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Natural products research increasingly applies -omics technologies to guide molecular discovery. 

While the combined analysis of genomic and metabolomic datasets has proved valuable for 

identifying natural products and their biosynthetic gene clusters (BGCs) in bacteria, this 

integrated approach lacks application to fungi. Because fungi are hyper-diverse and underexplored 

for new chemistry and bioactivities, we created a linked genomics–metabolomics dataset for 

110 Ascomycetes, and optimized both gene cluster family (GCF) networking parameters and 

correlation-based scoring for pairing fungal natural products with their BGCs. Using a network of 

3,007 GCFs (organized from 7,020 BGCs), we examined 25 known natural products originating 

from 16 known BGCs and observed statistically significant associations between 21 of these 

compounds and their validated BGCs. Furthermore, the scalable platform identified the BGC for 

the pestalamides, demystifying its biogenesis, and revealed more than 200 high-scoring natural 

product–GCF linkages to direct future discovery.

In nature, fungi live in dynamic communities and adapt to changing environmental 

conditions and competition. Eons of evolutionary selection have turned fungi into expert 

chemists capable of biosynthesizing intricate natural products with specific bioactivities 

fine-tuned to suit their ecological needs1. Compounds from fungi have had major societal 

effects, providing the famous therapeutics penicillin and lovastatin2, the deadly poisons 

aflatoxin and gliotoxin3, and agrochemicals including azoxystrobin and derquantel4. This 

remarkable functional diversity derives from the structural complexity of fungal natural 

products. While there is ample evidence showing that the enzymatic machinery responsible 

for forming most of these compounds is encoded by biosynthetic gene clusters (BGCs), 

most fungal natural products have not yet been linked to their BGCs5. Understanding the 

pathways by which natural products are biosynthesized can enable their effective production 

and manipulation, facilitate fungal disease management and increase understanding of 

fungal ecology and evolution6.

Natural products research has evolved by embracing genomics-guided strategies for charting 

unexplored biosynthetic space7. Originally focused on mining single genomes, scientists 

now analyze tens, hundreds and even thousands of genomes simultaneously8,9. After BGCs 

have been identified using the chosen BGC detection algorithm10, BGCs from different 

genomes can be grouped into gene cluster families (GCFs) based on similarities in their 

overall gene content and sequence identities9,11,12. The choice of similarity threshold 

for grouping BGCs is an important one that can affect interpretation of inferred GCF 

biosynthetic products. GCFs formed using strict similarity thresholds will be smaller 

families composed of BGCs that produce identical metabolites, while those produced with 

permissive thresholds will be larger and contain BGCs that instead encode structurally 

related natural product families11. Such analyses enable researchers to uncover patterns 

of BGC prevalence and phylogenetic distribution, and also anchor GCF networks to 

experimentally characterized BGCs8,9,11,13,14.

While genome sequences can discern the biosynthetic potential of a group of organisms, 

metabolomics profiles represent chemical phenotypes revealing structural information of 

expressed downstream natural products. When combined, genomics and metabolomics have 

the power to not only identify BGCs or natural products of interest, but to link natural 
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products to their biosynthetic machinery15–29. Integrated analyses of -omics datasets are 

growing steadily, and initiatives such as the Paired Omics Data Platform have recently 

become available17. Integrated ‘metabologenomics’ analyses have been applied to hundreds 

of bacterial strains and used to deorphanize dozens of BGCs, discovering new metabolite 

scaffolds and their biosynthetic machinery in the process7,18–20. Whereas these approaches 

have advanced in bacteria, they have not yet been applied to fungi.

Several computational strategies have been developed to link GCFs to their metabolites that 

can be categorized as either feature- or correlation-based5,7,21–29. Feature-based approaches 

use BGC sequences to predict specific core structures and functional groups and compare 

these building blocks to predicted molecular scaffolds from chemical datasets. Alternatively, 

correlation-based approaches compare BGC and metabolite profiles across a set of strains 

to assert associations between BGCs and metabolite products21–24. Current feature-based 

approaches have been developed largely for bacteria and depend on product type or heavily 

rely on homology to known BGCs to predict molecular structures25–29. As such, we chose to 

compare three correlation-based approaches for extension of metabologenomics to fungi: 

pattern matching, correlation scoring and intensity ratio analysis (Table 1, Fig. 1 and 

Supplementary Table 1).

Recently, our group conducted a global analysis of 1,037 publicly available fungal genomes 

and reported 12,000 GCFs (containing roughly 37,000 BGCs) that have not been linked to 

their encoded metabolites9. As the last decade of -omics research in bacteria has taught 

us, successful integration of metabolomics or genomics datasets requires considerable 

process optimization and overall results improve with increased strain number15,16,20. 

Given the stark differences in BGC content between fungi and bacteria9, extension of 

‘metabologenomics’ to the fungal kingdom has yet to be reported. Here, we surveyed 

extracts of 110 fungal strains using MS-based metabolomics and correlated metabolite 

signals to their cooccurrence with BGCs in genomics datasets (Fig. 1). Using published 

natural product–BGC pairs30, we assess the impact of GCF networking thresholds on three 

scoring models for metabologenomics in fungi. We validate the methods using 25 known 

linkages and identify more than 200 new natural product–GCF pairs. As a specific case, 

the correct biosynthetic pathway of pestalamides was identified unambiguously using this 

platform, clarifying its himeic acid-like biosynthesis.

Results

Creation and analysis of GCF networks

Each genome in our dataset, derived from 64 publicly available genomes and 46 assembled 

genomes new to this study (Supplementary Table 2), was analyzed using antiSMASH v.6.0 

(ref. 31), yielding a dataset of 7,020 BGCs of ten biosynthetic types. The total number 

of BGCs detected per genome ranged from 20 to 114 (Supplementary Table 3). When 

producing GCF networks for correlation to metabolites, one must first apply a cutoff to their 

distance matrix to determine when a group of BGCs is ‘similar enough’ to be clustered into 

a single GCF. As the similarity of BGCs in a GCF can directly affect the interpretation of 

analysis (that is, the relatedness of encoded metabolites), we compared results from nine 

GCF networks (each containing GCFs from BGCs of ten biosynthetic types) produced using 
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different similarity thresholds (ranging from a permissive 50 to strict 90%). To do this, the 

7,020 BGCs were converted into protein domain arrays and their similarity to other BGCs in 

the dataset was calculated based on the fraction of shared domains and sequence identity9. 

To identify GCFs with known metabolite products, we dereplicated this dataset using known 

fungal BGCs published in the Minimum Information about a Biosynthetic Gene Cluster 

(MIBiG) repository30.

The choice of similarity threshold had a major impact on the final numbers of GCFs in 

the nine resulting networks, with the strictest cutoff of 90% yielding a network of 5,837 

GCFs (93 containing known BGCs from MIBiG) and the most permissive cutoff of 50% 

yielding a predictably smaller network of just 1,353 GCFs (109 anchored to known MIBiG 

clusters). While this analysis made clear that GCF networking parameters drastically affect 

the number and size of GCFs, it was unclear which parameters were optimal for correlation-

based scoring of GCF-natural product pairs. To answer this, each of the nine GCF networks 

was subjected to correlation-based scoring for optimization of parameters for our final 

metabologenomics model (below).

