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ABSTRACT
Background  Patients with serrated polyposis 
syndrome (SPS) have multiple and/or large serrated 
colonic polyps and higher risk for colorectal cancer. SPS 
inherited genetic basis is mostly unknown. We aimed to 
identify new germline predisposition factors for SPS by 
functionally evaluating a candidate gene and replicating 
it in additional SPS cohorts.
Methods  After a previous whole-exome sequencing in 
39 SPS patients from 16 families (discovery cohort), we 
sequenced specific genes in an independent validation 
cohort of 211 unrelated SPS cases. Additional external 
replication was also available in 297 SPS cases. The 
WNK2 gene was disrupted in HT-29 cells by gene editing, 
and WNK2 variants were transfected using a lentiviral 
delivery system. Cells were analysed by immunoblots, 
real-time PCR and functional assays monitoring the 
mitogen-activated protein kinase (MAPK) pathway, cell 
cycle progression, survival and adhesion.
Results  We identified 2 rare germline variants in the 
WNK2 gene in the discovery cohort, 3 additional variants 
in the validation cohort and 10 other variants in the 
external cohorts. Variants c.2105C>T (p.Pro702Leu), 
c.4820C>T (p.Ala1607Val) and c.6157G>A 
(p.Val2053Ile) were functionally characterised, displaying 
higher levels of phospho-PAK1/2, phospho-ERK1/2, 
CCND1, clonogenic capacity and MMP2.
Conclusion  After whole-exome sequencing in SPS 
cases with familial aggregation and replication of 
results in additional cohorts, we identified rare germline 
variants in the WNK2 gene. Functional studies suggested 
germline WNK2 variants affect protein function in the 
context of the MAPK pathway, a molecular hallmark in 
this disease.

INTRODUCTION
Colorectal cancer (CRC) is one of the most 
common cancers worldwide with a significant 

associated mortality. Aside from lung cancer, with 
an avoidable environmental cause, CRC is respon-
sible for more deaths than any other malignancy in 
Western countries.1 The vast majority of CRC cases 
develop through an adenoma-carcinoma sequence.2 
In recent years, another carcinogenesis pathway has 
been identified: the serrated pathway, starting from 
a different precancerous lesion, the serrated polyp. 
Although serrated polyps were previously consid-
ered indolent, current evidence estimates they are 
the precursor lesion for up to 30% of CRC cases.3

Serrated polyposis syndrome (SPS) is a clin-
ical condition characterised by the presence of 
multiple and/or large serrated polyps in the colon, 
as well as an associated higher risk of CRC.4 5 The 
following criteria were established by the WHO 
in 2010 in order to help identifying SPS patients: 
(1) at least five serrated lesions/polyps proximal 
to the sigmoid colon with two or more of these 
being >10 mm, (2) any number of serrated polyps 
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proximal to the sigmoid colon in an individual who has a first-
degree relative with serrated polyposis and (3) >20 serrated 
polyps of any size but distributed throughout the colon.6 This 
arbitrary definition is not based on any genetic alteration and 
has been considered somehow restrictive, leading to underdiag-
nosis of this syndrome. Recently, it was updated to not include 
the second criterion. Also, new criterion I includes polyps prox-
imal to the rectum and polyps now have to be ≥5 mm. The 
updated criterion II now explicitly states that ≥5 of the serrated 
polyps should be located proximal to the rectum.7 Although its 
prevalence in the population is unknown, it could be higher 
than expected according to data from CRC screening.8–11 It is 
also probably underrecognised due insufficient knowledge in 
the medical community, the difficult endoscopic detection of 
serrated lesions/polyps (small size and flat morphology), the 
lack of understanding regarding germline predisposition and 
the absence of associated symptoms.

CRC, including those cases associated with SPS, as for other 
complex diseases, are caused by both genetic and environ-
mental factors.12 Smoking, body mass index and alcohol intake 
have been highlighted as important environmental risk factors 
for serrated polyps.13 Importantly, twin studies also showed 
that around 13%–30% of the variation in CRC susceptibility 
involves inherited genetic factors.14 APC, MUTYH and the 
mismatch repair (MMR) genes are among the most relevant 
genes involved in the main forms of hereditary CRC, familial 
adenomatous polyposis, MUTYH-associated polyposis (MAP) 
and Lynch syndrome.15 However, SPS is a disease with mostly 
unknown inherited genetic basis compared with other gastro-
intestinal polyposis syndromes. It has also been advocated that 
SPS may not be hereditary but mostly environmental. However, 
familial clustering and a high CRC risk for first-degree relatives 
of SPS patients have been described, which supports the involve-
ment of germline predisposition in a subset of cases.16

First reported in 2014, germline loss-of-function variants in 
RNF43 were associated with the development of multiple sessile 
serrated adenomas.17 RNF43, as regulator of the DNA damage 
response and negative regulator of Wnt signalling, was consid-
ered a likely SPS susceptibility gene. Subsequent studies have 
highlighted that RNF43 accounts for a small proportion (<3%) 
of the germline predisposition in SPS.18 19 Among the list of other 
genes reported so far to be potentially involved in SPS germline 
predisposition, MUTYH was reported in very few cases although 
its role in SPS is probably not relevant.20 21 Other genes involved 
in polyposis predisposition such as BMPR1A, SMAD4, PTEN and 
GREM1 have been also screened with negative results.22

