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Abstract 

Within-host Human immunodeficiency virus (HIV) evolution involves several features that may disrupt standard phylogenetic recon-
struction. One important feature is reactivation of latently integrated provirus, which has the potential to disrupt the temporal signal, 
leading to variation in the branch lengths and apparent evolutionary rates in a tree. Yet, real within-host HIV phylogenies tend to 
show clear, ladder-like trees structured by the time of sampling. Another important feature is recombination, which violates the fun-
damental assumption that evolutionary history can be represented by a single bifurcating tree. Thus, recombination complicates the 
within-host HIV dynamic by mixing genomes and creating evolutionary loop structures that cannot be represented in a bifurcating tree. 
In this paper, we develop a coalescent-based simulator of within-host HIV evolution that includes latency, recombination, and effective 
population size dynamics that allows us to study the relationship between the true, complex genealogy of within-host HIV evolution, 
encoded as an ancestral recombination graph (ARG), and the observed phylogenetic tree. To compare our ARG results to the familiar 
phylogeny format, we calculate the expected bifurcating tree after decomposing the ARG into all unique site trees, their combined 
distance matrix, and the overall corresponding bifurcating tree. While latency and recombination separately disrupt the phylogenetic 
signal, remarkably, we find that recombination recovers the temporal signal of within-host HIV evolution caused by latency by mix-
ing fragments of old, latent genomes into the contemporary population. In effect, recombination averages over extant heterogeneity, 
whether it stems from mixed time signals or population bottlenecks. Furthermore, we establish that the signals of latency and recom-
bination can be observed in phylogenetic trees despite being an incorrect representation of the true evolutionary history. Using an 
approximate Bayesian computation method, we develop a set of statistical probes to tune our simulation model to nine longitudinally 
sampled within-host HIV phylogenies. Because ARGs are exceedingly difficult to infer from real HIV data, our simulation system allows 
investigating effects of latency, recombination, and population size bottlenecks by matching decomposed ARGs to real data as observed 
in standard phylogenies.
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Introduction
Within-host Human immunodeficiency virus (HIV) evolution 
impacts between-host HIV evolution on the epidemic level (Volz, 
Romero-Severson, and Leitner 2017; Leitner 2019). Thus, it is 
imperative to understand how within-host processes such as 
recombination and latency shape HIV phylogenies on different 
levels. Recombination violates the fundamental assumption that 
every offspring only has one parent (which is fundamental in a 
bifurcating tree). Instead, recombinant HIV taxa are formed by 
two parents in a generation, which cause loop structures in the 
resulting genealogical graph. Depending on the proportion and 
evolutionary history in each parent, this can lead to errors both in 
the branch lengths and implied evolutionary relationships among 
the sampled haplotypes (Mendes, Livera, and Hahn 2019). Latency 
is the result of HIV provirus in dormant cells, which may be inac-
tive for years, during which no evolution occurs. This may lead 
to extreme evolutionary rate differences (Immonen and Leitner 

2014), causing difficulties in tree reconstruction and especially 
in time-scaling trees. While these evolutionary effects are well 
known in the HIV field, they are still often ignored simply because 
they are difficult to model.

On the epidemic level, the use of pathogen genetic data to infer 
epidemics has advanced considerably in the past decades. In such 
analyses, the evolutionary history is nearly always thought of as 
a bifurcating tree, i.e. a standard phylogeny. Thus, such epidemio-
logical applications (Fisher et al. 2010; Kouyos et al. 2010; Stadler 
et al. 2013; Volz et al. 2013; Grabowski et al. 2014; Rasmussen, 
Volz, and Koelle 2014; Ratmann et al. 2016) assume that (1) the 
genealogy of infection is a primary determinant of the phylogeny 
and (2) the evolutionary history of a pathogen can be reason-
ably modeled as a bifurcating process, again, that the sequenced 
genetic regions are derived from one progenitor. Both assumptions 
are questionable. Within-host HIV evolution leads to substantial 
diversity, which has been shown to randomize transmission order 
and times (Romero-Severson et al. 2014; Giardina et al. 2017; Volz, 
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Romero-Severson, and Leitner 2017; Hall and Colijn 2019). Thus, 
without modeling the underlying transmission history, the HIV 
phylogeny will be misleading about the details of transmissions. 
On a large population scale, where close donors and recipients 
unlikely are in the limited sample, however, the first assumption 
may be a reasonable approximation. The second assumption is 
less understood and may thus present a bigger problem for the 
application of phylogenetic methods to HIV data.

Recombination is also fundamentally a problem for the epi-
demiological interpretation of HIV phylogenies, although recom-
bination at the epidemiological level sometimes is more obvious 
when it involves recombination of distinct so-called subtypes 
with well-known genetic signatures (Salminen et al. 1995; Siepel 
et al. 1995). The signal for teasing out recombination events is 
lower within subtypes and even lower at the within-host level 
because many infections are established by a single virus (Giorgi 
et al. 2010; Leitner and Romero-Severson 2018), which limits the 
extent of parental diversity that recombination detection methods 
use to identify recombinants. Likewise, the extent of recombina-
tion within-host leads to multiple generations of recombination 
events that further obscure the relationship between genealogy 
and phylogeny (Song et al. 2018).