Acquisition and dereplication of metabolomics datasets

To measure the presence-absence patterns of detectable fungal metabolites, we used liquid 

chromatography with tandem mass spectrometry (LC–MS/MS) to measure secondary 

metabolites of 110 strains grown on each of three conditions32–34. The MS profiles of 330 

fungal extracts were combined and the total number of unique MS signals for each strain 

determined. After background subtraction and data processing, 30–627 unique ions were 

detected per strain (Supplementary Table 3) for a total of 9,301 ions in the MS1 dataset. 

Using in-house dereplication libraries35,36, we confidently identified more than 350 known 

metabolites. We combined these data with publicly available databases37,38 and electrospray 

ionization–MS/MS spectral prediction tools39, identifying a subset of 25 known metabolites 

(represented by 42 MS ion signals) that were detected in at least two strains and had known 

BGCs (Supplementary Figs. 1 and 2 and Supplementary Data 1).

Strengths and biases of correlation-based scoring methods

In the first approach, pattern matching, P values are calculated by comparing presence or 

absence patterns of GCFs and detected ions across strains using a chi-square test7. Although 

it is easy to interpret the significance of resulting correlations and compare results from 

multiple datasets, the pattern-matching approach may miss linkages in which metabolite 

expression and/or ion detection is low. The second approach, correlation scoring, overcomes 

this by weighing particular presence or absence patterns more heavily than others to rank 

the quality of GCF–metabolite pairs15. By using correlation scoring, the presence of an 

ion without its GCF is penalized more heavily than the GCF without the ion, whereas the 

presence of both a GCF and an ion is rewarded more strongly than the absence of both 

the GCF and ion across strains. We also assessed the use of a third approach developed 

specifically for this project, intensity ratio analysis, in which GCF–metabolite pairs are 

ranked based on the ratio of the averaged abundance of an ion across all replicates of 

GCF-containing strains divided by the averaged abundance of the same ion across all strains 

without the GCF. Although biased toward abundant metabolites, this quantitative metric 
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can overcome instances of column bleed during mass spectrometry acquisition (when a 

metabolite is retained on the column during a run and elutes during the analysis of the next 

sample in the queue) as well as the occasional tendency for peak picking algorithms to 

assign nonzero values to noise.

Optimization of GCF networking parameters

To identify optimal BGC similarity thresholds for creating GCFs for metabologenomics 

in our dataset, we correlated the nine GCF networks produced using different similarity 

cutoffs from the metabolomics data and evaluated the ability of these models to identify 

validated metabolite–GCF pairs used as ground truth in this study. The resulting correlations 

were plotted to visualize the overall distribution of scores in our dataset and the strength of 

correlations of validated matches (Fig. 2 and Supplementary Figs. 3–12).

GCF similarity thresholds had a major impact on the metabologenomics models regardless 

of scoring approach, either masking or enhancing the ability to detect true metabolite–GCF 

pairs. There was no ‘one-size-fits-all’ threshold; instead, BGCs of different biosynthetic 

types required different similarity thresholds for optimal clustering. An example of this 

is seen when comparing correlation distribution plots of nonribosomal peptide synthetase 

(NRPS) and nonreducing polyketide synthase (NRPKS) containing GCFs calculated at 

different thresholds (Fig. 2). For NRPS BGCs, a similarity threshold of 60% maximizes the 

number and strength of validated matches. For example, notoamide B, acetylaszonalenin and 

chrysogine all have significant correlations with their validated GCFs, visualized by purple 

points in Fig. 2a. When this threshold is increased to 70%, all these correlations get removed 

from analysis (because no experimentally detected BGCs were similar enough to the MIBiG 

cluster to be grouped into the same GCF) (Fig. 2b). Notably, as thresholds increased beyond 

60%, the total number of MIBiG-anchored GCFs decreased because no BGCs in our dataset 

were considered related to the MIBiG cluster when using these stricter parameters (Fig. 2c). 

Although the optimal similarity threshold for maximizing the number and significance of 

validated correlations for NRPS-containing BGCs was 60% (Fig. 2c), this did not translate 

to the NRPKS BGCs (Fig. 2d–f). Instead, metabologenomics analysis using GCFs produced 

at the 60% threshold assigned nonsignificant correlations to many validated matches (purple 

points, Fig. 2d). With a 70% threshold, the number of significant correlations for validated 

matches nearly doubled (Fig. 2e). The significance of the association between mycophenolic 

acid and its GCF shifted from a nonsignificant −log10(P) of 4.4 (P > 0.05) to a highly 

significant −log10(P) of 25 (P = 3.1 × 10−21 after multiple-hypothesis correction) when using 

GCFs formed with 60 and 70% thresholds, respectively.

Instead of choosing one cutoff for all GCFs in our final network, we optimized similarity 

thresholds by BGC type to maximize the number of validated links with higher confidence 

levels in our score distributions for the entire dataset (see Methods for the final parameters 

implemented, Supplementary Figs. 3–12). The optimized set of GCFs for each biosynthetic 

type were combined into a single GCF network to use for metabologenomics. This final 

network contained 3,007 GCFs of ten biosynthetic types (Supplementary Figs. 13 and 

14). Owing to the hybrid nature of many fungal BGCs, 1,303 BGCs in this dataset 

were assigned to multiple GCFs of different biosynthetic types and the total number of 
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nonredundant GCFs was 2,405. Only around 5% of GCFs (131 total) could be anchored 

to published BGCs from MIBiG. Notably, when comparing correlations calculated using 

different GCF networking parameters, our optimized dataset had the highest number of 

significant correlations for validated matches when compared to datasets using one cutoff for 

all biosynthetic types (Supplementary Fig. 15). These results emphasize the importance of 

GCF threshold selection for maximizing results from metabologenomics.

Correlation of GCF networks with metabolite data

With an optimized network of 3,007 GCFs, we evaluated the performance of three scoring 

methods to identify known metabolite–BGC pairs: pattern matching (P values), correlation 

scoring and the intensity ratio-based approach developed specifically for this project (Table 

1). These results are shown in the integrated display format in Fig. 3a, with the cooccurrence 

data underpinning the method shown for three knowns in Fig. 3b–d. Beginning with the 

pattern-matching approach, we observed statistically significant correlations for 21 out of 

25 of the known MIBiG compounds (84%) to at least one of their associated GCFs after 

applying the conservative Bonferroni correction for multiple-hypothesis testing (Fig. 3a, y 
axis, Supplementary Table 4). Validated matches were among the top five best correlations 

for 20 out of 25 (80%) when using a pattern-matching approach. Correlation scoring 

resulted in scores ranging from −50 to roughly 500, with an average score of 100 for 

the entire dataset and 125 for validated linkages (Fig. 3a, x axis); validated matches were 

among the top five correlations in 19 out of 25 (76%) metabolites (Supplementary Table 

4). The intensity ratio was less effective, with validated matches ranking among the top 

five in only 9 out of 25 (36%) cases. However, because of the sheer number of potential 

correlations (3,007 GCFs × 9,301 ions or >27 million individual tests), we used it to filter 

for ion-GCF pairs with an intensity ratio ≥5. This reduced the total number of hypotheses 

from roughly 27 million down to roughly 420,000 to focus on more promising metabolite–

GCF associations and improving the statistical power of the resulting correlations.