Additional efforts have been undertaken to identify candidate 
genes for germline predisposition to SPS. Our research group 
has postulated further germline candidates for SPS by using 
combined whole-exome sequencing (WES) and linkage studies 
in families with multiple members affected by SPS23 and by 
performing germline and somatic WES in 39 patients from 16 
SPS families showing familial aggregation mainly compatible with 
an autosomal dominant pattern of inheritance.24 This last study 
highlighted ANXA10, ASXL1, CFTR, DOT1L, HIC1, INO80, 
KLF3, MCM3AP, MCM8, PDLIM2, POLD1, TP53BP1, WNK2 
and WRN as candidate genes for SPS germline predisposition.

Accordingly, the main objectives of this study were the iden-
tification of novel germline causal genes for SPS predisposition 
by replicating a candidate gene in independent SPS cohorts and 
performing a functional evaluation of the detected rare variants. 
Confirmation of germline predisposition to SPS would permit 
a more accurate and adequate diagnosis of patients, as well as 
facilitating genetic counselling and prevention.

MATERIALS AND METHODS
Patients
The discovery cohort comprised 39 patients from 16 families 
(≥2 patients per family) diagnosed with SPS and fulfilling the 
2010 WHO criteria.6 The updated 2019 WHO criteria were not 
available when this study was initiated and developed for the 
discovery cohort.7 A complete clinical characterisation of this 
discovery cohort was previously published.24 No patients in the 
discovery cohort presented with pathogenic variants in MUTYH, 
APC or the DNA MMR genes, when analysed using gene panel 
sequencing and screening for point mutation, copy-number vari-
ants and potential splicing alterations.

Two hundred and eleven unrelated Spanish SPS patients were 
recruited in high-risk CRC clinics at Hospital Clínic de Barce-
lona, Institut Català d’Oncologia-IDIBELL and Fundación 
Pública Galega de Medicina Xenómica and were used as valida-
tion cohort. Additional external SPS cohorts (n=297) with avail-
able sequencing data for unrelated patients from the University 
of Bonn and the Medical Genetics Center Munich in Germany 
(n=168), the Radboud University Medical Centre in the Nether-
lands (n=29) and the Genetics of Colonic Polyposis Study from 
Australia and New Zealand (n=100) were also accessed. The 
2010 WHO criteria were also used in this cohort for consistency.

Variant identification
For more details on variant identification and validation, see 
online supplemental material.

Variant prioritisation
Variant prioritisation was carried out considering several aspects. 
First, we only took into consideration those variants present in 
the canonical transcripts. Also, dominant and recessive analysis 
were pursued. Homozygous/compound heterozygous variants 
in relevant genes were not identified. Therefore, only heterozy-
gous variants were further considered. In addition, a minimum 
allele frequency of 0.1% was required for variant filtering and 
only non-synonymous and/or truncating variants were priori-
tised. The missense variants had to fulfil at least three out of 
six pathogenic predictions used for analysis (PhyloP, SIFT, Poly-
phen, MutationTaster, CADD and LRT). The next crucial step 
of variant prioritisation considered data integration with the 
first cohort results. We prioritised genes that presented germline 
variants in both cohorts and conducted an extensive literature 
research over possible connections between candidate genes and 
SPS. Only candidate genes with rare, nonsynonymous/truncating 
or missense variants fulfilling at least three out of six pathogenic 
predictions detected in the discovery and the validation cohort 
were further considered. Among them, only those with a func-
tion compatible with SPS, CRC or cancer were selected.

Gene panel sequencing
For the validation cohort, a panel of 20 genes was designed 
using the DesignStudio online tool (Illumina, San Diego, USA). 
We included 14 genes suggested as plausible candidates to SPS 
in the discovery cohort comprising ANXA10, ASXL1, CFTR, 
DOT1L, HIC1, INO80, KLF3, MCM3AP, MCM8, PDLIM2, 
POLD1, TP53BP1, WNK2 and WRN.24 Additional genes were 
also included, such as ANXA1 and ANXA2 (histological markers 
for SPS, same family as ANXA10), ASLX2 (same gene family as 
ASXL1), POLE, FBLN2 (previously suggested by our group)23 
and RNF43, previously involved in germline SPS predisposition.
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Gene panel analysis
The raw sequencing data were first analysed using the Miseq 
Reporter software (Illumina, San Diego, USA). First, the data 
were aligned to the hg19 human genome using the Burrows-
Wheeler Aligner (BWA-MEM).25 Then, variant calling was 
conducted using the Germline Variant Caller (Illumina, San 
Diego, USA). Variant annotation was performed as previously 
described using SnpEff and SnpSift software (https://pcingola.​
github.io/SnpEff/).24 26

Functional characterisation of genetic variants
For details on the development of a cellular model for variant 
characterisation, ERK1/2 and PAK1 assays, see online supple-
mental material. All plasmids, antibodies, restriction enzymes 
and Taqman probes used in this study are listed in online supple-
mental table 1. Primer details are listed in online supplemental 
table 2. If not indicated otherwise, functional assays were devel-
oped with HT-29 cells cultured in McCoy 5A media supple-
mented with 5% FBS and 1 µg/mL of doxycycline.

