence database a predicted MS/MS li-
brary is queried.

While the main idea remains the same, i.e. searching frag-
ments in the fragment index and updating scores of their
parents, which are now MS/MS spectra rather than peptides,
there are significant additional challenges to overcome. For
one, peak intensities must be considered and stored in the
fragment index. This immediately makes the fragment index
larger, which poses tangible memory problems for metapro-
teomics libraries and slows down processing because intensi-
ties must be multiplied. Simply counting and summing up
intensities, as it is the case for MSFragger, is no longer suffi-
cient. Also, the index needs to be constructed from a spectral
library, which is data-intensive to a point where it is infeasible
to hold all data in random access memory (RAM). Thus, in-
formation required to construct the data structures needs to
be carefully and continuously conveyed throughout the read-
ing process to produce the final index.

Here, we introduce algorithmic solutions to all these hur-
dles and propose optimizations to counteract increased run
time arising from the additional multiplication-operations
when matching peaks. Mistle is implemented from scratch in
Cþþ 20 and features single instruction multiple data (SIMD)
extensions.

2.1 Data structures
2.1.1 Precursor index

Similarly to MSFragger, we require an auxiliary data struc-
ture, referencing all library targets, i.e. peptides linked with
their predicted MS/MS spectra. We call it precursor index, as
entries are searchable by the precursor peak. It is equivalent
to the peptide index described by Kong et al. (2017).

Specifically, the precursor index stores a unique identifier
(ID, 32-bit unsigned integer) for every mass spectrum in the li-
brary, which each corresponds to exactly one peptide. The
IDs are ordered by the precursor’s charge and mass-to-charge
ratio (m/z). This serves as a reference for the fragment index.
Additionally, a mapping must be provided from the ID to the
rank of the spectrum in the precursor index. This is the in-
verse of the sorted precursor IDs. We implement this as an ad-
ditional lookup vector, precomputed at index construction by
a linear scan over the ranked ID vector.

2.1.2 Fragment index

In the fragment index, all fragment ions f, i.e. peaks, of library
MS/MS spectra are stored in form of triplets, of the ion mass
(m/z value, mzf ), peak intensity (If ) and the unique ID of the
underlying parent spectrum: f ¼ ðmzf ; If ; IDparentðf ÞÞ. The lat-
ter provides a reference from fragment to the matched pep-
tide/spectrum and facilitates an efficient search of peaks from
matching candidate spectra.

For that to be possible, the fragments (triplets) are placed
into bins based on their ion mass, given an adjustable bin
width B. Inside each bin, fragments are sorted according to
the parent rank in the precursor index, accessed via the parent
ID. This way, for a certain mass range ½M;Mþ BÞ, every
peak with mzf �M and mzf < Mþ B of the entire spectral
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library is stored in the corresponding fragment bin. The order
of those peaks allows for a division based on parent mass.
The structure of the precursor and fragment index are illus-
trated in Fig. 1.

2.1.3 Partitioning

As the union of precursor index and fragment index holds
about as much information as the entire spectral library, the
required index space grows linearly with the database size
and needs to fit into main memory for efficient access. To
make a search feasible for large reference libraries, we pro-
pose partitioning the main part of the index, i.e. fragment in-
dex, into several smaller sub-indices or partitions. Such a
technique has been shown to be quite effective for other bioin-
formatic problems, showcased for instance by the DREAM
index framework (Dadi et al. 2018). Ideally, each query spec-
trum only needs to be searched in one or a small number of
partitions, which combined retain the original index data
structure.

We achieve this by creating separate fragment bins for each
partition, which we tie to non-overlapping precursor m/z
intervals. A fragment triplet is stored in its corresponding
fragment bin, for the partition only, where the parent’s pre-
cursor peak falls into the m/z interval. Each partition has the
full number of fragment bins, and acts as an individual frag-
ment index. This way, a query spectrum only needs to be
searched in a partition matching its precursor mass, within a
given m/z tolerance. Also, within each partition the search al-
gorithm can be performed identically. Merely the number of
library spectra included is reduced for each partition. This not
only reduces physical space that needs to fit into the main
memory at a time, but also the search space for a given query
within the partition. Fewer comparisons are needed during
the binary search, explained in Section 2.2.

2.1.4 Continuous index construction algorithm

As mentioned before, the input library might be arbitrarily
large and in no particular order. When reading the data, the
precursor index, which is necessary to order all fragments, is
unknown, up until the very end. A practical, memory efficient
approach is to create preliminary (unsorted) index partitions
on the disk when reading the library and to update the
partitions once all relevant information has been obtained. A
detailed description of the process can be found in the
Supplementary Text.

2.2 Search algorithm

Partitioning the fragment index creates an initial overhead
when searching experimental spectra, because spectral queries
need to be scheduled to relevant partitions and merged after-
wards. This is performed by assigning each experimental
query spectrum a unique identifier and constructing a list of
query IDs for each partition to address, based on the precur-
sor m/z and mass tolerance. Then, each partition with at least
one query scheduled is loaded into main memory, and spec-
tral matching is performed.