To assess the capacity of the three scoring approaches to assign natural product–GCF pairs, 

we plotted the true positive rates (sensitivity) against the false positive rates (specificity) 

using receiver operating characteristic curves. The performance of the three models for the 

25 known pairs ranged from fair (intensity ratio model, area under curve (AUC) = 0.78) to 

good (pattern matching and correlation scoring models, AUC = 0.83 and 0.89, respectively) 

(Supplementary Fig. 16), quantifying the performance and stage of development for these 

three models. For the pattern-matching approach (AUC = 0.83), the total number of false 

positives for each metabolite (linkages to GCFs not known to be involved in biosynthesis) 

ranged from 0 to 59 correlations (with an average of 17, or roughly 0.6% of the 3,007 

possible GCF linkages, Supplementary Table 5). While this level of false positive rate is 

tenable, efforts to disentangle true positives from several false ones requires considerable 

manual interpretation of MS and BGC data underlying putative correlations. Therefore, an 

integrated scoring approach was sought using the two top-performing scores.

Because the pattern-matching and correlation scoring approaches have different biases and 

can be calculated using the same data input (Supplementary Table 1), we used them in 

parallel to minimize false positives in our dataset. We first filtered out all nonsignificant 
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correlations using the pattern-matching approach, after which we ranked all the remaining 

correlations for each metabolite by correlation score and evaluated whether the true match 

was ranked first. In 16 out of 25 cases, the true GCF–metabolite linkage was ranked first, 

with zero confounding false positives. In one additional case, the true GCF–metabolite 

linkage was tied for first with a single false positive, and in a second case, it was ranked 

third (Supplementary Table 5). These results highlight the complementary nature of these 

approaches, and both models and metrics for correlation-based associations will continue 

to be developed21–24. Because of the labor required to confirm predictions, we selected a 

correlation scoring threshold that minimized false positives at the expense of increasing false 

negatives (Supplementary Fig. 17), choosing to focus initial discovery efforts on linkages 

to metabolites that had a correlation score of at least 140 and were among the top three 

correlation scores after filtering for significance. At the 110-strain level, we are able to 

assert a final set of high-confidence BGC associations for 238 ions in our dataset, with an 

estimated false positive rate of roughly 1% using knowns (Supplementary Fig. 17).

Untargeted metabologenomics reveals biosynthetic machinery for the pestalamides

Having characterized the specificity and sensitivity of fungal metabologenomics at the 

110-strain level, we used it to uncover a new GCF–metabolite pair. We targeted an 

ion with an m/z of 343.129 that was detected above baseline levels in six of the 

110 strains. The metabolite dereplicated as pestalamide B, a bioactive natural product 

belonging to a small but growing class of metabolites (roughly 24 analogs) containing 4-

oxo-1,4-dihydropyridine-3-carboxamide and 4-oxo-4H-pyran-3-carboxamide core structures 

(Supplementary Fig. 18)40–44. Following a series of gene knockout and complementation 

experiments in Aspergillus niger, it was recently proposed that the NRPKS BGC epa is 

responsible for pestalamide biosynthesis45. Notably, the top producer of pestalamide B 

in our dataset (A. brasiliensis Westerdijk Fungal Biodiversity Institute (CBS) 101.740) 

lacked the epa BGC purportedly responsible for pestalamide biosynthesis (GCF NRPKS_59, 

Fig. 3e and Supplementary Table 6). Instead, the top GCF linkage to pestalamide B was 

TERPENE_288 (−log10(P value) of 21 and a correlation score of 163) (Fig. 3e). Given the 

lack of terpene elements in the pestalamide B structure, we turned to our second-ranked 

linkage between pestalamide B and the GCF ‘HYBRID_85’ (a NRPS-PKS family of 

BGCs) that had a −log10(P value) of 17 (P = 4.6 × 10−13 after Bonferroni correction) 

and a correlation score of 161. All six pestalamide B-producing strains possessed the 

GCF HYBRID_85, and three additional strains possessed this cluster but did not produce 

pestalamide B (Fig. 3e and Supplementary Table 6).

MS2 analysis and molecular networking revealed a family of highly similar molecules that 

are also produced by a subset of the six pestalamide B-producing strains (Supplementary 

Fig. 19). This molecular family includes pestalamides A, B, D and additional analogs. 

Four molecules (pestalamide A, B and two putative new derivatives, pestalamide E and 

F) had significant correlations to the same GCF, HYBRID_85. Pestalamide A was found 

in seven out of nine strains with this hybrid GCF, and pestalamides E and F were 

detected in three and four of these nine strains, respectively (Supplementary Table 6). 

Pestalamide B was purified from A. brasiliensis CBS 101.740 and subjected to MS and 

nuclear magnetic resonance (NMR) analysis. Fragmentation patterns (Supplementary Fig. 
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20a) were consistent with those predicted using CFM-ID peak assignment algorithms, and 

NMR analyses matched previous publications (Supplementary Table 7 and Supplementary 

Figs. 21–25)46. Pestalamide A was identified through dereplication of its MS2 data 

(Supplementary Figs. 20b and 26). Pestalamides E and F were inferred as hydrated and 

carboxylated forms of pestalamide B (Supplementary Fig. 20c,d); mass defect filtering was 

supportive of these assignments36.

Based on the observation that HYBRID_85 was associated with pestalamide detection, we 

rigorously tested the assertion that BGCs in this GCF produced the pestalamides. Given 

that a previous publication implicated a different BGC45, we heterologously expressed 

the HYBRID_85 BGC from A. brasiliensis CBS 101.740 (Supplementary Table 8) in 

A. nidulans after BGC cloning using a new CRISPR–Cas9 mega-endonuclease-based in 

vitro technology47. Notably, the transformed A. nidulans strain (A. nidulans-pst) showed 

production of pestalamide B and several analogs (Supplementary Fig. 19), while the extract 

from the A. nidulans host did not have detectable pestalamides (Fig. 4a). Production of 

pestalamide B in the heterologous expression strain was similar to several native producers 

(Supplementary Table 6), but was lower than the parent strain. Knockout of the backbone 

synthase in the heterologous host (A. nidulans-ΔpstD) resulted in a complete loss of 

pestalamide production, confirming the necessity of this BGC for pestalamide biosynthesis 

(Fig. 4a).