MAPK pathway activity: ERK1/2 and PAK1 phosphorylation
To detect total phospho-ERK1/2, cells were stimulated with 
1 ng/mL human epidermal growth factor (hEGF) for 10 min and 
assayed with the Phospho-ERK1 (T202/Y204)/ERK2 (T185/
Y187) DuoSet IC ELISA kit according to the manufacturer’s 
protocol (Bio-Techne, Minnesota, USA). Phospho-ERK1/2 levels 
between EGF-stimulated and non-stimulated conditions were 
quantified.

To detect phosphorylated PAK1, an In-Cell ELISA assay was 
done. The 96-well plates were coated with 50 µg/mL Poly-L-
Lysine before cell seeding. Cells were stimulated with 10 ng/mL 
of hEGF for 5 min, immediately fixed and assayed with phos-
pho-PAK1 (rabbit) and β-actin (mouse) antibodies overnight at 
4°C. The multiplexed detection of both targets was performed 
with the antimouse Dylight 800 (ThermoFisher, Waltham, 
Massachusetts, USA) and antirabbit IRDye 680RD (LI-COR, 
Lincoln, Nebraska, USA) antibodies. Plates were scanned with 
Odyssey (LI-COR) and analysed with Image Studio 4.0 software.

CCND1 and MMP2 expression
Cells were seeded in P60 dishes at 600 000 cells per plate and 
left to grow for 2 days. Then, cells were stimulated with 1 ng/mL 
of hEGF for 16 hours in serum-free McCoy 5A media with 1 µg/
mL of doxycycline. The next day, cells were detached using a 
cell-scrapper, and the RNA was extracted using the RNeasyMini 
Kit according to the manufacturer’s protocol (Qiagen, Hilden, 
Germany). Retrotranscription and quantitative PCR were done 
as described in online supplemental material.

Clonogenic assay
Cells were seeded at low density, at 200 cells per well in a 6-well 
plate. Cells were maintained either in the presence of 1 ng/mL 
of hEGF or without hEGF. After 16 days, cells were fixed with 
methanol for 10 min and stained with a 0.5% crystal violet 
solution.

Adhesion assay
Before cell seeding, 96-well plates were coated with 5 µg/
mL fibronectin in PBS 1X and incubated for 1 hour at room 
temperature. Next, the plate was dried out and blocked with 
BSA 1% for an additional hour. A total of 40 000 cells were 
seeded per well and left to attach for 60 min. Subsequently, unat-
tached cells were removed by inversion; the plate was washed 

carefully with serum-free McCoy 5A and fixed with methanol 
for 10 min. Finally, fixed cells were stained with a 0.5% crystal 
violet solution. Images were captured on an AID EliSpot reader 
system and analysed with the ReadPlate 3.0 plugin for Image J.

RESULTS
After variant prioritisation, only candidate genes with rare, non-
synonymous/truncating or missense variants fulfilling at least 
three out of six pathogenic predictions detected in the discovery 
and the validation cohort were further considered. The WNK 
lysine deficient protein kinase 2 (WNK2) gene stood out among 
others for being a negative regulator of the mitogen-activated 
protein kinase (MAPK) pathway.27 MAPK cascades are central 
signalling pathways that regulate basic processes, including cell 
proliferation, differentiation, stress responses and apoptosis. 
Mutations in these pathways lead to their constitutive activa-
tion and uncontrolled cell proliferation.28 One of the cascades, 
MAPK/ERK, is of particular interest in SPS because one of its 
components, BRAF, shows activating mutations in approximately 
75% of sessile serrated polyps.29 Due to its role as a negative 
regulator of this pathway, WNK2 was considered a promising 
candidate gene for germline SPS predisposition.

In the discovery cohort, two WNK2 variants were detected 
including c.4820C>T (p.Ala1607Val) in family CAR_SPS.4, 
and c.6157G>A (p.Val2053Ile) in family CAR_SPS.6 (figure 1). 
These variants were classified as potentially damaging by five out 
of six missense pathogenicity prediction tools. Families showed 
CRC family history, and variants were detected in two family 
members affected with SPS, although no additional segregation 
analysis was possible. MMR system was preserved in the analysed 
serrated lesions from both families and the CAR_SPS.6 polyp 
was BRAF mutated. Loss of heterozygosity seeking a potential 
deletion of the wild-type (WT) WNK2 allele was not detected 
in the analysed serrated lesions. We also performed WES on 
the most advanced serrated lesion available in one individual 
from each family, which allowed performing somatic mutational 
profiles. The single-base substitution (SBS) signatures SBS.1 and 
SBS.5, considered clock-like mutational signatures, were the 
most represented in both samples, and no other distinctive signa-
ture was apparent.24