Estimates of the rate of HIV recombination within a host 
are very high. Both empirical (Neher and Leitner 2010) and 
simulation-based studies (Batorsky et al. 2011) estimate that the 
effective recombination rate, which incorporates both the prob-
ability of coinfection of a single host cell (Josefsson et al. 2013) 
and the template switching rate, is on the order of 1.4 × 10−5 to 
1.38 × 10−4 per base per generation, comparable to the estimated 
point mutation rate of 2.2−5.4 × 10−5 per base per generation 
(Mansky and Temin 1995; Gao et al. 2004). Within a host, recombi-
nation provides HIV-1 with a means to increase the genetic varia-
tion for selection to operate on (Fisher 1930; Muller 1932; Crow and 
Kimura 1965; Felsenstein 1974; Michod, Bernstein, and Nedelcu 
2008), can lead to rapid emergence of antiviral drug resistance 
(Gu et al. 1995; Kellam and Larder 1995; Moutouh, Corbeil, and 
Richman 1996), and can help shed deleterious mutations. Theo-
retical studies have shown that the magnitude of benefits brought 
by recombination depends on the interaction between factors 
such as population size and epistatic interactions (Kondrashov 
and Kondrashov 2001; Michod, Bernstein, and Nedelcu 2008; 
Moradigaravand et al. 2014).

Recombination clearly plays a central role in the evolution-
ary process of within-host HIV evolution, yet there are very few 
methods for modeling and addressing recombination empirically. 
Inference of more generalized recombination graphs called ances-
tral recombination graphs (ARGs) has been proposed and demon-
strated (Hein 1990; Griffiths and Marjoram 1996; Rasmussen et 
al. 2014), but those methods are not scalable to large trees (Wang, 
Zhang, and Zhang 2001). Even if robust methods for inferring ARGs 
from data existed, there is very little understanding of how to 
interpret ARGs or how those results could be used to understand 
the interplay between recombination and other evolutionary pro-
cesses. In this paper, we develop a coalescent-based simulation 
method for simulating ARGs under a range of conditions, includ-
ing the rate of diversification, the level of recombination, the 
extent of latency, as well as within-host population bottlenecks 
in an idealized population intended to represent within-host HIV 
evolution. We implement a decomposition method to map ARGs 
simulated under a variety of conditions onto bifurcating trees. This 
method allows us to investigate the effects of within-host HIV bio-
logical processes on familiar phylogenetic trees without having 
to make unrealistic assumptions about the underlying genealogy. 

Combining the simulator with approximate Bayesian computa-
tion (ABC) methods and genetic data from nine serially sampled 
HIV patients, we also look at levels of recombination, latency, 
and population dynamics that are consistent with the real-world 
within-host HIV phylogeny.

Methods
Methodological overview
We simulate ARGs using a coalescent method that begins with 
a set of given samples at various times post-infection and sim-
ulates an ARG backward in time according to a set of parameters 
intended to model the effects of recombination, latency, and selec-
tion. To map the simulated ARGs into the space of bifurcating 
trees (i.e. what we can infer using standard phylogenetic meth-
ods), we decompose each ARG into a bifurcating tree for each 
residue in simulated sequences by assuming a single random 
break point delineating the contribution from each parent. The 
average distance between tips is then computed over the popu-
lation of decomposed trees and used to reconstruct a single tree 
that averages over the set of unobserved recombination events. 
Our ABC approach is based on comparing empirically measured 
statistics from real within-host HIV data to statistics computed 
on the simulated decomposed trees.

Model assumptions
We assume that an individual is infected with a single transmit-
ted HIV variant. From that lineage, the HIV population diverges 
and diversifies linearly with time, with intermittent demographic 
bottlenecks caused by the host immune response. In addition, we 
assume that there is a reservoir latent population that is estab-
lished 3 weeks after infection. The latent reservoir is assumed to 
be constant in size such that all movement to and from the latent 
reservoir is balanced; we call this the global flow rate. Integrated 
provirus in the latent reservoir does not acquire new mutations. 
For all processes, we assume neutrality, specifically that any lin-
eage is equally likely to coalesce, recombine, go into or out of the 
latent reservoir, or survive a population bottleneck event. Finally, 
we assume that the evolutionary rate remains constant over the 
course of the infection.

Simulation of the ARG
We simulate ARGs in reverse time, beginning with the fixed set of 
sample times and moving backward in time until the time of infec-
tion. All lineages have a state of being either latent, L, or active, 
A, and at any point in time, there are 𝑘𝐿 latent lineages and 𝑘𝐴
active lineages. We model four possible events: (1) a recombina-
tion event between two active lineages, (2) a virus entering the 
latent reservoir, (3) a virus in the latent reservoir reactivating, and 
(4) a coalescent event between two active lineages. We assume 
that waiting times to each event are independent and conditional 
only on the extant number of lineages in either an active or a 
latent state and the time since transmission. The model uses the 
parameters listed in Table 1. 

Simulation events
Coalescence
When a coalescent event occurs, two extant active lineages are 
chosen randomly and joined to form a single lineage (2A → A), and 
a coalescence node is inserted into the ARG. The expected wait-
ing time for two random lineages to coalesce is dependent on the 
effective population size and the number of active lineages. The 
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Table 1. Parameter table.

Symbol Description Ranges Citations

𝛼 Number of transmitted lineages 0
𝛽 Population growth rate 1
𝜌 Rate of recombination per lineage {0, 0.001, 0.01, 

0.05, 0.1}
Neher and Leitner (2010); Batorsky et al. (2011); Jetzt et al. 