Next, we grew the heterologous expression strain A. nidulans-pst with stable isotopically 

labeled precursors. Labeling with [13C6]-leucine and with phenylacetic acid (phenyl-d5) 

resulted in m/z shifts of +6 and +5 Da, respectively, in pestalamide B (Fig. 4b). This 

is consistent with adenylation domain specificity predictions that suggested that the A 

domain in the hybrid NRPS-PKS backbone recognizes leucine and indicates that the 

free-standing AMP-binding enzyme may act as a phenylacetyl-CoA ligase. Inspection of 

MS2 spectra following leucine feeding studies suggested that leucine undergoes substantial 

rearrangement during pestalamide biosynthesis, with fragment ions showing +1, +4, +5 

and +6 Da shifts (Fig. 4c). Similar shifts were evident on inspection of MS2 spectra for 

pestalamides A, E and F (Supplementary Fig. 27). The biosynthetic pathway for himeic acid 

A, a structurally related metabolite to the pestalamides, was recently described41. Through 

a series of NMR-based stable isotope feeding and gene disruption experiments, researchers 

reported that the him BGC, containing a hybrid NRPS-PKS backbone, is responsible for 

himeic acid biosynthesis. The HimA synthetase incorporates leucine into the NRPS-PKS 

product, which then is rearranged to form the pyrone intermediate41. This rearrangement 

shows excellent agreement with our biosynthetic feeding studies (Supplementary Fig. 

28a,b), suggesting that the pestalamides are formed through a similar mechanism. While 

himeic acid and the pestalamides share a 4-oxo-4H-pyran/dihydropyridine-3-carboxamide 

core structure (Supplementary Fig. 28a), their deviations in structure (that is, a long fatty 

acyl side chain in place of a phenylacetic acid moiety) are mirrored by deviations in 

BGC content (Supplementary Fig. 28c). For example, the him BGC and the A. brasiliensis 
BGC belonging to HYBRID_85 (named pst) are only partially similar, with three of their 

encoded genes sharing moderate sequence identity (Supplementary Fig. 28d). Although 

the overall sequence identity between the HimA and PstD NRPS-PKS synthetases and 

their domains is moderate (Supplementary Fig. 28e), both the domain architecture of these 
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genes and the A-domain active site residues are nearly identical (Supplementary Fig. 28f). 

These findings suggest that the enzymes involved in leucine incorporation and subsequent 4-

oxo-4H-pyran/dihydropyridine-3-carboxamide formation are functionally equivalent in these 

two biosynthetic pathways.

Taken together, these results indicate that pestalamide biosynthesis occurs through a 

different pathway than described by Wang et al.45. Based on our data, we propose a 

biosynthetic scheme for the pestalamides in Fig. 5. Unlike himeic acids, pestalamides 

contain a phenylacetic moiety instead of a highly reduced alkyl chain. As such, we 

speculated that the AMP-binding protein PstH may function as a phenylacetyl-CoA ligase. 

This gene has moderate sequence identity (29%) to the phenylacetyl-CoA ligase PhlB 

involved in penicillin G biosynthesis48. We suggest that first, the PKS portion of the hybrid 

synthetase PstD, together with the phenylacetyl-CoA ligase PstH, catalyze the formation of 

the polyketide part of the molecule, which is then condensed with leucine by the NRPS 

portion of PstD. The resulting intermediate, formed from one phenylacetyl-CoA unit, two 

malonyl-CoA units and one leucine, is then cyclized and released from PstD (perhaps 

facilitated by the reductase PstG). PstM or PstN (an amidohydrolase and amidotransferase, 

respectively) may then initiate a ketone to imine conversion, after which the monooxygenase 

PstC catalyzes an α-oxidation of the tetramic acid ring, prompting the himeic acid-like 

rearrangement of the NRPS portion of the molecule to yield the pyrone or pyridone 

intermediate (for pestalamide A or B, respectively) (Fig. 5 and Supplementary Fig. 28). 

The subsequent dehydration reaction is catalyzed by the dehydrogenase PstA, after which 

the molecule is carboxylated by the P450 PstL. Because the putative derivative pestalamide 

F possesses an additional CO2, it is possible that PstL catalyzes two carboxylation steps.

Discussion

Genomics and metabolomics datasets illuminate the biosynthetic capacity of living 

organisms, providing ample opportunity for scientific discovery. In the last decade, a 

growing number of laboratories have integrated -omics datasets to systematically mine the 

untapped chemical potential of the domain Bacteria. Such studies have illustrated that paired 

-omics analysis can help improve predictions, prioritize biosynthetic pathways and target 

discovery of new natural products21–24.

Illustrated by this first application of paired -omics in fungi, optimization of scoring was 

required to suppress false positives from metabologenomics datasets. Our comparative 

analysis demonstrated the importance of optimizing GCF networking parameters before 

integrated analysis to ensure the robustness of high-scoring matches for targeted study. 

We found that GCF networking parameters can be optimized by BGC subtype, with 

certain classes requiring higher degrees of BGC overlap than others. We speculate that 

the biosynthetic classes with the high flexibility for domain structure and those with iterative 

activity require higher similarity thresholds for GCF grouping than those with a more rigid 

and/or modular structure. Notably, our choice of antiSMASH as a BGC detection algorithm 

limits us to the detection of BGCs containing core enzymes that are incorporated into this 

program7. Likely, there are hundreds of BGCs in our dataset that were not detected due to 

their non-canonical nature. Given the relatively small size of the 110-strain dataset and the 
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fact that we validated our process using established BGCs from MIBiG, it is possible that 

our manually optimized parameters led to model overfitting. Future studies will be required 

to see whether the thresholds chosen for this project will expand to larger datasets and 

to fungal genera not included in this study. Future efforts to automate the optimization of 

GCF networking parameters would be worthwhile to minimize likelihood of overfitting and 

reduce manual interpretation.

It is worth acknowledging that 16% of validated metabolite–GCF pairs did not have 

significant correlations after multiple-hypothesis correction even after dataset optimization. 

Because correlation-based approaches rely on overlapping ion/GCF detection profiles, 

BGCs for metabolites with low detection levels cannot be identified confidently. For 

example, aspernidine A had a −log10(P) value of 4.7 (P > 0.05) (Fig. 3a and Supplementary 

Table 4) due to its low level of detection across strains. Out of the 11 strains with 

the GCF responsible for aspernidine biosynthesis, only two of them had detectable 

levels of aspernidine A. Future studies aimed at maximizing silent BGC expression (for 

example, with the inclusion of epigenetic modifiers to fungal culture49 or by fungal–fungal 

coculture50), may help to improve correlations for metabolite with low detection levels.

Notably, all correlation-based scoring approaches share an inherent limitation in that they 

cannot differentiate associations between ions and GCFs that share the same presence 

or absence patterns across strains. While useful for ranking potential matches, manual 

interpretation of the chemical and BGC data for top-scoring hits is still required to determine 

how well the structural features of the target ion align with the correlated BGC (as illustrated 

with pestalamide B). One can imagine that future efforts to develop feature-based metrics for 

fungi will provide a complementary methodology to assign BGC-metabolite linkages and 

minimize manual interpretation of datasets for targeted analysis.