Initially, matches are ranked by the spectral dot product of
normalized intensities, as described in Eq. (2) by Lam et al.
(2007). The similarity scoring function is refined later on. Raw
intensity values are square rooted before normalization to de-
emphasize dominant peaks. By definition, a peak only contrib-
utes to the dot product, if a matching peak from the other spec-
trum exists in the same m/z bin. Conversely, the dot product
needs to be updated only for those reference spectra that have a
fragment entry in the corresponding fragment bin. A binary
search going through that fragment bin quickly narrows down
the calculation to exactly those candidates that lie within the pre-
cursor m/z range. Essentially, we leverage the data structures
from Section 2.1 to perform a fast search, reminiscent of
MSFragger’s fragment index search, but compute the spectral
dot product in the process, as is illustrated in Fig. 2. The overt
novelty lies within matching fragments by their intensities, in ad-
dition to the m/z dimension, when iterating a fragment bin. The
intensity product (IpIf ) of query peak p ¼ ðmzp; IpÞ and frag-
ment f is added to the parent score, which is accessed by the par-
ent identifier IDparentðf Þ. As this is computationally costly, we
speed up the arithmetic operations using SIMD extensions. The
fused multiply-add operation (in Cþþ: mm256 fmadd ps),
available for the Advanced Vector Extensions AVX2 and
AVX512 architectures, allows parallel multiplication and addi-
tion of 8–16 floating-point numbers in a single CPU instruction.
A schematic workflow with the use of SIMD for a 256-bit regis-
ter is depicted in Fig. 2, bottom left. Moreover, the search loop is
parallelized matching each query spectrum on a separate thread.

After ranking all candidate spectra with the fragment index,
we reevaluate the top hits, tracking all kinds of statistics. A re-
fined bias-adjusted similarity measurement, which resolves m/
z bins by modeling peak intensity spread with a Gaussian bell
curve, determines the X highest scoring library spectra (see
Section 2.2.1 for a detailed description). X, the number of
output PSMs per query spectrum (X> 0), is a parameter de-
fined by the user. A step-by-step walk-through of the search
loop including the implementation of SIMD with intrinsic
Cþþ functions are discussed in the Supplementary Text.

Once all scheduled queries are performed, the resulting
PSMs from all the partitions are concatenated and sorted by
query ID. Matches assigned to the same experimental spectrum
cluster together, and again only the top X ranked matches are
retained, if a query was carried out in multiple partitions.

2.2.1 Spectral similarity scoring

At its core, Mistle provides high-performance spectral match-
ing based on the spectral dot product of binned peaks [Eq. 2
by Lam et al. (2007)]. Precursor m/z tolerance and bin width
are parameters adjustable by the user. However, for any
search engine to distinguish true from false matches, the
choice and design of scoring functions and spectral processing
steps are essential. Currently, the only pre-processing opera-
tions applied to the spectra are square root transformation

Figure 1. Precursor and fragment index data structures at construction.

For an exemplary library spectrum (top left), it is shown how the precursor

is included in precursor index sorted by mass (mz) and referenced by a

unique identifier (id). All peaks are integrated in the fragment-ion bins

corresponding to their ion mass and encoded as triplets [m/z value (mz),

intensity (int) and parent ID (id)]. Their order inside each bin is determined

by the rank of the parent in the precursor index.
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and normalization of peak intensities. A top-k in window-w
noise reduction approach is implemented for optional use.
Top ranked matches for each query are rescored providing a
multitude of scores including shared peak counts, a log-
hyperscore, an f-value equivalent as seen in SpectraST, and
various Mistle specific scores. Differences and refinements
made to spectral similarity scoring are described below.

Peak intensity spread over multiple bins (as is implemented
in SpectraST) to account for slight shifts in peak m/z is ineffi-
cient with the proposed fragment index. Instead, we resolve
the initial binning when rescoring matches. Our formula mod-
els peak intensity spread with a Gaussian bell curve put over
the peaks and penalizes mass shifts as intensity decay along
the curve. We define a similarity between a query spectrum Q
and reference spectrum R, analogous to the dot product of
binned intensities:

similarityðQ;RÞ ¼
X

k

max
l

IlIk/ðmzl;mzkÞ; (1)

and

/ðx;lÞ ¼ exp � 1

2

x� l
r

� �2
 !

; (2)

where k iterates over all reference peaks ðmzk; IkÞ 2 R and l
over all query peaks ðmzl; IlÞ 2 Q. /ðx;lÞ factors in the dis-
tance of mz-values given the standard deviation r between
peaks. We set r, which models the fragment tolerance, equal
to bin size. An analogous formula to the dot bias as provided
by SpectraST (Lam et al. 2007) can be established:

bias Q;Rð Þ ¼ 1

similarityðQ;RÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
k

ðmax
l

IlIk/ðmzl;mzkÞÞ2
s

:

(3)

For the purpose of this study, we employ a bias-adjusted
similarity measurement as: similarity � ð1� biasÞ.

Note that as Prosit only predicts b and y ion intensities, it
might be ill-advised to score similarity based on all peaks. A
correct match might achieve an inferior score, when addi-
tional ion-type peaks are present, which are not matched by
the prediction. Therefore, we introduce a second type of simi-
larity, which only considers similarity of matched peaks,
which we call reflection score. All unmatched peaks from the
experimental spectrum are considered noise and do not influ-
ence this score. Bias and bias-adjusted similarity are
formulated equivalently on matching ions only. The final
scoring function for the evaluation of target decoy
competition is the average between bias-adjusted similarity
and the reflection score version of the same formula.
Remember that the reflection score alone might not provide a
perfect distinction either, since it can disregard large portions
of the experimental MS/MS spectrum. A false peptide might
achieve a high score by matching well to small peaks
annotated as b and y ions yet leaving most of the peak
intensity unaccounted for. Thus, we opt for the average out of
both spectral similarity measurements.

2.3 Data preparation

The datasets in this study were derived from sources in the
public domain. Identifiers and links to the data are provided
below and in the Supplementary Text. We evaluate the per-
formance of Mistle on the NIST human (Homo sapiens) con-
sensus library (downloaded from doi.org/10.18434/
T4ZK5S; Instrument: Ion Trap; Build date: 05-29-
2014) and two common mock communities, 9MM (Tanca
et al. 2013) and SIHUMIx (Krause et al. 2020). For the latter,
we follow the recently published CAMPI study (Van Den
Bossche et al. 2021), such that the evaluation is on par with
the current metaproteomic benchmarking standard.