(2000); Zhuang et al. (2002)
𝜆 Global flow rate of a lineage into and out of the 

latent reservoir
[0.5–5.25]* Siliciano et al. (2003)

NL Size of the latent pool [101–103] Siliciano et al. (2003); Finzi et al. (1997); Chun et al. (1997); 
Wong et al. (1997); Ho et al. (2013)

Bstrength Population size (N) during demographic 
bottlenecks

[1–100]

Bfrequency Frequency of bottlenecks (days) [14–365]
kA Number of active lineages
kL Number of latent lineages

*This range of λ corresponds to these 𝑁𝐿 values using the equation 𝜆 = 𝑁𝐿
𝑙𝑜𝑔(2)
44𝑥30 .

population size is modeled as 𝑁(𝑡) = 𝛼 + 𝛽𝑡, where 𝛼 is the num-
ber of transmitted lineages, 𝛽 is the growth rate per generation 
(assumed to be 1 generation per day), and t is the time since infec-
tion in days. The linear growth model is motivated by empirical 
observations of diversity trends (Shankarappa et al. 1999; Zanini 
et al. 2015), as previously implemented (Romero-Severson et al. 
2014; Romero-Severson, Bulla, and Leitner 2016). For all simula-
tions, we assume that 𝛼 = 0 and that 𝛽 = 1. 𝛼 is set to 0 to ensure 
that all lineages coalesce by the time of infection. During bottle-
neck events, the population remains at a constant size, 𝐵strength, 
for a period of 5 days.

Thus, population growth can be described by the following 
system of equations: 

Following the period of decreased population size, the popula-
tion resumes linear growth, maintaining the overall gradual linear 
increase in genetic diversity over the course of the infection. In 
this way, we approximate the effects of selection without explicitly 
incorporating the reproduction probability of individual lineages. 
In the normal regime, the time to the next coalescent event is com-
puted in the way described by Romero-Severson, Meadors, and 
Volz (2014).

During periods of bottlenecks that occur every 𝐵frequency = 300
days, the time to the next coalescent event is an exponential 
random variable with rate ( 𝑘𝐴(𝑘𝐴 −1)

2𝑁 ) (Wakeley 2009) where 𝑁 =
𝐵strength. By chance, the parameters of 𝐵strength and 𝐵frequency could 
occur such that 𝑁 = 𝐵strength > 𝑁(𝑡). Using t = 14 as the earliest 
time a bottleneck could occur, we found this phenomenon to 
occur in 0.88 per cent of all bottleneck events in our dataset. As 
these bottlenecks represented a small fraction of the total number 
of events within affected simulations (Figure S1), we determined 
the effect to be minimal. The Kingman coalescent is generally 
considered to be valid when the sample size is much smaller 
than the population size. However, as previously demonstrated 
(Romero-Severson, Bulla, and Leitner 2016), the error caused by 
large sample sizes in the linear coalescent is relatively small 
compared to the Kingman coalescent.

Recombination
A recombination event adds a lineage to the total number of 
extant active lineages (A → 2A). When a recombination event 
occurs, one lineage is chosen from the set of extant active lineages 

and is split into two lineages representing each parent. A node rep-
resenting the recombination event is inserted into the ARG, and a 
single break point is assigned to that node with uniform probabil-
ity over the set of simulated residues. We assume recombination 
to be a homogeneous process where recombination events occur 
at rate 𝜌 per lineage, and thus, the time to the next recombination 
event is an exponential random variable with rate 𝜌𝑘𝐴.

Latent reservoir deposition and reactivation
The size of the latent reservoir, NL, is assumed to be constant with 
a fixed half-life of 44 months (Siliciano et al. 2003). Therefore, the 
per day rate of lineages moving into and out of the latent reservoir 
is 𝜆 = 𝑁𝐿

𝑙𝑜𝑔(2)
44𝑥30 ; i.e. a larger latent reservoir corresponds to a larger 

global flow rate into and out of the reservoir to maintain a constant 
half-life.

The overall rate of activation and deposition is equal, but we 
also need to consider the probability that an activation/deposition 
event is ancestral to the sample. For activation (L → A), the time to 
the next event is an exponential random variable with rate 𝜆 𝑘𝐿

𝑁𝐿
. 

For deposition (A → L), the time to the next event is given by the 
same equation that governs the time to the next coalescent event 
with the ( 𝑘𝐴

2 ) replaced by 𝜆𝑘𝐴. Both deposition and reactivation 
events are recorded in the ARG as a node along a single branch 
indicating that the state of that lineage has switched.

Longitudinal sampling
To simulate longitudinal sampling, we designate times along the 
reverse time axis when new active lineages are added to the sim-
ulation. At each additional sampling event, the branch lengths 
of any remaining active and latent lineages from the previous 
sample are extended in time up to the next sampling time. From 
there, the simulation proceeds as before, with 𝑘𝐴 updated to 
reflect the additional new samples. The simulation ends after 
the last sampling time (first in forward time) when 𝑘𝐴 = 1 before
𝑡 = 0.

Mapping the ARG to a single bifurcating tree
To map the simulated ARG into what we might observe with stan-
dard phylogenetic methods, we (1) decompose the ARG into a 
population of bifurcating trees, one for each residue in the sim-
ulated sequence (Fig. 1), (2) compute an average distance matrix 
from the population of bifurcating trees, and (3) compute a sin-
gle phylogeny from the average distance matrix. For each residue, 
i, in the simulated sequence, we extract a single bifurcating tree 



4 Virus Evolution

Figure1. ARG decomposition into a series of bifurcating trees. (A) The simulated ARG from two sampling events. Red dots represent recombination 
events, with the break point identified in the white text. Blue dots represent coalescent events between two lineages. Dashed gray lines represent 
when a lineage is in the latent reservoir. Branch lengths correspond to time. This ARG represents the genealogical relationships among five viruses 
sampled 3.5 months post-infection and ten viruses sampled 7 months post-infection and was simulated using 𝜌 = 0.08, NL = 760 assuming a sequence 
length of 1000. (B) Each panel shows the decomposition of the ARG into a bifurcating tree for a specific position in the alignment. Recombinant (red) 
nodes are resolved at the nucleotide level by removing one of the parent branches depending on where the recombination event occurred with respect 
to the given alignment position. If no recombination occurred between two positions, then the genealogy for those positions will be identical (e.g. 
Residues 61 and 418). However, recombination can alter both the topology and branch lengths of the underlying genealogy (e.g. Residues 507 and 697).