In a validation SPS cohort of 211 unrelated patients, gene 
panel sequencing revealed four additional rare, missense 
variants in WNK2 including c.2105C>T (p.Pro702Leu) in 
PanSPS_044, c.2792C>T (p.Thr931Met) in PanSPS_095, 
c.3341C>T (p.Thr1114Met) in PanSPS_078 and c.5588T>C 
(p.Leu1863Pro) in PanSPS_055. The c.2792C>T variant was 
detected in a male SPS patient (onset at 67 years) in a family 
where an additional sample for variant segregation was avail-
able. It corresponded to a sister of the proband with CRC (72 
y.o.). However, this variant was finally excluded for further 
studies since segregation was not confirmed. The tumour sample 
in PanSPS_044 (III-1) showed loss of expression for MLH1/
PMS2 and was BRAF mutated and MGMT methylated. No 
similar information was available regarding MMR system or 
somatic alterations for any serrated lesion from PanSPS_055 and 
PanSPS_078. Pedigrees and the five WNK2 variants that were 
selected are summarised in figure 1 and table 1.

Functional characterisation of WNK2 depletion
To unequivocally assess the functional effect of the previous 
candidate variants and assess their link to SPS, it was important 
to reduce the masking effect of the endogenous WT WNK2 
expression in the selected cellular model. For this reason, we 

https://pcingola.github.io/SnpEff/
https://pcingola.github.io/SnpEff/
https://dx.doi.org/10.1136/jmedgenet-2022-108684
https://dx.doi.org/10.1136/jmedgenet-2022-108684
https://dx.doi.org/10.1136/jmedgenet-2022-108684
https://dx.doi.org/10.1136/jmedgenet-2022-108684
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Figure 1  Pedigrees of five SPS families. Filled symbol indicates affected for CRC (upper right quarter), SPS (lower right quarter) or other types of cancer 
(lower left quarter). CRC, colon, breast, larynx, GI (gastrointestinal) and prostate refer to the type of cancer. Ages at diagnosis are depicted. The proband is 
indicated by an arrow. Variant carriers are indicated by (+). CRC, colorectal cancer; SPS, serrated polyposis syndrome.
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performed a two-step genetic engineering strategy. First, we 
knocked-out WNK2 in the human cell line HT-29 by CRIS-
PR-Cas9. Then, we reintroduced each of the WNK2 variants of 
interest using a lentiviral delivery system, and specific functional 
studies were carried out. We confirmed the CRISPR-mediated 
WNK2 gene editing by Sanger sequencing and selected two 
clones (WNK2KO2 and WNK2KO7) with no expression of WNK2 
at both mRNA and protein levels (online supplemental figure 1).

Afterwards, we evaluated the phenotype of the selected 
WNK2KO clones. WNK2 is a negative regulator of the ERK1/2 
MAPK signalling cascade, where growth factors trigger signal 
transduction through a series of sequential protein phosphory-
lations. Specifically, WNK2 modulates the Rac1/PAK1-mediated 
activation of ERK1/2 (figure  2A). Therefore, we assessed the 
phosphorylated status of both ERK1/2 and PAK1/2. Treat-
ment with hEGF promoted a dose-dependent stimulation of 
these targets in HT-29 control cells. We observed that the lack 
of WNK2 facilitated the activation of this pathway, as both 
clones displayed a higher increase in the phosphorylation of 
ERK1/2 and PAK1/2 (figure 2B,C), even though HT-29 cells are 
BRAF mutated. The effect was even more outstanding in clone 
WNK2KO2, which showed the highest ERK1/2 and PAK1/2 phos-
phorylation levels at all tested doses.

We further characterised WNK2KO2 cells to determine the 
functional consequences of the alteration in the MAPK pathway. 
Since this pathway promotes cell cycle progression, we tested 
Cyclin D1 (CCND1) expression, one of the main PAK/ERK 
targets in mitogenic signalling. We detected increased CCND1 
expression levels (figure 2D) and a higher clonogenic capacity 
(figure 2E) of WNK2KO2 cells in comparison with control cells 
after hEGF induction, indicating that WNK2 depletion altered 
cell cycle progression and cell proliferation.

The activation of the MAPK pathway promotes the expression 
of metalloproteinases, which degrade the extracellular matrix 
and are associated with cellular adhesion and a more aggressive 
phenotype. Specifically, WNK2 has been described to negatively 
regulate two metalloproteinases, MMP2 and MMP9.30 There-
fore, we also analysed the effects of WNK2 depletion on cell 
adhesion and matrix metalloproteinase-2 (MMP2) expression, for 
which WNK2 has already been described to work as a negative 
regulator. WNK2KO2 exhibited increased fibronectin-mediated 
cell attachment (figure 2F) and higher MMP2 expression levels 
(figure  2G). Altogether, these results show that deletion of 
WNK2 in HT29 cells alters the regulation of downstream medi-
ators of the MAPK pathway, one of the main pathways that drive 
serrated tumorigenesis, suggesting that alterations on this gene 
may be associated with the development of the serrated polyp-
osis phenotype.