Protein sequence databases are re-utilized from Tanca et al.
(2014) and the CAMPI study. Four original search files for
9MM and two large search files from CAMPI are selected for
the comparison. Additionally, a yeast (Saccharomyces cerevi-
siae) consensus library by NIST (downloaded from doi.org/
10.18434/T4ZK5S; Instrument: Ion Trap; Build date: 04-06-

Figure 2. Illustration of the search process: matching an exemplary query spectrum (top left) to all indexed library spectra. First, the binary search step (1)

is shown on the precursor index, where the lower and upper bound of candidate spectra is determined and an empty scoring vector is initialized (2).

Thereafter, the peak-by-peak matching is shown for the fragment index, highlighted for the first query peak (turquoise) and the corresponding fragment

bin. (3) Here, a binary search is performed to determine relevant matches with a parent rank within the lower and upper bound. (4) Lastly, fragment

intensity entries are multiplied to the peak intensity and added to the respective parent scores. SIMD intrinsics may replace step 4, as shown on the

bottom left, e.g. computing eight intensity products and adding them to the dot products in a single CPU operation.
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2012) serves as an experimental ground truth dataset. A sum-
mary of the two microbiomes and the data is found in the
Supplementary Text.

The human spectral library is queried with 18 search files
from the human HEK293 cell line [Roos et al. (2016); PRIDE
ID: PXD001197] aligning our study with the spectral bench-
marking by Wang et al. (2020) that already compared
msSLASH and SpectraST.

2.3.1 Spectral library construction

The human spectral library is set up with SpectraST (in .mgf
format) with the corresponding decoy library generated using
the decoy precursor swap method by Cheng et al. (2013). In
total, the library consists of 339 970 target precursors and
339 942 decoy precursors.

Spectral libraries covering both microbiomes are predicted
with the following workflow: The protein sequence databases
are digested using EncyclopeDIA (Searle et al. 2020) with a
mass range of 400–1500 Da, charge states 2–4, and up to two
missed cleavages. The normalized collision energy (NCE) is
left at default value 33. Then, a locally installed version of
Prosit, downloaded from https://github.com/kusterlab/prosit
in 2019, is used to predict MS/MS spectra for all peptides and
charge conformations in the peptide list. This way, the only
modification considered is Cysteine Carbamidomethylation,
which is fixed. A decoy library, when necessary, is created us-
ing DecoyPyrat (Wright and Choudhary 2016) with mini-
mum peptide length 7, and the downstream procedure is
executed identically. Note that the SIHUMIx database al-
ready contains decoy sequences. Here, the database is split
into two separate sets instead, before digestion and predic-
tion. For 9MM, the contaminants database cRAP is appended
downloaded from the GPM FTP site http://ftp.thegpm.org/
fasta/cRAP/ in December 2021. Additionally, the human pro-
teome, downloaded from Uniprot Proteomes (Proteome ID:
UP000005640), is added as an entrapment database to the
target sequences. Again, we produce corresponding decoys
with the method described above and digest and predict the
spectral libraries accordingly.

All of this results in 9 995 224 human peptide spectra pre-
dicted by Prosit, 10 630 095 spectra from 9MM and
7 806 271 spectra from SIHUMIx species (51.8 GB in .msp
format in total). The Supplementary Material contains addi-
tional statistics regarding all datasets.

2.3.2 Search setup

The mistle-build (v0.1.1) indexing algorithm is applied to the
data creating a searchable index with 64 search partitions in
condensed binary format for the target and decoy library. The
four experimental 9MM files are then searched using the mis-
tle-search (v0.1.1) program with 10 ppm precursor tolerance
and 0.2 Da fragment tolerance (bin size), as suggested by
Tanca et al. (2013). The yeast consensus spectra were
searched at 10 ppm precursor tolerance. Here, we relaxed the
fragment tolerance to 0.5 Da, as the machine accuracy is un-
known and a higher fragment tolerance was found to perform
better. The two experimental files from the CAMPI study are
searched in the SIHUMIx library with 10 ppm precursor tol-
erance and 0.02 Da fragment tolerance as was done by Van
Den Bossche et al. (2021).

We conduct the exact same searches with SpectraST and
msSLASH (Wang et al. 2020) on the target and decoy librar-
ies, and with MSFragger given the original protein sequence

databases. MSFragger 3.4 was used via the FragPipe pipeline.
SpectraST version 5.0 was installed together with the TPP
v6.0.0 software (Deutsch et al. 2015) and msSLASH was
downloaded from GitHub (https://github.com/COL-IU/
msSLASH). Precursor and fragment tolerances are set as de-
scribed above, peptide mass ranges are defined accordingly,
and modifications are set to carbamidomethylated Cysteine
only, to ensure a fair comparison. Aside from that, all tools
run with default parameters. All pre-processing steps and
mass calibrations are allowed. Since SpectraST and msSLASH
accept precursor tolerance only in absolute values, we set it to
0.015, so that it considers all candidates for the largest pepti-
des (10 ppm of 1500 Da).

2.3.3 Quality control

False discovery rate (FDR) estimation using target decoy com-
petition is put in place as primary technique to ensure high
quality of identification. For separate target and decoy
searches (Mistle and SpectraST) the results are first merged,
retrieving only the top scoring hit, either from the target or
the decoy library. The FDR is then estimated from the number
of target peptides Ntarget emitted at any scoring threshold t
and corresponding the number of decoys Ndecoy, as a measure
of false discoveries Nfalse among them:

FDRðtÞ ¼ NfalseðtÞ
NtargetðtÞ

�
NdecoyðtÞ
NtargetðtÞ

: (4)

Nfalse is directly measurable only if the correct peptides for the
MS/MS spectra are specified.