by removing recombination nodes by trimming the right-hand lin-
eage if i ≤ y where y is the break point at that node and trimming 
the left-hand lineage otherwise. For each bifurcating tree, we com-
pute the distance between each tip by traversing the tree using 
the igraph package (Csardi 2019) in R and summing the total time 
along that path that was in the active state. During the latent state, 
no evolutionary time is accumulated (i.e. we assume that there is 
no potential for mutation in the proviral state). Finally, we use a 
minimum evolution principle (Desper and Gascuel 2002) (similar 
to the well-known neighbor joining method) to generate a hierar-
chical clustering representation of the average distance matrix. To 
visualize a hierarchical clustered tree, we root it at the most recent 
common ancestor of the samples from the first (in forward time) 
sampling event. Hereafter, we refer to this as the simulated tree. 
Because of computational limitations, we complete this decompo-
sition process for a random sample of 400 residues out of the 700 
simulated. As the number of random sampled sites approaches 
half, we observe that the hierarchical clustering representation is 
similar to one generated using all 700 sites (Figure S2).

Data
We applied this framework to the analysis of longitudinal 
HIV-1 deoxyribonucleic acid sequences sets from nine patients 
(Shankarappa et al. 1999). In that study, sequences correspond-
ing to the HIV-1 env gene were taken from each participant over 
a course of 6–12 years starting at 3 months from the time of 
seroconversion. There was an average of 11.875 individual sam-
pling events with an average of 9.83 (SD 1.66) samples taken per 
event. We aligned the sequences of each participant using MAFFT 
v7.305b2 (Katoh and Standley 2013) and generated a tree using a 
standard maximum likelihood method, PhyML v3.1 (Guindon et al. 
2005), under a GTR + G + I substitution model with Nearest Neigh-
bor Interchange and Subtree Prune and Regraft search. For each 
patient, we simulate a population of ARGs under a range of differ-
ent parameter values and decompose those ARGs into a single tree 

as described earlier. Therefore, for each patient, we have 31,100 
simulated that we use for inference based on our set of statistics. 
To compare within-host evolutionary dynamics over the course of 
the same time duration for each patient, we restricted our anal-
ysis to samples taken no more than 90 months past the time of 
seroconversion.

Selected statistics, objective function, and 
parameter inference
Our inference method is an ABC method using importance sam-
pling to generate a population of parameters that produce simu-
lated data that are most similar to the empirical data with respect 
to a set of statistics. To capture the general aspects of the empirical 
phylogenies, we used five statistics (Table 2): the Sackin index (SI), 
the external to internal branch length ratio (EI ratio), the mean 
number of lineages through time (MLT), the coefficient of varia-
tion (CV), and the relative pairwise difference (RPD). SI and EI are 
computed using standard methods. The MLT is a proxy measure of 
phylogenetic temporal structure in a longitudinal set of samples, 
defined as the mean number of branches linking two consecu-
tive samples. For example, if all the tips from a sample coalesce 
with one another, then the number of lineages through time for 
that sample is one. On the other extreme, if each tip from a given 
time point co-clusters with a tip from another time point, then 
the number of lineages through time is equal to the number of 
tips. The CV is the mean of the ratio of the SD of all pairwise 
distances in a given time point to the mean of those distances 
computed over all sampling time points. When the CV is low, 
the distribution of branch lengths has low heterogeneity (i.e. all 
branch lengths in a given time are very similar). The RPB is the 
element-wise difference in the full cophenetic distance matrix for 
the simulated and empirical trees. To make the matrices directly 
comparable, we compute differences in the simulated and empiri-
cal matrices within- and between-sample times of the same rank, 
e.g. for sample time one we compute the absolute sum of the 
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Table 2. Statistical probes used to match the simulated evolutionary history to a patient’s empirical HIV-1 env phylogeny.

Statistic Type Description

SI Topological The average number of splits from a tip to the root of a tree and captures asymmetry 
over the evolutionary history of the sample

MLT (Giardina et al. 2017; Janzen, 
Höhna, and Etienne 2015)

Time structure The diversification of lineages normalized by the number of extant tips

EI ratio Distance The ratio between the mean external branch length (branch that ends with a sam-
pling event) and the mean internal branch length (branch between coalescence 
events)

RPD Distance The difference in the empirical and simulated distributions of branch lengths ranked 
by size within each sampling event

CV in pairwise distance Distance The ratio between the standard deviation of pairwise distances between branches of 
the same sampling event and the mean pairwise distance between branches of the 
same sampling event

Notes: Some statistics measure tree characteristics (topological or time structure), while others measure distance statistics (distance). A simulation’s score, d, is 
the sum of the normalized differences between the statistic measured on reconstructed simulated tree and the empirical tree.

ordered distances within that time point and so on for all com-
binations of time points. Because the simulated and empirical 
distance matrices are on different scales (time and generic dis-
tance, respectively), we further assume that they are related by 
an unknown multiplicative scalar quantity. Rather than trying to 
fix that scalar, we optimize it for each comparison to minimize the 
element-wise difference in the simulated and empirical distance 
matrices. This allows us to directly compare the relative differ-
ences in the simulated and empirical distance matrices without 
worrying about the effect of the unknown scaling factor at the 
price of losing the ability to distinguish between very similar trees 
at different scales. 