Functional characterisation of WNK2 germline variants
Three WNK2 candidate variants were selected to inves-
tigate their functional effect including p.Ala1607Val and 
p.Val2053Ile from the discovery cohort and p.Pro702Leu 
from the validation cohort (table 1). Families carrying these 
variants had the most severe clinical presentation including 
SPS aggregation or SPS and CRC in the index case. These 
variants were also classified as potentially damaging by five 
out of six pathogenicity prediction tools. These variants 
were designed by site-directed mutagenesis and individu-
ally reintroduced in both WNK2KO2 and WNK2KO7 clones. 
As a control, the WT WNK2 sequence was also introduced 
in both clones to rescue the original phenotype. We selected 
the optimal doxycycline dose (1 µg/mL) to obtain successful 
gene expression levels for each of the introduced WNK2 
sequences. All WNK2 variants were equally expressed at 
both RNA and protein levels (online supplemental figure 2).

We then proceeded to do the functional characterisation 
of the selected variants. We first examined the phosphory-
lation status of ERK1/2 and PAK1/2, two key components 
of the MAPK pathway (figure  2A). WNK2KO2 cells re-ex-
pressing either WNK2-WT or each of the selected variants 
were treated with hEGF, and both ERK1/2 and PAK1/2 
phosphorylation levels were assessed. The activation of the 
pathway was determined before and after hEGF treatment 
(EGF+/− ratio). hEGF induced the phosphorylation of both 
ERK1/2 (figure 3A) and PAK1/2 (figure 3B) kinases. When 
comparing with the rescued WT WNK2 phenotype, the 
MAPK activation was present to some extent for the three 
variants, being more noticeable with cells expressing the 
p.Pro702Leu variant.

Next, as the MAPK pathway promotes cell cycle progres-
sion, we tested whether WNK2 variants would be implicated 
in CCND1 expression. All missense WNK2 variants promoted 
a moderate increase in CCND1 expression in comparison with 
cells expressing the WT counterpart (figure 3C). A similar trend 
was observed when performing the clonogenic cell survival 
assay, in which cells expressing WNK2 variants showed a higher 
survival rate (figure 3D).

Finally, we focused on cell adhesion and metalloproteinase 
MMP2 expression. We first analysed the expression of MMP2 
after hEGF treatment. We observed a tendency for a higher 
expression of this marker for the three variants in comparison 
with cells expressing with WNK2-WT (figure 3E). Then, cells 
were subjected to an adhesion test to the extracellular matrix 
protein fibronectin, which is cleaved by MMP2. By doing so, 
we detected a greater adhesion capacity of cells expressing the 

Table 1  Rare germline variants identified in the WNK2 gene in the discovery and validation SPS cohorts
Variant Exon Prediction tools gnomAD Allele count Number of homzygotes Family SPS criteria CRC index case CRC family history Cohort

c.2105C>T
(p.Pro702Leu)

9 5 0.000125 19/152,210 0 PanSPS_044 3 Y N Validation

c.3341C>T
(p.Thr1114Met)

12 3 0.0000526 8/152,182 0 PanSPS_078 1 N Y Validation

c.4820C>T
(p.Ala1607Val)

20 5 0.000138 21/152,228 0 CAR_SPS.4 1,3 N Y Discovery

c.5588T>C
(p.Leu1863Pro)

23 5 0 0 0 PanSPS_055 3 N N Validation

c.6157G>A
(p.Val2053Ile)

25 5 0.0000657 10/152,200 0 CAR_SPS.6 2,3 N Y Discovery

Prediction tools: number of pathogenicity positive predictions according to missense bioinformatics prediction tools (PhyloP, SIFT, Polyphen, MutationTaster, CADD and LRT). SPS criteria: according to the 2010 WHO SPS 
clinical criteria. CRC family history: defined as presence of any CRC case in the family besides the index case.

CRC, colorectal cancer; gnomAD, Genome Aggregation Database; N, no; SPS, serrated polyposis syndrome; Y, yes.

https://dx.doi.org/10.1136/jmedgenet-2022-108684
https://dx.doi.org/10.1136/jmedgenet-2022-108684
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p.Pro702Leu and p.Ala1607Val variants (figure 3F), compared 
with the rescued WT phenotype.

The functional characterisation of WNK2 variants was repli-
cated in clone WNK2KO7 (online supplemental figure 3), focusing 
on the assays more directed to the MAPK pathway itself (ERK1/2 
and PAK1/2), and similar results were obtained. Consistently, the 
activation of the MAPK pathway and the adhesion capacity of 
cells were higher when WNK2 variants were expressed, again 
with a prominent effect in the case of variant p.Pro702Leu.