As is the case with metabologenomics in bacteria, correlation scores will improve 

substantially with even two- to threefold larger datasets7,15. To illustrate this, we 

recalculated correlations using subsets of fungi from our 110-strain dataset, and plotted 

the resulting AUC receiver operating characteristic values against strain number in a power 

curve (Supplementary Fig. 29). From Supplementary Fig. 29 we can clearly see that the 

AUC values increase sharply with strain number for known metabolite–GCF pairs. The 

variability in performance between datasets of the same size containing different subsets 

of strains is high when ≤20 strains are included but stabilizes at the >100-strain level 

(Supplementary Fig. 29). We found that some smaller datasets had higher AUCs than our 

final dataset, illustrating that strain selection is particularly important and can be guided 

by phylogenetic information. Specifically, one seeks a balance between the extent of BGC 

overlap within a strain collection and the coverage of new BGC types.

In a recent global analysis of roughly 1,000 fungal genomes, nearly 12,000 fungal 

GCFs (from roughly 37,000 BGCs) without known metabolite products were reported9, 

underscoring that even well-characterized fungi have the potential to biosynthesize 

compounds greatly exceeding known fungal chemical space. With this work, we illustrate 

that correlative metabologenomics is a promising tool to measure the diversity of fungal 

secondary metabolism and link natural products to their BGCs. Even in our modest 110-
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strain dataset, correlative metabologenomics analysis enabled us to revise the pestalamide 

biosynthetic pathway and revealed more than 200 high-confidence metabolite–GCF pairs to 

inspire future discovery.

Methods

Growth and extraction

Strains were acquired from private and public strain libraries, including the Agricultural 

Research Service (NRRL) collection, the American Type Culture Collection and the CBS 

collections. All fungi were grown in three growth conditions to increase the likelihood of 

secondary metabolite production. Glycerol stocks or agar plugs of each fungus were used 

to inoculate potato dextrose agar plates that were incubated at 21 °C until the mycelial mat 

was fully grown at 5–7 days. Agar plugs were then cut from plates and transferred to 10 

ml of YESD broth and cultivated at 21 °C at 150 rpm for 3 days. Three seed cultures were 

prepared for each strain and used to inoculate three 250 ml Erlenmeyer flasks that contained 

autoclaved rice, oats or Cheerios, which were grown at 21 °C for 2–5 weeks (refs. 32–34).

To extract secondary metabolites, cultures were processed using methods established in the 

literature32–34. Briefly, 60 ml of MeOH–CHCl3 (1:1) were added to each flask, followed 

by chopping with a spatula, sonicating briefly and leaving overnight at room temperature. 

Cultures were then filtered in vacuo after brief sonication, and 90 ml of CHCl3 and 150 ml 

of H2O were added to the filtrate. The mixture was transferred to separatory funnel, where 

the organic layer (bottom) was collected and evaporated under N2. The dried organic layer 

was reconstituted in 100 ml of MeOH–CH3CN (1:1) and 100 ml of hexanes transferred to a 

separatory funnel and shaken vigorously. The defatted organic layer (MeOH–CH3CN) was 

dried under N2.

DNA extraction and sequencing

Fungal genomic DNA was extracted from lyophilized hyphal mycelial mats using the Basic 

Protocol 4 phenol-chloroform extraction described in a previous publication51. The quality 

of the DNA was checked by running extracts on a 1% agarose gel before sending for 

sequencing at the University of Illinois at Urbana-Champaign Roy J. Carver Biotechnology 

Center. These genomes were sequenced in two batches using Illumina NovaSeq 6000 

sequencing technology. The shotgun gDNA libraries were constructed from 300 ng of DNA 

after sonication with a Covaris ME220 (Covaris) to an average fragment size of 400 bp 

with the Hyper Library Preparation Kit from Kapa Biosystems (Roche). To prevent index 

switching, the libraries were constructed using unique dual indexed adapters from Illumina. 

The individually barcoded libraries were amplified with three cycles of PCR and run on 

a Fragment Analyzer (Agilent) to confirm the absence of free primers and primer dimers, 

and to confirm the presence of DNA of the expected size range. Libraries were pooled in 

equimolar concentration and the pool was quantified by quantitative PCR on a BioRad CFX 

Connect Real-Time System (BioRad Laboratories, Inc.).

The pooled barcoded shotgun libraries were loaded on a NovaSeq SP lane for cluster 

formation and were sequenced for 250 cycles from each side of the DNA fragments. The 
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FASTQ read files were generated and demultiplexed with the bvl2fastq v.2.20 Conversion 

Software (Illumina). Paired reads were assembled using SPAdes52, and gene prediction 

was performed using AUGUSTUS with default parameters53. The remaining 64 genomes 

were downloaded from the National Center for Biotechnology Information (NCBI) or Joint 

Genome Institute54,55. A table of strains in this study and genome accession numbers, 

including 46 newly sequenced genomes for this project, can be found in Supplementary 

Table 2. Genomes sequenced for this project are available under BioProject accession no. 

PRJNA852164.

Gene cluster prediction and network analysis

Gene clusters were predicted using antiSMASH six via command line with the argument ‘—

taxon fungi.’ For GenBank genomes that contained gene predictions, we downloaded .gbff 

files to use as input to antiSMASH along with the ‘–genefinding-tool none’ argument to 

prevent gene calling on contigs that lacked predicted genes. For genomes sequenced for 

this project and those downloaded from the Joint Genome Institute, we instead used .fasta 

sequence files and .gff gene prediction files as the input to antiSMASH, with the ‘—

genefinding-gff3’ argument.

Following BGC prediction using antiSMASH, we performed protein domain prediction and 

alignment as previously described9. Protein domains were detected using hmmscan56 via 

the command line, using the arguments ‘—cut-tc’, for trusted cutoffs, ‘—no-ali’ to skip 

alignments and ‘—domtblout’ to output a tabular format. Following detection of protein 

domains, we used domain-profile alignments rather than all-versus-all sequence alignments 

to decrease compute time. Each predicted protein domain was aligned to its Pfam model 

using hmmalign with default parameters. For each genome, we stored the resultant aligned 

protein domains in JSON format for later use. These protein prediction and alignment steps 

were implemented as scripts and command line wrappers written in C#10 running on .NET 

6.

GCF network creation first required classification of BGCs into biosynthetic types. Each 

gene within a BGC was classified according to the presence or absence of biosynthetic 

domains according to Supplementary Table 9, and the BGC was given a biosynthetic 

designation based on the combined classifications of its genes. BGCs within each 

biosynthetic type were compared based on sequence identity and domain composition. 