The objective function (i.e. the metric defined on the space of 
sample statistics) is then defined as the sum of the absolute dif-
ference in each normalized statistic. If the objective function is 
0, then the simulation has the exact same values of the mea-
sured statistics as the empirical tree for a given patient. To search 
for parameter sets that produced trees that are most similar to 
the empirical trees, we drew 31,100 parameter sets within fixed 
strata of the recombination rate. Within each recombination, 
strata parameters were sampled from [0.5−5.25] for 𝜆, [1−100] 
for 𝐵𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ, and [14−365] for 𝐵𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦, with uniform probability 
and assuming independence. We used the top 5 per cent (i.e. with 
the lowest score) of parameters as the posterior distribution of 
parameters for each patient.

Results
HIV recombination and latency interact and 
affect the observed temporal signal in a 
within-host HIV
Phylogeny
To qualitatively investigate the interplay between recombination 
and latency, we first simulated a single ARG for a range of recombi-
nation rates and global flow rates in and out of the latent reservoir 
of infected cells and reconstructed the corresponding bifurcat-
ing phylogeny (Fig. 2). Each tree has the same sampling scheme 
covering 132 samples over 147 months, which is representative of 
a densely sampled within-host HIV phylogeny. The top left tree 
represents what happens when there is a very small effect of 
latency and no recombination. In this panel, we see a tree that 
is orderly with respect to time (i.e. the tips sampled at the same 
time, more-or-less, occur at the same tree height). Moving along 
the top row (no recombination) from left to right, the latency rate 
increases, and we see almost immediately clear signs of temporal 

disordering: (1) large sets of sequences sampled at later times 
mixed with early samples, (2) lineages that appear to be extremely 
divergent from other sequences sampled at the same time, and (3) 
a collapse of the ladder-like backbone of the tree structure. Pattern 
1 occurs when a period of latency happened on a branch that is 
ancestral to several tips that are sampled later, while Pattern 2 
occurs when little or no latency occurs on a single branch lead-
ing to an apparently highly divergent taxon. Pattern 3 is a result 
from randomly inserting ancestral variants from the latent reser-
voir, which destroys the basal time structure. Thus, in the absence 
of recombination, latency can completely disrupt the temporal 
signal in a phylogeny.

In the left column, moving from top to bottom, the recombina-
tion rate is increased and the level of latency reactivation is low. In 
general, even high levels of recombination do not disrupt the tem-
poral signal; however, it can cause some co-clustering of samples 
from different time points, but still overall has a distinct ladder-
like structure. Interestingly, the higher levels of recombination 
in this present study tended to produce longer external branch 
lengths, which could easily be confused as a signal for exponen-
tial growth. In general, moving from top to bottom, at all levels 
of latency tested, recombination clearly ‘recovers’ the temporal 
signal inherent in the data even at very high levels of recombina-
tion. At recombination rates above 0.05, we no longer see highly 
divergent lineages as we are only sampling recombinants of those 
lineages with other less diverged lineages (i.e. those with periods 
of latency in their past). However, when both the recombination 
and latency are high, it is still possible to see a slight disordering 
of the temporal signal as later sampled tips can co-cluster with 
earlier samples.

Combined evolutionary effects generate the 
familiar HIV within-host phylogenetic structure
Our coalescent ARG simulator included several evolutionary pro-
cesses that each could violate the fundamental assumptions on 
which standard phylogenies are based. As we have already seen 
in Fig. 2, recombination rescues the disruptive effects of latency. 
This is surprising because recombination itself severely violates 
the bifurcation assumption. Thus, we next investigate this theme 
of recombination apparently amplifying, or at least rescuing, the 
phylogenetic signal disrupted by other evolutionary processes, 
also including periodic population bottlenecks. These periodic bot-
tlenecks were introduced to mimic population size effects due 
to selection and other demographic processes, but the overall 
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Figure 2. Simulated trees under a range of recombination rates and global flow rates in and out of the latent reservoir. This figure shows a simulated 
within-host phylogeny under the specified recombination rate, 𝜌, and the global flow rate, 𝜆. The global flow rate increases from left to right 
(more frequent deposition and activation of latent lineages) and the recombination rate increases from top to bottom. The color of the tips represents 
the time from infection in years. Trees are all on the same scale (days).

model is still a neutral model that cannot capture adaptive and 
selection-driven genetic effects.

Real within-host HIV phylogenies based on sequences sam-
pled over time characteristically display unbalanced, ladder-like, 
time-ordered trees (Shankarappa et al. 1999; Zanini et al. 2015).
With more frequent sampling over time, lineages from differ-
ent samples will overlap more, and conversely, over longer time, 
only a few lineages survive from one sampling time to the next 
(Immonen et al. 2015). Simulating actual ARGs that include 
population demographics, recombination, and latency makes it 

possible for us to investigate such effects on the expected bifur-
cating phylogeny that we are accustomed to see in HIV evo-
lutionary research. We simulated within-host evolution over a 
12-year period, sampled roughly yearly, to illustrate the effects 
that complex evolutionary processes have qualitatively on bifur-
cating trees. Overall, each of the evolutionary processes we simu-
late in our ARG framework shows clear qualitative effects on the 
decomposed bifurcating trees (Fig. 3).