Afterwards, the FDR estimate is validated using human
protein sequences as entrapment database. Target peptide
identifications that are unmistakably ascribed to human pro-
teins are deemed false positives and an entrapment false dis-
covery estimate can be computed by:

FDRtrapðtÞ ¼
NtrapðtÞ
NtargetðtÞ

� R; (5)

where Ntrap is the number of entrapment peptides among the
target identification and Ntarget is the number of all target
identifications at scoring threshold t. R is the ratio of target
database size over entrapment database size (number of
peptides).

Moreover, we append the post-processing software
Percolator (version 3.05.0) (Käll et al. 2007) to investigate
target decoy separation enhanced by support vector machines
for Mistle and MSFragger. Parameters are used as suggested
by the Fragpipe pipeline (with following flags set: --only-
psms, --no-terminate, and --post-processing-tdc). FDR estima-
tion is performed by Percolator. Features provided to
Percolator include all the statistics collected by Mistle during
the search. These range from various similarity and delta
scores (see Section 2.2.1) to relevant metadata such as peptide
length and precursor mass. The significance of individual fea-
tures is discussed in the Section 3.4.

The impact of retention time features is evaluated sepa-
rately with Percolator. Here, we use DeepLC (version 1.2.1)
(Bouwmeester et al. 2021) to predict retention times, which
are compared to the measured retention times of the experi-
mental spectra. Absolute, squared and log distance, as well as

Mistle 5

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad376#supplementary-data
https://github.com/kusterlab/prosit
http://ftp.thegpm.org/fasta/cRAP/
http://ftp.thegpm.org/fasta/cRAP/
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad376#supplementary-data
https://github.com/COL-IU/msSLASH
https://github.com/COL-IU/msSLASH


a relative difference between measurement and prediction are
calculated and added as columns to the input of Percolator.

2.4 Run time and memory consumption evaluation

All searches are performed on a Debian 5.10.113-1 system
with an Intel(R) Xeon(R) Gold 5120 CPU @ 2.20 GHz and
RAM of type DDR4, and with the data residing on an SSD.
Eight threads were provided for each tool to make use of.

3 Results
3.1 Run time and memory performance

Time and hardware resources can become a critical factor
when looking at large metaproteomes, covering thousands of
species. For the moment, we evaluate run time and memory
performances of all search software on a human consensus li-
brary and the two small lab-assembled microbiomes, 9MM
and SIHUMIx. Feasibility for larger databases is discussed
later on.

3.1.1 Run time

MSFragger is currently one of the most popular and time-
wise best performing database search algorithms. We use
MSFragger as representative of sequence database search
algorithms in contrast to the spectral library search algo-
rithms we evaluate against. Note that spectral library search
faces inherently different bottlenecks, e.g. data loading and
continuous index construction, since it does not have the
whole database information immediately, unless it loads every
spectrum into RAM. At the same time, no sequence process-
ing is required, e.g. protein digestion. As for the spectral li-
brary search engines, we compare Mistle to SpectraST, as it is
a stable and popular option among spectral search software.
Additionally, we benchmark msSLASH, which has been re-
cently developed and introduces massive run time improve-
ments by using Locality-Sensitive Hashing (Wang et al.
2020).

Figure 3 compares the time required to search all experi-
mental files between all four algorithms, split according to the
spectral library. In all cases, Mistle is faster than the other
spectral library search algorithms. The gain in performance is
more significant the larger the library is. The metaproteome li-
braries are approximately 30 times larger (in terms of MS/MS
spectra) than the human library, which is most notable in the
increase in index construction time for Mistle and SpectraST.

Mistle outperforms SpectraST by a factor of 2 (human li-
brary) to >10 (metaproteomes) and msSLASH by a factor of
2 when searching the predicted metaproteomes.

This places Mistle on a level comparable to the database
search algorithm MSFragger, which is still a few times faster.
Turning off MSFragger’s mass calibration and parameter op-
timization reduces its run time even further down to 1.9 min
(less than half), highlighting that spectral search cannot quite
match the speed of highly optimized database search. Reasons
for that are: (i) the large index construction and data reading
times, which in case of Mistle make up half of the total run
time measured, requiring multiple I/O operations to load and
save spectra and their fragments; (ii) a more cost-intensive
spectral similarity calculation; and (iii) a current lack of opti-
mization for multiple search files that require reloading
Mistle’s index partitions between runs. Combining consecu-
tive searches into a single query immediately speeds up the
process. We test this by concatenating the four 9 MM search
files into a single search file and analyse it with Mistle. While
still querying the exact same experimental spectra, the search
time reduces from 21 min down to 7 min, which is almost as
fast as MSFragger. Also, note that the fragment index of
Mistle needs to be constructed only once for each spectral li-
brary. Hence, when more files (or spectra) are searched, the
run time reduces in relation to the other tools. Indexing time
is indicated by the striped section in Fig. 3 for Mistle and
SpectraST. Note that for predicted spectral libraries, the
indexing time gets overshadowed by the construction and pre-
diction process of the spectral data itself, which is much more
time consuming. For instance, the 9MM target and decoy li-
braries alone take around 16 h for the prediction with Prosit
(10 630 095 spectra).

Additionally, we investigated the time spent in distinct parts
of the search loops, finding that mistle-search (lower bar in
Fig. 3) uses more than 90% of its time for loading the spectral
index and constructing data structures. Conversely, Mistle
spends <10% of the time performing spectral queries, i.e. can-
didate search in the precursor index, fragment matching, and
the final rescoring of top-ranked candidates. This demon-
strates a current bottleneck at index loading operations that
could benefit from further optimizations in the future, such as
the use of memory mapping. Still, time-wise the fragment in-
dex search of Mistle introduces major improvements to spec-
tral library search and brings it into a feasible reach compared
to sequence database search.

