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1  |  INTRODUC TION

Diabetic cognitive dysfunction (DCD) refers to the impairment of 
cognitive functions such as language and visual memory, informa-
tion processing speed, and executive functions caused by diabetes 
mellitus. The 2021 American Diabetes Association (ADA) guidelines 
have explicitly identified diabetic cognitive impairment as a common 

complication of type 2 diabetes mellitus (T2DM) and indicate that 
the severity of cognitive impairment can deteriorate significantly 
over time.1 As population aging trends and the prevalence of diabe-
tes continue to increase, the number of potential patients with DCD 
will continue to increase. The Rotterdam study found that patients 
with T2DM had about twice the risk of developing dementia as nor-
mal individuals, with a relative risk of 1.9, and the 95% confidence 
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Abstract
Background: Diabetic cognitive dysfunction (DCD) is one of the most insidious com-
plications of type 2 diabetes mellitus, which can seriously affect the ability to self-
monitoring of blood glucose and the quality of life in the elderly. Previous pathological 
studies of cognitive dysfunction have focused on neuronal dysfunction, characterized 
by extracellular beta-amyloid deposition and intracellular tau hyperphosphorylation. 
In recent years, astrocytes have been recognized as a potential therapeutic target for 
cognitive dysfunction and important participants in the central control of metabolism. 
The disorder of gut microbiota and their metabolites have been linked to a series of 
metabolic diseases such as diabetes mellitus. The imbalance of intestinal flora has 
the effect of promoting the occurrence and deterioration of several diabetes-related 
complications. Gut microbes and their metabolites can drive astrocyte activation.
Aims: We reviewed the pathological progress of DCD related to the “gut microbiota-
astrocyte” axis in terms of peripheral and central inflammation, intestinal and blood–
brain barrier (BBB) dysfunction, systemic and brain energy metabolism disorders to 
deepen the pathological research progress of DCD and explore the potential thera-
peutic targets.
Conclusion: “Gut microbiota-astrocyte” axis, unique bidirectional crosstalk in the 
brain-gut axis, mediates the intermediate pathological process of neurocognitive dys-
function secondary to metabolic disorders in diabetes mellitus.
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interval was 1.3–2.8.2 Many epidemiological studies have shown a 
close relationship between diabetes mellitus and cognitive impair-
ment.3,4 A systematic review and meta-analysis of 144 prospective 
studies demonstrated that diabetes conferred a 1.25- to 1.91-fold 
excess risk for cognitive disorders. High 2-h postload glucose, glyco-
sylated hemoglobin (HbA1c), and fasting plasma insulin levels were 
associated with an increased risk of dementia.5 In addition, studies 
suggest that mild cognitive impairment in diabetes exists in all age 
groups.6,7 Cognitive development in adolescents8 and neurodegen-
erativity9,10 in older adults show mild changes compared with con-
trols, suggesting that the burden of cognitive dysfunction is also 
present in young patients.

Type 2 diabetes mellitus and Alzheimer's disease (AD) have 
significant overlap in risk factors and pathophysiological mech-
anisms. However, neuropathology studies from multiple cohort 
studies have suggested no association between DCD and the 
characteristic pathological β-amyloid (Aβ) deposits or neurofibril-
lary tangle of AD.11,12 Systemic alterations in T2DM are associ-
ated with pathophysiological mechanisms that lead to impairment 
of cognitive function.13,14 Peripheral insulin resistance (IR) is 
thought to directly induce brain IR, and insulin signaling exerts 
a variety of effects in the brain regulating synaptic plasticity and 
peripheral energy metabolism.15 IR in specific brain regions was 
associated with decreased function of the posterior cingulate 
cortex and right middle temporal gyrus.16 Chronic hyperglycemia 
can induce chronic low-grade inflammation by the accumulation 
of advanced glycation end products (AGEs). Nerve cell oxida-
tive stress and inflammation are also important causes of neu-
rodegeneration and lead to neuronal mitochondrial dysfunction. 
Neurons rely on the intact mitochondrial function to synthesize 
and secrete neurotransmitters, enhance synaptic plasticity, and 
maintain membrane potential. It should be noted that disorders of 
glucose and lipid metabolism, IR, mitochondrial dysfunction, and 
chronic inflammatory states are integral pathological links that 
together lead to endothelial damage in the cerebral microcircula-
tion17,18 and neurodegeneration.19