We first removed from consideration all gene cluster pairs without shared adjacent protein 

domains pairs. For each pair of gene clusters within a biosynthetic type, we computed the 

sequence identity of each pair of protein domains with the same Pfam model. The average 

of each domain sequence identity value was used as a final similarity metric for each gene 

cluster pair. These similarity thresholds were optimized by biosynthetic type to maximize 

the number of validated linkages with significant scores. We chose a 60% cutoff for NRPS 

GCFs; a 65% cutoff for dimethylallyl tryptophan synthase (DMAT) and polyketide synthase 

(PKS)-like GCFs; a 70% cutoff for HRPKS, NRPKS, PRPKS and terpene GCFs, and a 

75% cutoff for NRPS-like GCFs. For GCF types without validated matches (RiPP and 

hybrid NRPS-PKS in this dataset), we chose a threshold of 65%. Edges that passed the 
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similarity threshold were removed, resulting in GCF networks for each biosynthetic type. 

These similarity comparisons were implemented in C#10 running on .NET 6.

LC–MS analysis

Dried samples were resuspended in MeOH at 1 mg ml−1 and transferred into filter vials. 

Each strain was represented by three distinct extracts (for cultures grown on rice, oats and 

Cheerios), with most extracts being injected once on the mass spectrometer. A subset of 

seven extracts were injected in triplicate. LC–MS was used to analyze samples on a Thermo 

Q Exactive mass spectrometer equipped with an inline Agilent 1290 Infinity II ultrahigh 

performance liquid chromatograph separated using a Kinetix 1.3 μm C18 100 Å particle-size 

column with dimensions 50 × 2.1 mm2. Column temperature was maintained at 40 °C 

with a flow rate of 0.3 ml min−1 and an injection volume of 5 μl. Mobile phases of 5% 

CH3CN in H2O with 0.1% formic acid as buffer A and 100% acetonitrile with 0.1% formic 

acid as buffer B were used with the following gradient: 5–100% B from 0 to 8.00 min; 

100% B from 8.00–9.00 min and 100–5% B from 9.00–9.20 min. Analyte detection by 

electrospray ionization–MS was completed in positive mode using the following settings: 

capillary temperature 320 °C, sheath gas 10 (arbitrary units) and spray voltage 3.6 kV. 

Full scan MS spectra were acquired at a resolving power of 17,500 for the mass range of 

150–2,000 m/z. MS2 analysis was conducted in a data-dependent mode, selecting for the top 

five ions of each scan for fragmentation. A normalized collision energy of 25 was used for 

higher-energy collisional dissociation.

To assess how well our approach identified known natural product–gene cluster pairs, 

we sought to identify fungal metabolites whose gene clusters are published in the 

MIBiG database. Metabolite identification was accomplished by dereplicating the MS data 

using in-house libraries from Northwestern University and data from over 625 fungal 

secondary metabolites from the University of North Carolina at Greensboro35,36. To identify 

additional metabolites, we downloaded the fungal database from Natural Product Atlas38 

and targeted compounds whose accurate masses matched those of fungal metabolites from 

the MIBiG database30. Fragmentation spectra from these metabolites were then compared to 

experimental spectra in the Global Natural Products Social Molecular Networking (GNPS) 

database37. For ions that did not have a spectral match to in-house or public databases, we 

compared in silico MS2 spectra using CFM-ID v.4.0 algorithms to experimental spectra and 

those with at least three matched fragments were assigned tentative identifications39.

ProteoWizard57 was used to convert ThermoRAW MS data to .mzXML and uploaded onto 

MZmine v.2.53 (ref. 58). The ADAP workflow (chromatogram deconvoluted wavelengths) 

was used for peak detection followed by deisotoping and alignment of the peaks59. Finally, 

the peaks with MS/MS scans were retained and filtered. The MS1 level that contained the 

m/z values, retention time and peak height associated with each feature was exported into 

a .csv file for final correlations (Supplementary Data 2). The same .mzXML files used for 

creating the MZmine dataset were uploaded to GNPS for molecular networking analysis 

as described below. All .mzXML files are available through the MassIVE repository under 

accession no. MSV000089848. Detailed parameters for MZmine processing are outlined in 

Supplementary Table 10.
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A molecular network was created using the online workflow on the GNPS website (http://

gnps.ucsd.edu). The data were filtered by removing all MS2 fragment ions within ±17 Da 

of the precursor m/z, and only the top six fragment peaks were compared for analysis. The 

precursor ion mass and the MS2 fragment ion tolerance were each set to 0.02 Da. Consensus 

spectra containing fewer than ten spectra were discarded. Because it is possible for related 

metabolites to be formed by separate gene clusters, we chose a strict similarity threshold for 

molecular networking analysis to avoid grouping metabolites that were not biosynthetically 

related. Ions in the resulting molecular network were grouped into the same molecular 

family if they had a cosine score (similarity score) above 0.95 and more than three matched 

fragment peaks. The maximum size of a molecular family was set to 100, and the lowest 

scoring edges were removed from the families until the family size was below this threshold. 

To dereplicate against spectral libraries in the GNPS database, library spectra were filtered 

in the same way as the input data and matches kept between network spectra and library 

spectra were required to have at least three matched peaks and a cosine score ≥0.7.

Correlation of metabolomics and genomics datasets

The input to the correlations process was a presence or absence matrix of GCFs across the 

110 strains, as well as the metabolite feature table. csv exported from MZmine. To remove 

ubiquitous GCFs such as the fungal lysine biosynthetic pathway, we excluded all GCFs 

present in >80% of the strains in our dataset. As intensity values of zero would result in 

division by zero for the intensity ratio, a zero-filling strategy was required. We used a simple 

routine that assumed that undetected metabolites were below the limit of detection. For each 

zero in the metabolite feature table, we replaced it with a value near the limit of detection 

by randomly generating a value between the minimum intensity and 0.01% of the maximum 

intensity for the file. For each strain, we took the highest observed metabolite intensity 

across the three growth conditions, resulting in a metabolite intensity table based on strain 

rather than LC–MS file. Metabolites detected in fewer than two strains with at least 1 × 107 

intensity were removed from further analysis.

For each biosynthetic type, we computed correlation metrics between every pair of 

appropriate GCFs and filtered metabolites. For each metabolite–GCF pair, we computed 

the number of strains with both the GCF and the metabolite, with the metabolite but not 

the GCF, without the metabolite but with the GCF and without the GCF and without the 

metabolite. These data were scored using the previously described correlation score15 using 

a 1 × 107 intensity threshold. As previously described20, we also used a chi-squared test 

(implemented in the C# framework Accord.NET) to test the significance of each metabolite–

GCF correlation. To compute the intensity ratio, we determined the average intensity of 

the metabolite in strains that contained the GCF, as well as the average intensity in strains 

without the GCF. The ratio of intensities in strains with versus without the GCF was used as 

the intensity ratio score, only considering metabolite–GCF pairs with intensity ratios ≥5. All 

analyses were implemented in C#10 running on .NET 6.