Figure 3A shows an example of a tree generated using only a 
linear growth coalescent model that accounts for linear increase 



L. A. Castro et al.  7

Figure 3. Illustration of effects of within-host evolutionary processes on virus phylogenies. Each tree is the decomposed average tree from one ARG 
simulation of 12 years using 132 sampled taxa spread over ten sampling events. Color represents tips sampled at the same time. The baseline model, a 
linear-growth coalescent model is in Panel A. Panels B-H illustrate the effect of the processes listed at the top of each panel. For simulations in which 
the process is active: 𝐵frequency = 300 and 𝐵Strength = 15; 𝜆 = 1.31; and 𝜌 = 0.01. Trees are all on the same scale (days).

in genetic diversity from the time of infection (Romero-Severson, 
Meadors, and Volz 2014). This model captures the lengthening of 
external branches as the infection progresses that is observed in 
empirical within-host HIV phylogenies. However, the long-term 
co-existence of distinct clades produced by simple linear growth 
coalescent models is inconsistent with reality. While some HIV-
infected patients’ HIV populations can show multiple lineages 
surviving over time (Skar et al. 2011), this tree has too many par-
allel lineages co-existing and diversifying to appear fully realistic. 
As expected, adding bottlenecks to the simulation cuts down on 
the number of co-existing lineages (Fig. 3B) as not all co-existing 
lineages will survive a bottleneck event. Surprisingly, adding only 
recombination to the linear growth produces trees that look plau-
sibly like within-host HIV phylogenies (Fig. 3C). This is due to the 
fact that recombination has the effect of averaging over extant 
heterogeneity (i.e. co-existing lineages recombine with each other 
and remove the more diverse parents), which produces trees that 
look like they have the signal of weak selection but, as stated 
earlier, do not actually simulate real selection, only the popula-
tion size effects associated with selection. Without either pop-
ulation bottlenecks or recombination to trim and integrate the 
re-emergence of latent viruses (Fig. 3D), phylogenies simulated 
with linear growth and latency alone do not resemble within-host 

HIV phylogenies at all. With latency in the model, adding bottle-
necks alone cannot recover the expected tree shape (Fig. 3E), while 
recombination can (Fig. 3F). The tree in Fig. 3F shows the charac-
teristic co-clustering of heterochronous samples that is expected 
of a long period of evolutionary latency, but the branches appear 
very long suggesting long periods of population growth uninter-
rupted by selection. The final two trees (Fig. 3G and H) show how 
these evolutionary effects, working simultaneously, can produce 
HIV phylogenies that very closely resemble real phylogenetic trees 
observed from longitudinally sampled patients.

Phylogenetic probes in bifurcating trees respond 
to recombination and latency activity
Next, we investigated effects on the statistics used to match sim-
ulated and real HIV phylogenies (Fig. 4). All the statistics are 
variable under a broad range of both the recombination rates and 
global flow rates in and out of the latent reservoir. That is, these 
statistics clearly respond to both of these important biological pro-
cesses suggesting that, collectively, they form a reasonable probe 
for an ABC-based inference and matching of simulated to real 
phylogenies. The empirical distributions of the statistics for nine 
HIV-1-infected patients are shown in Fig. 5.
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Figure 4. The magnitude of each biological process causes variability in distance and topological statistics. Each dot represents the mean and SD of 
the statistic. Colors represent different rates of recombination, 𝜌, with recombination values increasing from left to right. Simulations are grouped into 
three levels of the global flow rate, 𝜆, of increasing magnitude, with the break points depicted on the x-axis. The gray dashed lines indicate the 
maximum, median, and minimum value for the nine empirical patients in the study by Shankarappa et al. (1999). On the y-axis, the absolute limits of 
the MLT and the SI are from (0, 1). We have shown that both the empirical and simulation values are a subset of this possible range.

All the selected statistics show high levels of heterogeneity 
between patients, possibly suggesting variability in both recom-
bination and latency levels between patients. However, Fig. 4 
also shows that stochastic effects produce fairly wide distribu-
tions in the statistics, which could also explain some of the 
between-patient heterogeneity in the within-host phylogenies. 
Interestingly, higher recombination rates reduce the variance in 
all the statistics, which is most pronounced in the EI ratio. This 
is expected because recombination, in general, averages out dif-
ferences between contemporary viruses at the sequence level 
and therefore should reduce stochastic effects between simula-
tion runs. Overall, our method of simulating ARGs, decomposing 
them into bifurcating trees, reconstructing a consensus tree, and 
measuring the tree statistics on those trees is valid in that it pro-
duces self-consistent results that are linked to biological processes 
through our ARG simulator.

Evaluation of within-host heterogeneity among 
real HIV-1-infected patients
While this paper was focused on studying qualitative effects of 
combined latency, recombination, and population bottlenecks on 
a typical HIV phylogeny, we also evaluated different levels of each 

of these evolutionary processes, including when matching simula-
tions to real within-host phylogenies. Thus, we could estimate how 
our model parameters varied across patients. Overall, the simula-
tor was able to produce trees that resembled real patient data by 
minimizing the ABC distance between the observed and simulated 
tree statistics (Figure S3). Figure 6 (Panel B) shows two examples of 
empirical and matched simulated trees. The simulated tree with 
the best score for Patient 3 shows several of the typical tree statis-
tics of the empirical tree, including samples from specific time 
points at similar height and the general ladder-like tree structure 
with increasing external branch lengths in later time samples. 
While the simulator worked well for most of the patients, some 
of the patients showed overall lower scores in the posterior sam-
ples (Fig. 6, Panel A) suggesting that their results are not as reliable 
(e.g. p9). HIV evolution is often patient specific (Lee et al. 2008; 
Immonen et al. 2015), in part due to unique immune pressures 
that we do not model here. Thus, for comparison, we evaluated 
trees computed on third codon positions only to assess possible 
effects of selection on our statistics (Figure S4). Third codon site–
based trees have less mutational information, making them less 
robust (approximate likelihood-ratio test node support values sig-
nificantly decreased, P = 1.5e-8–6.2e-3, Wilcoxon signed-rank test), 
and are therefore less reliable. As expected, because there are 
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Figure 5. Tree statistic probe values for the nine patients. These statistics were used to match simulations to the patient observed HIV-1 phylogenies. 
The lower left scatter plots depict the values of each corresponding row and column metrics for each patient. The diagonal is a histogram of the 
statistic values across the nine patients. The upper right triangle gives the correlation of the corresponding row and column metrics. The CV captures 
the relative variability in the pairwise distance of tips from the same sampling event, the EI ratio describes the relative differences between external 
and internal branches, the MLT calculates the mean number lineages of lineages in a clade with extant descendants across sample times, and the SI is 
an indicator of tree balance. We used an additional statistic, the RPD; however, we do not depict it here as it is a relational metric calculated directly 
between a simulated distance matrix and the observed empirical distance matrix.