3.1.2 Memory

We analyse the memory requirements for all software, mea-
sured by the peak memory consumption across all runs
against the human consensus library, 9MM and SIHUMIx,
respectively. Metaproteome libraries are composed of the re-
spective target spectra, the predicted human proteome (for en-
trapment) and the contaminants database with the predicted
decoy libraries matching those. Figure 4 depicts the memory
consumption in Gigabyte (GB). We find extraordinary mem-
ory improvements by the index partitioning and search sched-
uling method implemented in Mistle compared to all other
search software, being around an order of magnitude more
memory efficient. Compared to SpectraST, Mistle requires
10–22 times less RAM, performing the exact same task.
Mistle effectively constructs a fragment index and performs
searches in a 38 GB large MS/MS library (9MM) with less

Figure 3. Total run time of all experimental search files measured for

human, 9MM, and SIHUMIx libraries. Indexing time is indicated by

stripes, whenever a separate index instance is constructed and saved to

disk as intermediary step. Mistle performs the queries faster than any

spectral library search engine (left side) but is slower than the database

search algorithm MSFragger (right side).
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than 3 GB RAM, enabling queries on low performance com-
puters, e.g. home laptops.

We provide detailed information on how index partition-
ing and search scheduling affect run time and memory con-
sumption in Fig. 5. While the run time remains relatively
constant and even improves slightly with increasing partition
count, the drop in memory consumption is eminent. The
complete index (one partition) is comparable in size to
MSFragger’s fragment index, though it holds additional in-
formation, such as peak intensity values. However, with the
use of more than one partition, the RAM usage decreases
according to the partition size. The usage converges to
roughly 2 GB when using hundreds of partitions. This is the
cached size of precursor index and query spectra together,
while the fragment index size gets arbitrarily small by the
partitioning. We use Mistle with 64 partitions in this study
as it significantly reduces memory consumption with a stable
run time, but the optimum is not reached with 64 partitions
for this dataset.

Figure 5 also highlights the imbalance between search time
and index construction time, as mentioned before. For a single
search file, index construction takes almost three times longer
than the spectral matching and ranking process, rendering
Misle less efficient when the library is only queried once. On
the other hand, many or particularly large MS/MS runs evalu-
ated against the same metaproteome database benefit from an
excellent search time on individual runs, where the fragment

index (and spectral library) only needs to be constructed at
the outset of an analysis.

RAM accessible to MSFragger can be restricted manually
at an increase in run time. Restriction to 20 and 10 GB leads
to a minor increase in search time of 10%–20%. Testing the
limits, for 9MM we were able to reduce MSFragger’s memory
consumption down to 3 GB (3.7 GB measured when running
with FragPipe) before the program rejected the job due to in-
sufficient memory. We measured a run time increase of
around 65% (8.1 min in total). In the case of SIHUMIx,
MSFragger crashes when setting the available memory to
3 GB. The lowest memory consumption achievable without
an error was 4.6 GB. While these numbers are tolerable,
large-scale metaproteomics reference databases are easily 100
times as large, such that memory requirements can have a
profound impact on run time and feasibility. Mistle excels in
memory-confined environments, where Mistle is not only
much more performant than other spectral search software
but also a real alternative to database search.

3.2 Quality control

Target decoy competition is the state-of-the-art method for
quality assurance of PSMs, which we employ for all tested
software. It is essential though, to verify that the FDR estima-
tion is correct and remains stable across many datasets, espe-
cially when dealing with large search spaces. We put two
mechanisms in place to validate the target decoy FDR. A yeast
consensus library with annotated mass spectra serves as
ground truth, which is queried against the inflated search
space of 9MM (and entrapment) sequences. Saccharomyces
cerevisiae is one of the species in the 9MM library. The sec-
ond means of error estimation are entrapment sequences,
which are concatenated to the target library. They provide an
orthogonal FDR estimate (FDRtrap) to confirm that the target
decoy FDR remains stable across all performed searches. A
mathematical description can be found in Section 2.3.3.

Figure 6 shows the performance of all tools on the yeast
ground truth dataset. We evaluate the number of PSMs at
various target decoy FDR thresholds (Fig. 6a) and compare
them with the true FDR (Fig. 6c) measured according to the
peptide annotations in the consensus library. All algorithms
except msSLASH identify high numbers of yeast spectra at
1% FDR, but Mistle identifies the most (82% of all search
spectra). The true FDR is well reflected by the target decoy
FDR estimate for all methods. Merely, in the case of
SpectraST’s f-value the FDR is slightly overestimated, indicat-
ing that the cut-off is too stringent but otherwise correct, for
this dataset. Even msSLASH, which struggles with peptide
identification still maintains a relatively accurate FDR estima-
tion. In conclusion, the spectral prediction approach for entire
metaproteome sequence databases, including the MS/MS pre-
diction of decoy sequences, provides the foundation for highly
effective quality control. FDR estimation remains accurate no
matter which search engine is used to perform the matching.
Of course, the same holds for MSFragger when scoring target
and decoy sequences.

In addition, we investigated the effect of different scores
tracked by Mistle on the FDR. The PSM distribution of
Mistle’s main scoring function (average bias-adjusted similar-
ity, see Section 2.2.1) is depicted in Fig. 6b. The scores follow
a bimodal distribution and decoy scores belong to one of the
modes. This is another indication of a clean separation of true
and false target PSMs by Mistle. Interestingly, we discovered

Figure 5. Memory consumption (black) and run time (green) shown for

increasing numbers of partitions of Mistle’s fragment index for the 9MM

target library. Peak RAM was measured, and the run time is divided into

the time required to build the fragment index (dots) and search time

(crosses) for the largest search file (9MM Run 1.mgf).