Metabolite purification and structure elucidation

A scale up culture of Aspergillus brasiliensis CBS 101.740 was grown in 25 flasks of 

Cheerios and extracted, yielding 1.9 g of dried extract. This extract was subjected to normal-
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stage flash chromatography using a Teledyne ISCO CombiFlash NextGen 300 system and 

evaluated using ultraviolet absorbance at 254 and 280 nm using a 60-min hexane/CHCl3/

MeOH gradient on a silica 40-g gold column (Teledyne ISCO) at a flow rate of 40 ml 

min−1; the resulting fractions were combined into 22 pools. Fraction 19 (112 mg) had the 

highest concentration of the target metabolite and was purified further using reversed-phase 

flash chromatography on a 15.5 g HP C18 gold RediSep Rf column at a flow rate of 30 ml 

min−1. A 50-min gradient of CH3CN/H2O was used, starting at 5% CH3CN and increasing 

to 25% over 11 min. It then increased to 50% from 11 to 38 min, after which it was 

increased to 100% CH3CN over 2 min and held for the remainder of the run. Of the 14 

resulting fractions, fraction 3 (15 mg) had the most target metabolite and was subjected to 

a final round of reversed-phase chromatography on an Agilent 1200 HPLC and analyzed 

with OpenLAB CDS Chemstation software (v.1.8.1, Agilent Technologies). Fraction 19–3 

was chromatographically separated on a Kinetix C18 semipreparatory column (5 μm; 100 

Å; 250 × 10.0 mm2) with a 2.5 ml min−1 flow rate. Approximately 200 μl of a 10 mg ml−1 

solution were injected per run and subsequent fractions pooled for final analysis. The 45-min 

run began at 15:85 CH3CN-H2O and was held isocratically for 38 min. The gradient was 

increased to 100% CH3CN over the next 2 min and held at 100% for the remainder of the 

run. Fourteen fractions were collected, and fraction 3 (15 mg) was subjected to a final round 

of reversed-phase high-performance liquid chromatography. Compound 1 (pestalamide B) 

eluted at 17.5 min (1.5 mg, 95% purity, 0.08% yield). NMR spectra for the target compound 

were collected on a Bruker Avance III 500-MHz system equipped with a DCH CryoProbe at 

298.2 K.

Pestalamide B (1): yellow, amorphous solid; HRESIMS m/z 343.1290 [M+H]+ (calculated 

for C18H19N2O5
+, 343.1294). Fragmentation patterns are provided in Supplementary 

Fig. 20. 1H, 13C, correlation spectroscopy, heteronuclear single quantum correlation 

and heteronuclear multiple bond correlation data (dimethylsulfoxide-d6) are provided in 

Supplementary Table 7 and Supplementary Figs. 21–25 and match favorably to previous 

publications46.

Plasmid fungal artificial chromosome (pFAC) vector design

The large-insert cloning vector pSMART-BAC (NCBI accession no. EU101022) was 

modified into the fungal artificial chromosome vector pFAC by linearizing adjacent to the 

oriV site and inserting a cassette composed of kanR (Escherichia coli selection), AMA1 

(fungal plasmid replicator), gpdA-HygR-trpC terminator (fungal selection) and pyrG (fungal 

selection). See Supplementary Table 11 for a complete list of plasmids used for this study, 

and Supplementary Fig. 30 for graphical maps of plasmids pFAC-pst and pFAC-ΔpstD.

pst Cas9 cleavage and assembly to pFAC

A. brasiliensis gDNA (50–150 ng μl−1) was restricted with Cas9 (33–133 ng μl−1) combined 

with equimolar guide RNAs directing cleavage upstream and downstream of the pst BGC 

locus. Digestion was performed in a 20 μl reaction containing TA buffer (33 mM tris acetate, 

66 mM potassium acetate and 10 mM magnesium acetate, pH 7.5) at 37 °C for 90 min. 

The cleaved sample was mixed with linearized pFAC containing overlap sequences specific 

to the released pst BGC fragment in an isothermal DNA assembly reaction. The reaction 
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product was transformed to E. coli BACOpt2.0 (Lucigen) cells and plated to Luria-Bertani 

(LB) agar containing 12.5 μg ml−1 chloramphenicol. Colonies were screened by PCR using 

primer pairs specific to the cloning junctions (Supplementary Fig. 31a). Sanger sequencing 

of the colony PCR amplicons further confirmed successful cloning. Positive clones were 

cultured in 100 ml of LB medium containing 12.5 μg ml−1 chloramphenicol and midiprep 

of the BAC DNA was performed using Zymo-PURE II Plasmid Midiprep Kit (Zymo 

Research). One μg of BAC DNA was restricted by either EcoRI or BamHI and compared 

to simulated digests, confirming correct cloning of the pst BGC into pFAC (Supplementary 

Fig. 32a). See Supplementary Table 12 for a list of primers and oligonucleotides purchased 

from IDT used in these studies, and Supplementary Table 13 for target sequences for 

digestion. Guide RNAs were obtained from IDT by providing the required target sequences 

and preparing them according to recommended procedures.

pFAC-pst-Δpst construct design

Purified pFAC-pst DNA (50 ng μl−1) was restricted with Cas9 (30 ng μl−1) combined 

with equimolar guide RNAs (IDT) directing cleavage upstream and downstream of the 

pstD gene to create a knockout construct. Digestion was performed in 60 μl of reaction 

containing TA buffer at 37 °C for 30 min. The cleaved sample was added to an isothermal 

DNA assembly reaction with a PCR product of the apramycin resistance gene ApramR 

amplified from pSMART-BAC-S and containing overlaps specific to the cleaved FAC. The 

reaction product was transformed to E. coli BACOpt2.0 (Lucigen) cells and plated to LB 

agar containing 50 μg ml−1 apramycin. Colonies were screened by PCR using primer pairs 

specific to the cloning junctions (Supplementary Fig. 31b). Sanger sequencing of the colony 

PCR amplicons further confirmed successful cloning. Positive clones were cultured in 100 

ml of LB medium containing 50 μg ml−1 apramycin and midiprep of the BAC DNA was 

performed using Zymo-PURE II Plasmid Midiprep Kit (Zymo Research). One μg of BAC 

DNA was restricted by EcoRI or BamHI and compared to simulated digests, confirming 

correct deletion of the pstD gene (Supplementary Fig. 32b).

Heterologous expression of pFAC plasmids in host A. nidulans

The pFACs were transformed in the A. nidulans host using a modified PEG-calcium based 

transformation method reported to improve transformation yield60. Transformants with the 

pst cluster were confirmed by PCR with a forward primer AbrasF and a reverse primer 

AbrasR located in the key gene pstD ORF (Supplementary Fig. 33), and transformants 

with pstD deleted from the pst cluster were confirmed with a forward primer ΔpstF located 

outside the KO cassette and a reverse primer aprR marker (apramycin resistance) gene 

for pstD gene replacement (Supplementary Fig. 34). Two confirmed transformants per 

group were chosen for subsequent metabolite analysis. All primer sequences used for the 

confirmation are listed in Supplementary Table 14 and fungal strains used for heterologous 

expression are listed in Supplementary Table 15. For the identification of the expressed 

target metabolite, triplicated plates of each A. nidulans transformant with and without target 

pFACs were inoculated and incubated for 7 d at 37 °C on glucose minimal medium. 