All in all, these results suggested that WNK2 variants partially 
failed to repress the activation of this molecular pathway and 
were concordant in some measure with the alteration of the 

MAPK pathway, supporting the malfunctioning of WNK2 
variants.

Screening of the candidate gene variants in additional SPS 
cohorts
International SPS cohorts from Germany, Australia and the 
Netherlands with available WES or whole-genome sequencing 
data were further consulted seeking for additional rare, non-
synonymous/truncating or missense WNK2 alterations in their 
patients (n=297). Genetic variants were selected based on low 
population frequency (<0.25%), deleterious effect on the protein 
and pathogenic bioinformatics prediction (Combined Annotation 

Figure 2  Functional characterisation of WNK2KO clones. (A) Diagram depicting the role of WNK2 in the ERK pathway. WNK2 affects GTP loading of 
Rac1, interfering in the cascade of the ERK signal transduction pathway. Adapted from Moniz and Jordan.32 (B) Dose-response of hEGF-induced ERK1/2 
and (C) PAK1/2 phosphorylation levels in both WNK2KO2 and WNK2KO7 clones. Samples were assayed in triplicate. (D) CCND1 mRNA relative expression 
after treatment with 1 ng/mL of hEGF. Data are expressed as EGF+/EGF− ratio, and mean±SD is represented (n=3). (E) Clonogenic capacity of cells cultured 
during 16 days in the presence or absence of 1 ng/mL of hEGF. Data represent mean±SD (n=4). (F) Fibronectin (FN)-mediated cell adhesion assay using 
crystal violet staining. Data represent mean±SD (n=3). (G) MMP2 mRNA relative expression after treatment with 1 ng/mL of hEGF. Data represent mean±SD 
(n=3). The experiments were performed in triplicate and repeated three or four times, as indicated in each case. hEGF, human epidermal growth factor.
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Dependent Depletion Phred (CADD) score >15). In summary, 
10 additional rare, protein-altering WNK2 genetic variants were 
identified in 12 SPS patients (table 2). Considering the number of 
variants found in all analysed SPS cohorts, the frequency of germ-
line WNK2 alterations in SPS could be considered ~3% (17/524, 
3.24%).

To further test the association of WNK2 with SPS predispo-
sition, we also performed a gene-based burden test, where the 
aggregate burden of rare, protein-altering variants in WNK2 
was compared between our cases and control subjects. To do 
so, we accessed the data available from 262 healthy controls at 
the Collaborative Spanish Variant Server CSVS data (http://csvs.​

Figure 3  Variants in WNK2 activate the MAPK pathway and contribute to cell cycle deregulation, cell proliferation and altered cellular adhesion. 
WNK2KO2 cells re-expressing either WNK2 WT or each of the selected variants were functionally characterised. The variants were expressed successfully 
under the inducible promoter. The experiments were performed in triplicate and repeated three or four times, as indicated in each case. (A) ERK1/2 
phosphorylation levels measured by ELISA in cell samples treated or untreated with 1 ng/mL hEGF. Data are displayed as EGF+/− ratio (n=3; mean±SD). 
(B) PAK1/2 phosphorylation levels measured by an In-Cell ELISA (ICE) assay in cell samples treated or untreated with 10 ng/mL hEGF. Data are displayed 
as EGF+/− ratio (n=3; mean±SD) (C) CCND1 mRNA relative expression after a 16-hour treatment with 1 ng/mL of hEGF (n=3; mean±SD). (D) Clonogenic 
capacity of cells cultured during 16 days in the presence or absence of 1 ng/mL of hEGF. Data are displayed as EGF+/− ratio (n=4; mean±SD). On the right, 
representative images of methanol-fixed, crystal violet stained colonies. *P<0.05, analysis of variance with Fisher’s LSD post hoc test. (E) MMP2 mRNA 
relative expression after a 16-hour treatment with 1 ng/mL of hEGF (n=3; mean±SD). The variants were expressed successfully under the inducible promoter. 
(F) WNK2KO2 cells expressing either the WT sequence or each of the candidate variants were cultured on fibronectin (FN)-coated plates for 1 hour, and the 
adherent cells were detected by crystal violet staining (n=3; mean±SD). hEGF, human epidermal growth factor; WT, wild-type.
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babelomics.org/).31 By applying the previous filters of frequency 
and pathogenicity, we identified two rare, protein-altering vari-
ants in this control dataset (2/262, 0.76%) and confirmed an 
enrichment for rare, nonsynonymous/truncating or missense 
variants in the WNK2 gene in our SPS cohort (χ2=4.55, p 
value=0.03).

DISCUSSION
In this study, we initially analysed two independent SPS cohorts 
resulting in the identification of five rare, protein-altering germ-
line variants in the WNK2 gene. Additionally, examination of 
international SPS cohorts yielded 10 additional WNK2 genetic 
variants in 12 SPS patients. To assess the impact on WNK2 of 
three of the genetic variants identified in the original cohort, we 
developed a cellular model using CRISPR-Cas9 technology and 
further performed functional assays.