Figure 4. Memory consumption measured over all searches against the

human, 9MM, and SIHUMIx libraries. Mistle performs much more RAM

efficiently than all other tools with a 10 to 22-fold decrease in memory

usage when compared to SpectraST and up to 10-fold decrease when

compared to msSLASH, and >10-fold decrease when compared to

MSFragger (run in default settings without memory restriction).
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that removing the reflection score from the bias-adjusted simi-
larity improves PSM output, but at the same time slightly
underestimates the true FDR. The dot product alone does not
suffice to distinguish target and decoy matches properly in
this enlarged search space. This is reflected by the poor per-
formance of msSLASH, which uses a dot product of log-
scaled peak intensities, and we can confirm this with Mistle’s
dot product of square root transformed intensities. PSM out-
put numbers for the standard bias-adjusted similarity and the
dot product are shown in the Supplementary Material.

The entrapment sequences added to 9MM and SIHUMIx
allow another measurement of false discoveries, as identified
peptides that exclusively match to human proteins are most
probably wrong. We ensured that the human entrapment
spectra follow a similar distribution to both 9MM and

SIHUMIx (regarding precursor mass ranges, charge types and
number of peaks; shown in the Supplementary Material).
Therefore, entrapment sequences fulfill the same role as decoy
peptides, but are real biological peptides rather than computa-
tionally generated ones. Figure 7 shows the entrapment FDR
over the target decoy FDR as a range (minimum, maximum
and average) across all 9MM and SIHUMIx runs. For the
most part, the entrapment FDR lies close to the target decoy
FDR without much variation. The diagonal line indicates
where the two FDR estimates are equal. msSLASH appears to
have a higher variance in that regard, which we attribute to
the smaller numbers of significant PSMs. SpectraST again,
slightly overestimates the FDR rates with decoy sequences.
Overall, the two orthogonal FDR estimates agree consistently,
such that we expect little deviation from the true FDR

Figure 6. Statistics on yeast consensus spectra (ground truth) matched to the 9MM library (inflated search space): (a) PSM output numbers over FDR for

all software; (b) score distribution of rank-1 target and decoy PSMs identified by Mistle; (c) true FDR (derived from peptide annotation provided for the

yeast spectra) over target decoy FDR estimates. The black diagonal line displays where true FDR and target decoy estimate align perfectly. The vertical

dotted lines in Figures (a) and (b) display the 1% FDR threshold.

Figure 7. Entrapment FDR over target decoy FDR measured across all searches against the predicted metaproteome libraries (9MM and SIHUMIx). The

range in entrapment FDR is displayed by the colored area for any target decoy FDR interval with the average displayed by the inner line. The black

diagonal line (slope¼ 1) indicates the desired scenario, where the two FDR estimates align perfectly.
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throughout all the performed searches. Target decoy competi-
tion appears to be a well suited error estimation method for
predicted spectral libraries of metaproteomes.

We conclude that Mistle’s scoring function descriminates
well between true and false matches. Target scores are well
separable by the bimodal distribution of their scores. If such
behavior manifests throughout more and specifically larger
datasets, omitting target decoy competition might be an eligi-
ble option. A mixture model approach as for example dis-
cussed by Nesvizhskii (2010) might realize FDR estimation
equally well. Dropping decoy sequences altogether would re-
duce computational resources needed for library prediction,
fragment index construction, and spectral search, enabling
metaproteomic studies of much larger scale. Furthermore,
FDR validation with the ground truth yeast spectra and en-
trapment sequences demonstrate the high quality of spectral
matches with predicted peak intensities. Regardless of which
search engine is used, a high quality of true peptide identifica-
tion persists, which further support the proposed prediction
workflow.

3.3 Peptide identification

We investigate peptide identification rates on PSM level and
peptide level for all three datasets and all algorithms at 1%
FDR. The PSM numbers are averaged across all search files
queried with error-bars shown in Fig. 8 (on the left) for each
dataset. On the right, the sets of distinct peptides and the
overlap between the search algorithms are shown with an up-
set plot. In all cases, Mistle is extremely sensitive being the
best or second best search engine in terms of PSM output. The
identification rates range from 23% (9MM) to 73% (human).
In comparison to the CAMPI benchmarking study, we ob-
serve fewer significant PSMs at 1% FDR: <100 000 for all
search engines and files, whereas approximately 120 000
were identified in the CAMPI study. However, our library
setup is more restrictive in terms of modification and permit-
ted length of peptides—compare Section 2.3 with Van Den
Bossche et al. (2021)—making it hard to judge the difference
in raw numbers. Additionally, the statistics for S05 and S06
search files in the CAMPI study were obtained by database
search with X! Tandem (Craig and Beavis 2004), which uses
a two-stage search strategy, likely yielding additional hits.

When querying the predicted metaproteome libraries,
Mistle identifies the largest sets of distinct peptides with
SpectraST and MSFragger following closely behind. Only for
the human spectral library msSLASH identifies more peptides
than Mistle with its log-scaled dot product. However, the dis-
criminating power of the dot product significantly drops
when searching large search spaces as explained earlier.
msSLASH identifies only a fraction of peptides querying the
metaproteome libraries compared to all other tools. Scores ac-
counting for the dot bias (Mistle and SpectraST) perform
much better. Mistle consistently produces more significant
hits than SpectraST, which we attribute to the slight FDR
overestimation with the f-value. Qualitative differences be-
tween the two tools are discussed in Section 4. In general,
Mistle and SpectraST show an elevated overlap when looking
at their distinct peptide intersections, most notable in the
9MM study. The overlap between spectral search software
(highlighted light blue in Fig. 8) indicates a striking number of
peptides that is identified only through spectral search by
matching peak intensities. Even though msSLASH identifies
only a small set of peptides, its overlap with the results of

Mistle and SpectraST is much more pronounced than its over-
lap with MSFragger. As a consequence, not only does Mistle
identify more than 2000 peptides in each of the

Figure 8. PSM and peptide output for the (a) human, (b) 9MM, and (c)

SIHUMIx libraries. PSM counts are averaged across all search files based

on the software-specific scoring thresholds at 1% FDR (without

rescoring), shown on the left. Sets of identified peptides are depicted with

an upset plot on the right (all searches combined). The individual bars

show the set of peptides distinct to each software and the overlap

between them. Peptides unique to Mistle are shown by the first bar. The

overlap between the spectral search software (Mistle and SpectraST, as

well as Mistle, SpectraST, and msSLASH) is highlighted.
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metaproteomes, which are completely unique to Mistle’s scor-
ing function, but the elevated overlap between spectral search
software also hinges at a non-negligible number of character-
istic peptides that are different from the database search
results. These findings validate the reliability and novelty of
the spectral library prediction workflow, no matter which
spectral search engine is used. An elaborate spectral similarity
function is nonetheless indispensable.