fewer mutations, third codon site–based trees showed somewhat 
higher EI ratios, as well as higher number of lineages through time, 
while SI showed no systematic difference, i.e. it was sometimes a 
little higher and other times a little lower than the full data trees, 
again explained by the increased uncertainty when using fewer 
sites.

The signal of recombination in the posterior samples for each 
patient is shown in Fig. 7. For six of the nine patients, the recom-
bination value of 0.01 recombination events per lineage per gen-
eration represented the plurality of recombination values in the 
posterior (excluding p3, p8, and p9). Across patients, 0.01 repre-
sents an average of 45 per cent of the posterior, and the second 
most common recombination value of 0.001 represented on aver-
age 27 per cent of the posterior. Overall, this implies recombina-
tion rates that are substantially lower than previously estimated 
values. On the other hand, the global in and out of latency rate 
implied a size of the latent reservoir that was generally well con-
strained by the data and showed only modest levels of heterogene-
ity between patients (Fig. 8). Excluding Patient 9, the mean global 
flow rates were in the lower half of the tested range, suggesting 
only a relatively small number of latency reactivation events were 
required to explain the empirical phylogenies. Interestingly, there 

is a positive correlation in the recombination rate and the global 
flow rate in and out of the latent reservoir (Figure S5), suggesting 
that if the latent reservoir is very large (corresponding to a higher 
global latency rate), then recombination must be rapidly inte-
grating components of latent viruses into contemporary viruses. 
In general, the bottleneck strength and frequency were not very 
strongly identified, other than that extremely strong (i.e. perfect) 
and extremely frequent bottlenecks were ruled out for all patients 
(Figure S6), which is consistent with our observation that recombi-
nation alone even in the absence of bottleneck events can produce 
trees with the characteristic temporal ladder-like trees seen in 
within-host HIV phylogenies.

Discussion
The importance of recombination and the latent reservoir in 
within-host HIV-1 evolutionary dynamics has been described in 
detail since the mid-1990s (Finzi et al. 1997; Ruelas and Greene 
2013). Although these two processes have been modeled indi-
vidually and together using forward mathematical models and 
simulations (Immonen et al. 2015; Doekes, Fraser, and Lythgoe 
2017; Hill 2017; Murray et al. 2017), both processes have been 
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Figure 6. Normalized distance scores of the best-fitting 5 per cent of simulations for each patient. Panel (A) shows the density of the best-fitting 5 per 
cent of 31,100 distance scores normalized for each patient, with the best-fitting match receiving a score of 0 and the worst-fitting match receiving a 
score of 1. Patients are ordered by the mean of the normalized top scores. Panel (B) illustrates the variation in quality of model fits by showing the 
observed and single best simulation for Patients 3 and 9. The simulated trees are scaled from time to genetic distance by the optimal evolutionary rate 
found when calculating the RPD.
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Figure 7. The recombination breakdown within the best-fitting 5 per cent of simulations for each patient. For this figure, we bootstrapped the scores 
within each recombination strata so that each stratum contained 10,000 values. For each bootstrap replicate, we normalized the score across the 
50,000 samples and calculated the relative frequency of each recombination rate in the top 5 per cent of matching simulations. Here, we plot the mean 
relative frequency of each recombination strata over 100 bootstrap replicates. Patients are organized by the mean of the normalized top scores, with 
Patient 3 having the lowest (best-fitting) mean score.

Figure 8. Marginal distributions of the global flow rates in and out of the latent reservoir across the nine patients. Colors distinguish the density of 
parameters between simulations with the best-fitting 5 per cent of distance scores (blue) and the highest 95 per cent of distance scores (gray). The 
dashed line indicates the mean of λ for the best 5 per cent distribution. Patients are ordered by increasing values of λ of the best-fitting 5 per cent of 
simulations. This figure represents the results of one of the bootstrap replicates.

largely ignored in phylogenetic and phylodynamic investigations 
because of the theoretical and computational problems in jointly 
inferring the phylogeny and recombination patterns. As efforts 
continue toward finding a functional cure of HIV-1 that involves 

eliminating or reducing the size of the latent reservoir, studying 
the interaction between the latent reservoir and recombination 
remains key. In this study, we extended a previously developed 
within-host coalescent model (Romero-Severson et al. 2014) into 
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an ARG simulation model that allows for lineages to coalesce, 
recombine, and cycle in and out of a latent state. We found 
that these complex evolutionary dynamics leave tractable signals 
in bifurcating trees reconstructed using hierarchical clustering 
which can be quantified in readily measurable topological and 
distance statistics (Table 2).