WNK2 is a member of the WNK ‘With-No-Lysine(K)’ kinase 
subfamily, in which four different kinases have been identified 
(WNK1-4). This class of kinases was described to play a role in 
organism development and osmoregulation, but also in cancer, 
such as gliomas, hepatocellular carcinoma and CRC.27 32 33 This 
protein is predominantly expressed in heart, brain and colon 
and, unlike the other three WNKs, is not expressed in kidney.

Noteworthy, the WNK2 gene is located at chromosomal 
region 9q22.31, a region previously linked to familial CRC.34 
WNK2 somatic mutations are found in several cancer types, 
including CRC, ovarian, hepatic and gastric cancer.35 36 WNK2 
has also been reported to be epigenetically silenced in pancreatic 

adenocarcinoma and gliomas.37 38 Interestingly, WNK2 downreg-
ulation has also been detected in serrated polyps.39

WNK2 regulates the phosphorylation and activation of 
ERK1/2, one of the best studied MAPK cascades.40 41 The 
MAPK/ERK pathway controls many cellular processes, including 
cellular proliferation, cell survival, migration, invasion and 
adhesion. This pathway is deregulated in around one-third of 
all human cancers, being remarkable in CRC.42 Most of the 
alterations constitutively activate it and occur in the upstream 
elements of the signalling pathway, such as mutations in BRAF or 
KRAS.28 Due to its central role in many basic cellular processes, 
this pathway is tightly regulated at different levels of the cascade. 
In this sense, WNK2 negatively regulates it by controlling the 
GTP-loading of Rac1.37 Rac1, when activated, triggers a signal-
ling cascade resulting in the activation of PAK1, phosphoryla-
tion of the S298 residue of MEK1 and consequent activation of 
ERK1/2 (figure 2A).40 41

We functionally characterised three rare, missense germline 
WNK2 variants detected in SPS cohorts including c.2105C>T 
(p.Pro702Leu), c.4820C>T (p.Ala1607Val) and c.6157G>A 
(p.Val2053Ile) by focusing on whether they altered the MAPK 
signalling cascade. The WNK2 knockout cellular models 
displayed higher phospho-PAK1/2 and phospho-ERK1/2 levels, 
implying that WNK2 depletion promoted the activation of the 
MAPK pathway and in agreement with previous results in HeLa 
and HT-29 cells,40 41 pancreatic adenocarcinoma tissue38 and in 
hepatocarcinoma cell lines.43 All tested WNK2 variants showed 
the same tendency, with a prominent WNK2 malfunction 

Table 2  Rare, non-synonymous/truncating or missense variants in WNK2 identified in additional international SPS cohorts
Variant Exon gnomAD Allele number Number of homozygotes CADD Patient SPS criteria Onset age CRC index case Cohort

c.106_107insG (p.Pro36Argfs*121) 1 0 0 0 N/A BN-174 1,3 22 N DE

c.1853G>A (p.Ser618Asn) 8 0 0 0 26.4 RB-1 1 57 N NL

c.2758G>A (p.Ala920Thr) 11 0.0001315 20/152 056 0 15 GCP208001 1,3 27 N AU

c.3418G>A (p.Gly1140Ser) 14 0 0 0 23.9 MUC-6 1,3 42 NA DE

c.3623C>T (p.Thr1208Met) 15 0.000006582 1/151 930 0 26.6 MUC-4 * 30 N DE

c.5476C>T (p.Arg1826Trp) 23 0 0 0 25.1 BN-210 3 55 N DE

c.5656C>T (p.Arg1886Trp) 23 0.002233 219/152 194 1 21.2 RB-2 † 51 N NL

BN-145 3 29 NA DE

MUC-1116–01 1 20 N DE

c.5906C>G (p.Pro1969Arg) 24 0 0 0 25.3 GCP038001 3 59 N AU

c.6080C>G (p.Ala2027Gly) 25 0 0 0 25.1 BN-83 3 18 NA DE

c.6512G>A (p.Ser2171Asn) 28 0 0 0 23 BN-104 1,3 21 NA DE

A cut-off of 15 was used to selected possible pathogenic variants. SPS criteria: according to the 2010 WHO SPS clinical criteria.
*This patient did not fulfil SPS criteria but presented a large serrated polyp at 30 and strong CRC family history.
†This patient presented a serrated polyp count between 1 and 10.
AU, Australia; CADD, Combined Annotation Dependent Depletion Phred score; CRC, colorectal cancer; DE, Germany; gnomAD, Genome Aggregation Database variant frequency; N, no; NA, not available; NL, Netherlands; 
SPS, serrated polyposis syndrome; Y, yes.

Figure 4  Schematic representation of WNK2 indicating the location of the identified variants. The WNK2 protein has a main kinase domain, an 
autoinhibitory domain (AD) and short homology regions shared with the other WNK kinases: an acidic motif (AM), the WNK homology region (WNK Hom 
R) and a coiled-coil domain (CCD). Some motifs and protein binding sites are also indicated, such as the compositionally biased (CB) PXXP-rich region, the 
RVxF motif and the RFxV motif. Additional predicted eukaryotic linear motifs (ELMs) can be found in online supplemental table 3.
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detected for the p.Pro702Leu variant, which displayed the most 
significant phosphorylation levels of both PAK1/2 and ERK1/2 
in WNK2KO2 and WNK2KO7 clones.