Subsequently, plates were collected and lyophilized for 48 h and extracted following 

established procedures60.
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Stable isotope feeding studies

For targeted biosynthetic studies, pyroxidine supplemented potato dextrose agar plates 

with and without 0.1 mM [13C6]-l-leucine or 0.5 mM phenylacetic acid (phenyl-d5) were 

prepared. Aspergillus nidulans control and transformant strains (containing the pestalamide 

BGC) were grown on plates for 1 week at room temperature in darkness. Agar plugs from 

these plates were then used to inoculate pyridoxine supplemented LMM media with and 

without 1 mM l-leucine or 5 mM phenylacetic acid. Cultures were grown for 1 week at 

room temperature without any rotation. Mycelia were collected in a falcon tube and placed 

in −80 °C for roughly 4 h after which it was lyophilized, crushed into a fine powder and 

extracted using 15 ml of 10% methanol in ethyl acetate. Tubes were incubated for 3.5 h at 

room temperature and sonicated every 30 min. The resulting extracts were then filtered and 

evaporated to under N2.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. Workflow for the metabologenomics approach for natural products discovery in fungi.
a, Using interpreted sequences of 110 assembled fungal genomes, we grouped BGCs into 

GCFs. b, In tandem, LC–MS/MS profiles (that is, both MS1 and MS2 datasets) were 

collected from extracts from all 110 strains, each grown on three conditions (oats, rice and 

Cheerios). c, Correlative analyses were completed using three scoring methods (pattern 

matching, correlation scoring and intensity ratio analysis). d, Gene cluster-metabolite 

linkages identified through correlative analysis were then confirmed through targeted 

biosynthetic studies. All panels were created with BioRender.com. Avg, average; w/, with; 

w/o, without.
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Fig. 2 |. Comparison of GCF-natural product score distributions using different GCF grouping 
parameters.
For a, b, d and e, each point represents a unique metabolite–GCF pair, and the location 

on the plot reveals the strength of the associated weighted correlation scores (x axis), 

−log10(P) values (y axis) and intensity ratios (point size). P values are the result of the 

chi-squared test with Bonferroni correction. Significant correlations (P ≤ 0.05 after multiple-

hypothesis correction) are colored green, nonsignificant correlations are colored pink and 

known metabolite–GCF pairs are colored purple. a, Distributions at the 60% similarity 

threshold for NRPS-containing GCFs. b, Distributions at the 70% similarity threshold 

for NRPS-containing GCFs. c, Total number of significant (green) and nonsignificant 

(pink) correlations for knowns with validated BGCs belonging to NRPS-containing GCFs 

calculated with the nine different GCF similarity thresholds using the pattern-matching 

approach. The 60% similarity threshold maximizes the number and significance of validated 

matches. d, Distributions for NRPKS-containing GCFs at the 60% cutoff. e, The 70% 

cutoff for NRPKS-containing GCFs. f, Total number of correlations to validated knowns 

of the NRPKS biosynthetic type calculated with different GCF similarity thresholds using 

the pattern-matching approach, illustrating that the 70% threshold is optimal for this 

biosynthetic type.
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Fig. 3 |. Compiled metabolite–GCF correlations using optimized GCF network.
a, Each point represents a unique metabolite–GCF pair and its location corresponds to the 

strength of the association. Weighted correlation scores are on the x axis and −log10(P 
values) calculated using the pattern-matching approach on the y axis. P values are the result 

of a chi-squared test with a Bonferroni correction. Point size corresponds to the square root 

of the intensity ratio. Significant correlations (P ≤ 0.05 after multiple-hypothesis correction) 

and nonsignificant correlations are colored in green and pink, respectively. Correlations for 

validated metabolite–GCF pairs are in purple (with selected known linkages labeled with 

metabolite–GCF names) and correlations between the pestalamide B and three GCFs of 

interest are colored in orange. b–e, Cooccurrence plots for monacolin K to HRPKS_85 (3 

of 3 strains with the BGC produce monacolin K) (b), notoamide A to NRPS_66 (3 of 7 

BGC-containing strains produce notoamide A) (c), roquefortine C to its GCF; 7 of 11 strains 

with DMAT_31 BGCs produce roquefortine C (d) and pestalamide B-GCF linkages (e). 

Strains are on the x axis and log-transformed peak heights on the y axis. Presence/absence 

patterns for three candidate GCF linkages are highlighted along the gridlines. NRPKS_59 

(dark blue) is missing in the top-producing strain (orange box, far right). TERPENE_288 

(light blue) was the top-ranked linkage (due to smaller GCF size than other high-scoring 

GCFs, orange boxes, left and middle), but ruled out using MS2 data. HYBRID_85 (neon 

green), the second-ranked linkage, was targeted for follow up studies (for b–e, only a subset 
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of strains are shown for clarity). HRPKS, highly reducing polyketide synthase; DMAT, 

dimethylallyl tryptophan synthase.

Caesar et al. Page 24

Nat Chem Biol. Author manuscript; available in PMC 2023 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4 |. Heterologous expression of pestalamide B in Aspergillus nidulans.
a, The expression strain A. nidulans-pst produces pestalamide B at a high MS titer, but 

lower than the native producer A. brasiliensis CBS 101.740; the expression strain lacking the 

backbone synthase (A. nidulans-ΔpstD) does not produce this metabolite. b, MS1 spectral 

shifts of pestalamide B following feeding with [13C6]-leucine (green), phenylacetic acid 

(phenyl-d5) (pink) or without heavy isotopes (purple). c, MS2 spectral shifts of pestalamide 

B fragments following feeding with [13C6]-leucine and phenylacetic acid (phenyl-d5). 

Fragment ions are annotated with their unlabeled m/z values, but putative structures have 

been color-coded based on the proposed incorporation of isotopically labeled precursors. 

Notably, while fragment ions show either +0 or +5 Da shifts on phenylacetic acid feeding 

(pink circles on structures), fragment ions often show +1, +4, +5 or +6 Da shifts (green 

circles on structures) following leucine feeding, consistent with substantial rearrangement of 

leucine during pestalamide biosynthesis. All panels were created with BioRender.com.
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Fig. 5 |. Proposed biosynthesis of pestalamide B.
All panels were created with BioRender.com.
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Table 1 |

Comparison of correlation-based scoring methods for metabologenomics

Approach 1 Approach 2 Approach 3

Name Pattern matching Correlation scoring Intensity ratio analysis

Weighted? No Yes Yes

GCF data matrix input Binary (presence or 
absence)

Binary (presence or absence) Binary (presence or absence)

Metabolomics data 
matrix input

Binary (presence or 
absence)

Binary (presence or absence) Quantitative (peak height)

Calculation Pearson’s chi-squared test GCF present, ion present +10; GCF 
absent, ion present −10; GCF present, ion 
absent 0; GCF absent, ion absent +1

avg peak height in strains w GCF
avg peak height in strains w/o GCF

Score output P value Correlation score Intensity ratio score
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