We examined statistics computed from both maximum likeli-
hood and minimum evolution empirical trees (Figure S4) finding 
that the statistics computed from the maximum likelihood trees 
were closer in alignment with what our simulator produced. Ulti-
mately, it is unclear from a theoretical perspective how future 
simulation-based studies of recombination and phylogeny should 
proceed. However, our results in this context were very similar 
regardless of the choice of inference method for the empirical 
trees. Thus, our main result was that recombination restores the 
time structure in longitudinally sampled within-host HIV-1 phy-
logenies where HIV-1 has circled in and out of a latent reservoir. 
Hitherto, it was not understood why longitudinally sampled trees 
could show such a clear time structure (samples typically ordered 
in time along an unbalanced tree trunk), when recombination 
may mix everything, and latency makes old variants appear in 
more recent samples. Indeed, we show that without recombina-
tion, latency would have ruined the time structure. Taken together, 
however, recombination smooths out extremes and restores that 
disrupted time order. In fact, we show that recombination also 
smooths out effects of within-host bottlenecks.

Across the nine real patients analyzed, reassuringly, we found 
consistency between the recombination rates that produce the 
best-fitting trees to the empirical data and the current bio-
logical estimates of the effective recombination rate (1.4 × 10−5

to 1.38 × 10−4 per base per generation (Neher and Leitner 2010; 
Batorsky et al. 2011)), which corresponds to a rate of 0.008−0.081 
recombination events per lineage per day in our simulation of a 
700 nt genomic fragment). Interestingly, there was a positive corre-
lation between the intensity of recombination and the global flow 
rate in and out of the latent reservoir. This leads to that large latent 
reservoirs will produce greater number of activation events, and 
consequently, faster recombination rates are required to maintain 
a ladder-like tree shape. While we found support for global flow 
rates in and out of the latent reservoir of 0.053 to 0.525 per day, 
corresponding to latent reservoirs of size 102–103, recall that our 
model assumes that the half-life of the latent reservoir is fixed 
at 44 months (Siliciano et al. 2003). Currently, however, it is not 
known what the size of the latent HIV reservoir is in a patient, 
and its dynamics over time are complicated as there exist differ-
ent cell populations with different half-lives (White et al. 2022). It 
is therefore not possible to directly evaluate our latency results 
quantitatively. Also, because our model lacks a fitness cost for 
newly activated latent viruses, it is possible that we are inflating 
the recombination–latency correlation as reactivated latent cells 
that do not recombine with contemporary virus are not likely to 
survive long enough to be sampled at high frequency in reality 
(Immonen et al. 2015). Finally, similar to that the effective pop-
ulation size in a coalescent model does not match the census 
population size, our implied latent population size should also be 
thought of as an effective size. However, the relationship between 
latency dynamics and recombination in smoothing out the poten-
tial disruption of temporal ordering caused by latency is clear in 
the model. That is, in a neutral model, the size of the latent reser-
voir and the recombination rate must be correlated to obtain trees 
that look like typical within-host HIV phylogenies.

The third biological feature we included in our within-host 
ARG simulation model was the population demography in the 

form of (internal) bottlenecks. Changes in the population size can 
affect the accumulation of mutations, where transient reductions 
favor neutral drift over selection (Leitner and Kumar 2018). In our 
model, the coalescence rates of lineages are neutral between bot-
tlenecks. However, low-level positive selection from the immune 
system would create fitness differences between lineages, espe-
cially for reactivated latent lineages that would be less fit because 
of long-term immunological memory (Richman et al. 2003; Wei 
et al. 2003; Bunnik et al. 2008). These fitness differences would 
likely lead to a more pronounced ladder-like structure of a tree 
and potentially improve the simulator by allowing for more vari-
ation in producing unbalanced trees (Figure S3). Thus, the lack of 
individual-level fitness differences between lineages in our model 
might explain the tendency of our model to produce somewhat 
more balanced trees than what may be seen in real HIV-1 trees. 
In addition to creating more balanced trees, this neutrality likely 
causes more variability in the possible evolutionary histories for 
a given set of parameters, particularly when recombination is 
low, potentially allowing for acceptance of low recombination 
parameter sets by chance alone.

In our distance algorithm, we introduced the relative distance 
matrix as a new statistical probe, which has two notable fea-
tures. First, because the ARG models the time between events, the 
distance matrix obtained from an ARG-decomposed bifurcating 
tree accounts for the true evolutionary distance in time between 
the extant tips. Second, distance matrices can be computed from 
sequence data directly without first inferring a phylogenetic tree 
that may impose artifactual structures on the data in the con-
text of high levels of recombination. However, a potential source 
of error comes from matching the time scale of the ARG to the 
genetic distance of the sequence data. In our formulation, an opti-
mized scaling factor transforms the time distance to match the 
genetic distance and is independent of any specific genome region. 
The scaling factor assumes a constant rate over the course of an 
individual’s infection and assumes that multiple mutations at an 
individual site have been perfectly accounted for.

While our model advances the biological realism of within-
host HIV-1 evolution, it could be further modified to include 
population structure. Population structure in terms of tissue 
compartmentalization may be an important feature that could 
reduce the range of possible evolutionary histories by limiting 
the lineages that can coalesce and recombine. At low, but non-
zero migration rates, this could increase the number of lineages 
that survive through time by re-introducing un-recombined lin-
eages into the target compartment and thus affect the ladder-
like structure of simultaneously evolving lineages (like in P5
in Fig. 6B).

In conclusion, we have developed a novel HIV-1 within-host 
simulator that includes realistic features such as recombina-
tion, latency, and internal bottlenecks. These processes gener-
ate an ARG, a complex evolutionary structure formed by loops, 
mixed time signals, and unbalanced growth. Because such 
structures are, at this time, exceedingly difficult to infer from 
real data, we also developed an ARG decomposition method 
to visualize this complex structure as a familiar bifurcating 
tree. Together, these tools make it possible to match recom-
bination, latency, and bottleneck effects to real HIV-1 within-
host data, where the combined effects otherwise could not be
analyzed.

Supplementary data
Supplementary data are available at Virus Evolution online.
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