We next evaluated some of the main downstream cellular 
processes affected by MAPK/ERK deregulation, such as cell cycle 
progression and cell survival. CCND1 is an important down-
stream effector of the MAPK pathway and has its expression 
levels regulated in response to mitogenic signals.44 We observed 
that CCND1 expression levels were increased, although not 
statistically significant for all WNK2 variants, and that the activa-
tion profile was similar to the observed PAK1/2 phosphorylation 
levels. As multiple signalling pathways can converge on CCND1 
transcriptional activation, we hypothesise that WNK2 malfunc-
tion can influence CCND1 expression by ERK dependent and 
independent pathways driven by PAK1.45

Cell survival is also influenced by regulation of the MAPK 
pathway. Cells harbouring the WNK2 variants showed an 
increase in their clonogenic capacity compared with WNK2-WT 
cells. Our results agree with previous results in hepatocel-
lular carcinoma WNK2-silenced cells, in which re-expression 
of WNK2-WT suppressed colony formation, whereas intro-
ducing mutated WNK2 increased colony formation capacity.43 
In addition, upregulation of WNK2 expression has also been 
linked to apoptosis, senescence and autophagy in colon cancer 
and glioma cells, which are processes focused on cell cycle 
control.46 47

Cell adhesion is an important feature of the cell malignancy 
process and is closely regulated by PAK1 activation.48 Matrix 
metalloproteinases, which have been widely described as MAPK 
transcriptional targets, are responsible for extracellular matrix 
degradation and have an important role in cellular invasion 
processes. For this reason, we assessed both MMP2 expression 
and fibronectin-mediated adhesion of our cellular models. 
Cells expressing tested variants showed higher MMP2 levels 
than WNK2-WT cells. Moreover, the adhesion capacity of 
p.Pro702Leu WNK2 variant stood out among others, suggesting 
a possible impact of WNK2 impairment in extracellular matrix 
remodelling. Previous work in glioma cell lines had already 
described the negative correlation between WNK2 and MMP2 
expression and activity, highlighting the WNK2 importance in 
cell invasion and migration.30 49

WNK protein kinases have a conserved kinase domain, an 
autoinhibitory domain, one or two coiled-coil domains, and 
numerous protein interaction motifs, including PXXP proline-
rich motifs and RFX/V/I motifs.32 Further protein motif predic-
tion in WNK2 was performed with the eukaryotic linear motif 
resource to search for motifs affected by the identified genetic 
variants.50 According to this resource, a summary of the 
predicted effect of the 15 WNK2 genetic variants is available 
in online supplemental table 3, and their location in the protein 
structure is depicted in figure  4. Most variants are located to 
motifs predicted to have a functional meaning, including protein 
binding and phosphorylation recognition sites.51 Overall, the 
multiple protein–protein interaction motifs in WNK2 seem 
to reveal that, apart from its kinase activity, it could be also 
considered a scaffolding protein that facilitates protein–protein 
interactions in the MAPK cascade. In this sense, mutations in 
the kinase domain and those located along the WNK2 sequence 
could impair its role as a MAPK regulator.

Moreover, it should be highlighted that the WNK2 gene seems 
to be intolerant to loss-of-function genetic variation as evident 
by gene constraint scores (pLI=1, LOEUF ratio=0.12 (0.07–
0.21).52 Together with our gene-burden test results, it would be 
supporting its potential role in germline predisposition to SPS.

Taking into account the number of variants found in our 
cohorts, the frequency of germline WNK2 alterations in SPS 
could be considered ~3%. Undoubtedly, the present study is 
preliminary, and analysis of additional larger familial SPS cohorts 
and further functional studies are needed to provide more infor-
mation about the prevalence and implication of germline WNK2 
mutations in SPS. As a limitation, our study used WES in the 
discovery cohort and alterations outside the coding sequence, in 
non-canonical transcripts or epimutations cannot be ruled out. 
Additionally, it is important to perform continued segregation 
analyses of the reported WNK2 variants in the affected fami-
lies to confirm (or rule out) their pathogenicity. Finally, further 
studies in somatic tissue of serrated lesions or CRC in WNK2 
carriers could shed light regarding mutational signatures associ-
ated with this genetic defect, as well as organoid modelling could 
also help to confirm the involvement of this gene in the sequence 
of events moving towards a serrated phenotype.

In summary, our findings indicate that germline WNK2 vari-
ants in SPS patients may be implicated in inherited predispo-
sition to SPS and postulate that the disruption of the role of 
WNK2 as a MAPK regulator could be the plausible underlying 
mechanism. However, a thorough assessment of the evidence for 
and against pathogenicity is still needed, as well as replication 
in additional SPS cohorts, in order to clarify a causative role for 
germline WNK2 variants in SPS.
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