When examining specific differences in PSMs, we uncov-
ered some instances where spectral intensity-based matching
produces a clearly better match than database search using
MSFragger. Figure 9a shows such an example from the
SIHUMIx query (top of the mirror plot) paired with the spec-
tral prediction from Prosit (bottom) of the peptide match
found by Mistle, and Fig. 9b shows the same spectrum
matched by MSFragger. The near perfect overlap between b
and y ion intensities (reflection score of 0.84) suggests that
Mistle identified the correct peptide. SpectraST corroborates
Mistle’s finding. In contrast, the PSM suggested by
MSFragger for the same query spectrum is an apparent mis-
match to a decoy peptide. This is only obvious given the peak
intensity predictions by Prosit, as the theoretical b and y ions
cover only a fraction of all peaks in both cases. Note that
post-processing tools like Percolator eliminate this false dis-
covery, but cannot recover the correct match.

3.4 Post-processing

Percolator is a renowned post-processing software, which
trains a linear support vector machine to separate target and
decoy matches (Käll et al. 2007). By doing so, Percolator opti-
mizes the target PSM output through several iterations of
semi-supervised learning with cross-validation. We append
Percolator to Mistle’s and MSFragger’s output, provided in
pin-tab format that lists the search scores and statistics as fea-
tures for the classifier.

This leads to an increase in Mistle’s target output by 4.4%–
17.4% compared to a threshold on the average bias-adjusted
similarity. Smaller impact is seen for the predicted metapro-
teome libraries, where Percolator boosts the performance on
average by 8.8% (9MM) and 6.4% (SIHUMIx). For the hu-
man spectral library, the PSM output was significantly in-
creased with an average of 15.3%. MSFragger yields slightly
more PSMs (4%–8%) than Mistle, almost doubling its output
on the larger 9MM queries compared to a hyperscore cut-off.
A direct comparison of PSMs identified with and without
Percolator is provided in the Supplementary Material.

In terms of unique peptide identifications, both tools have
very comparable results after rescoring. Mistle even identifies
more distinct peptides in the SIHUMIx queries than
MSFragger, despite having fewer PSMs. About 10% of pepti-
des are specific to each search engine and remain undetected
by the other. This once more highlights the merit of exploring
orthogonal search approaches as standard database search
alone is not fully comprehensive. The proposed spectral li-
brary workflow is sensitive to a different set of peptides,
which may well be of biological significance. Corresponding
figures are provided in the Supplementary Material.

Percolator also returns its feature weights across all its
cross-validation splits, which can be related to the feature im-
portance. Note, however, that some features are highly corre-
lated, making it difficult to judge their exact contribution.
Still, we can confidently identify the following trends: Direct
spectral similarity measures have a great influence with the re-
flection score being more important in case of the predicted li-
braries. This is coherent with the library setup, as only b and
y ions are predicted, and missing peaks do not influence the
reflection score. Respective score biases, e.g. dot bias, have
consistently negative weights as is expected, favoring PSMs
with high similarities and low biases. Occasionally, statistics
like the shared peak count and m/z standard deviation of
matched fragments had a contribution to target decoy separa-
tion. Smaller importance was given to delta scores, hyper-
scores, and mass differences on precursor level. For queries
against the human spectral library, the dot product was the
most important feature by far. This coincides with the good
performance of msSLASH, which uses a dot product with
log-scaled intensities. Interestingly, dot product seems to per-
form significantly better than the similarity on this low-
resolution library. Remember that the similarity uses an m/z
standard deviation rather than a fixed m/z tolerance and still
penalizes mass difference for matched fragments. Moreover,
biases have lower impacts, as both query and reference spec-
tra contain all types of ions and noise peaks. This demon-
strates that Percolator is a great addition to Mistle for cases
when the average bias-adjusted similarity generates a slightly
smaller target output.

In addition, we investigate the effect of retention time fea-
tures added to Percolator. We use DeepLC for retention time
prediction, as described in Section 2.3.3, for peptide matches
from SIHUMIx and 9MM. Note that while Prosit can predict
retention times, they are currently not part of the spectral li-
braries. Both search engines receive a moderate but consistent
boost of 1%–3% to their PSM output when retention time

Figure 9. Mirror plot of a PSM identified by (a) Mistle and (b) MSFragger. In each case the top spectrum is the same experimental spectrum, scan 233724

of S05.mgf file and the bottom spectrum is the matched peptide spectrum from the SIHUMIx database with the peak intensities predicted by Prosit.

Mistle finds a reasonable candidate with high spectral similarity of 0.52 and reflection score of 0.84. MSFragger identifies a decoy sequence with a

hyperscore of 12.6. The spectral similarity to the predicted spectrum is very low with 0.09 and the reflection score is 0.29
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features are present. Percolator emphasizes that the relative
retention time difference is one of the most important features
for classification. At the moment, this is an untapped advan-
tage that spectral libraries have over database search.
Including retention time information in the library and calcu-
lating the corresponding features directly during the search
eliminates the need for tedious and manual prediction of fea-
tures post-search. This represents a potential future improve-
ment to the current workflow.

With rescoring, Mistle now outperforms msSLASH in
terms of PSM output for the human library in most cases (15
out of 18 search files). Mistle is the only spectral search engine
in this study that supports the Percolator-readable pin-tab for-
mat. This makes Mistle extremely versatile, likely performing
well on any new dataset and also when search parameters are
chosen inadequately.

4 Discussion

Coping with complete predicted libraries for metaproteomics,
covering more than 10 million peptide MS/MS spectra, proves
to be a challenging task for spectral search software.
Especially, analyzing the large candidate space in RAM is
very demanding and might just fail when looking at more di-
verse microbiomes. We provide proof of concept that our ap-
proach works well for two mock-communities, turning all
peptides from their sequence database into MS/MS spectra.
Despite the large datasets, the presented search algorithm,
Mistle, is extremely memory efficient due to an effective index
partitioning technique. The memory requirements of Mistle
are an order of magnitude smaller than those of all other spec-
tral search software. In terms of run time, Mistle is up to 10
times faster than SpectraST, up to 2 times faster than
msSLASH, and stays close to the ultra-fast database search al-
gorithm MSFragger. Even though Mistle cannot quite match
the run time of MSFragger, the challenges faced by each ap-
proach are quite different, and the improvements introduced
by our algorithm are nonetheless significant.

Investigating peptide identification, we find cohesive results
between Mistle and SpectraST identifying high numbers of
PSMs, but Mistle finds consistently more unique peptides (see
Fig. 8). The elevated peptide overlap between SpectraST and
Mistle, and to some degree even msSLASH, reinforces the
idea of spectral matching being able to identify peptides that
standard database search cannot. Delving into this, we pre-
sented an example spectrum visibly attaining a much more
reasonable match using our approach, when compared to
MSFragger, which identifies a decoy peptide (see Fig. 9).

We ensured a high quality of spectral matches by verifying
the target decoy FDR with annotated yeast spectra. The FDR
is estimated accurately across all algorithms, legitimizing the
use of spectral predictions (target and decoy sequences) when
confronted with large search spaces. Mistle’s average bias-
adjusted similarity (see Section 2.2.1) produces excellent bi-
modal distributions of PSM, which enable a clean separation
of true and false discoveries, while at the same time being
highly sensitive and accurate. Entrapment sequences spiked
into the target library confirm the soundness of the target de-
coy approach for FDR estimation throughout the numerous
searches. Although we put our focus on evaluating tool-
specific scoring functions, Mistle can also be coupled to
Percolator to boost identification rates even further, reaching
up to 17.4% additional hits. This is another advantage of

Mistle compared to other spectral search software. Still, there
is room for further refinement of features, e.g. by integrating
retention time predictions in the reference libraries. Our tests
suggest that adding retention time features increases PSM per-
formance again by up to 3%. In conclusion, we prove the ap-
plicability of Mistle to common lab-assembled studies and
have reason to believe that the workflow will perform well for
even larger metaproteomics studies.

Currently, the main shortcoming resides in building the
spectral library as an in-between step, which is resource inten-
sive (time, and disk space). Additionally, loading times from
disk takes more than 90% of the total search time, which is
the reason for slightly increased run time compared to state-
of-the-art database search methods like MSFragger. A way to
mitigate long loading times is to distribute search tasks among
several servers, each permanently keeping an index partition
in RAM. As a positive side effect partitions can then be que-
ried in parallel without any I/O operations.

The prediction workflow produces satisfactory results no
matter which search engine is used, as long as the spectral
similarity measurement is carefully selected and tested.
However, Mistle has an excellent trade-off between run
time and memory consumption and outperforms SpectraST in
that aspect by far. Mistle is best used for repeated scans on
the same metaproteomic environment, like for instance
SIHUMIx, such that the spectral library and search index are
constructed only once. The sequence database and parameters
can be chosen generously to be very comprehensive, and the
performant search algorithm excels at multiple MS/MS runs
against the same library. Spectral library construction using
Prosit can be optimized further, e.g. by calibrating the colli-
sion energy based on the experimental raw data. The low
memory consumption makes Mistle feasible for studies on
low performance machines, e.g. laptop computers, but also
allows much larger protein databases to be analysed, where
the competing tools are quickly overchallenged. Of course,
Mistle, being a spectral search engine at heart, can be used on
any experimental spectral library, too. We highlight this by
using Mistle to query 18 experimental MS/MS files to the
NIST human consensus library. Although this represents only
a small spectral library, the boost in performance and low
memory footprint suggest that Mistle is well suited for far
more comprehensive libraries.

There are small qualitative differences between SpectraST
and Mistle, which arise from different pre-processing steps
and the scoring functions used, e.g. neighboring bin matching
for SpectraST and peak matching using a Gaussian distribu-
tion for Mistle. Turning off most pre-processing features and
using the native dot product for scoring produces nearly iden-
tical results between SpectraST and Mistle. We also suspect
that the current search setup with a separate target and decoy
library might affect the discriminating power of SpectraST’s
f-value. Thereby, differences in dot products [DD, see Lam
et al. (2007)] are not calculated between target and decoy
matches and may be a reason for the slight reduction in sensi-
tivity. At this point, we conclude that the differences in PSM
scoring play a minor role when looking at the overall identifi-
cation of unique peptides in the samples. Figure 8 demon-
strates a large overlap in the findings of both spectral library
search engines. Depending on the dataset, Mistle agrees with
the peptides found by SpectraST in 88%–95% of the cases.

With our tool, we open the door to investigate much larger
metaproteomes, e.g. the human gut microbiome, with the
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help of predicted spectral libraries. In an ideal setting, spectral
library prediction is set up to cover the entire metaproteome
comprehensively with carefully selected parameters in accor-
dance with the wet lab. Then, the effect of treatments, differ-
ent samples or patient groups can be perpetually analysed by
spectral search with Mistle producing reliable peptide identifi-
cation in the large search space at fast rate, and without being
memory intensive.
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