Prior neuroimaging studies have shown that specific functional 
and structural brain changes in patients with DCD are associated 
with cognitive impairment.20 T2DM accelerates the reduction of 
total brain volume in elderly patients.21 In multiple cohort studies 
and meta-analyzes, differences in brain volumes related to diabetes 
emerge in young adulthood and increase with T2DM duration.22,23 
In the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort 
study, T2DM was associated with decreased global brain volume and 
decreased uptake of 18F-fludeoxyglucose (18F-FDG) in the frontal 
lobe, sensorimotor cortex, and striatum.24 In a cohort study of 713 
patients with magnetic resonance imaging (MRI) and cognitive test-
ing, T2DM-related gray matter loss was thought to be primarily dis-
tributed in the medial temporal lobe, anterior cingulate gyrus, and 
medial prefrontal lobe. The white matter loss is mainly in the frontal 
and temporal lobes and is associated with poor visuospatial work-
ing memory (VSWM), planning capacity, and processing speed.25 
Reduced brain volume in T2DM is associated with complex factors, 

including loss of neuroglia and axons, thinning and atrophy of white 
matter, arteriosclerosis, and venous collagen degeneration.20

Diffusion tensor imaging (DTI) studies have found the presence 
of microstructural lesions linked to white matter tissue and neural 
functional networks in T2DM.26 Decreased information processing 
speed in T2DM patients is associated with decreased measures of 
overall brain connection.27,28 In addition, studies have shown that 
resting-state functional connectivity is reduced in the default mode 
network and is strongly associated with HOMA-IR.29 The studies of 
neural function networks promote the exploration of the cooper-
ative changes among multiple functional brain areas of T2DM and 
further explain the effect of DCD on higher mental function.

In recent years, expert consensus and professional guidelines 
have called for the strengthening of early screening for DCD30,31 and 
the promotion of common standardized management of cognitive 
impairment and glycemic control in patients with the disease,32 to 
avoid mild cognitive impairment to the deterioration of dementia. 
However, there is currently no evidence to support that intensive 
glucose control and specific Anti-diabetic medication can prevent 
the progression of cognitive impairment.33 Emergent research direc-
tions in the gut-brain axis as a pathological and therapeutic target of 
cognitive dysfunctions.34 Gut microbiota and astrocyte act as sensi-
tive metabolic sensors in gut-brain interactions. The gut microbiota 
is also an important upstream factor in the activation of astrocytes, 
which in turn promotes neuroinflammation and neurodegenera-
tive.35 Large-scale proteomic studies have shown that astrocyte ac-
tivation and high expression of glycolytic proteins in the brain tissue 
of patients with dementia may serve as an important pathological 
marker of early decline in brain energy metabolism and neuroinflam-
mation.36 In this review, we focus on gut microbiota and astrocyte 
along the gut-brain axis and attempts to elucidate the specific course 
of complications associated with impaired neurocognitive function 
secondary to peripheral metabolic disorders in T2DM.

2  |  A STROCY TE PL A STICIT Y MAINTAINS 
METABOLISM AND HOMEOSTA SIS IN THE 
BR AIN

Astrocytes are the most abundant neuroglia in the brain and play 
important roles in maintaining brain energy metabolism, modulating 
cerebral blood flow, and regulating neuronal circuits. The role of as-
trocytes in neurocognitive function has also received considerable at-
tention in recent years.37 The astrocytes are connected through a gap 
junction-coupled network and its endfeet ensheath blood vessels as 
well as neuronal synapses. About 60% of the axon-dendritic synapses 
in the hippocampus are enveloped by astrocytic processes, forming a 
tripartite synapse. The astrocyte endfeet connects microvessels to the 
neurons composing the neurovascular unit and can release vasoactive 
molecules, thus regulating the cerebral blood flow and BBB permeabil-
ity. Horng et al.38 demonstrated that astrocytes in response to inflam-
matory signals, thus inducing tight junction (TJ) formation, limiting the 
number of activated T cells infiltrating the CNS.
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The astrocyte, which serves as the main CNS glycogen stor-
age cell, is coupled to the oxidative phosphorylation system 
(OXPHOS) metabolism of neurons through aerobic glycolysis.39 
The astrocyte mediates the expansion of regional cerebral arteries 
in response to synaptic energy demands, matching blood flow to 
neuronal activity.40,41 Astrocytes transfer glucose from the peri-
vascular to the synapse to support the energy needs of neurons 
via glucose transporter 1 (GLUT1) and the endoplasmic reticulum 
pathway mediated by G6Pase-β, G6PT, and G6Pase-β.42 Under 
conditions of high energy demands such as glucose deprivation 
or intense nerve activity, and with limited energy availability such 
as hypoglycemia, astrocyte aerobic glycolysis can rapidly deliver 
pyruvate and lactic acid to maintain brain energy metabolism ho-
meostasis.43 The high glycolytic activity of astrocytes results in a 
significant increase in the flux of the pentose-phosphate pathway 
(PPP) to produce NADPH and glutathione, thus resisting neuronal 
oxidative stress.44

Astrocyte to neuron's nutritional and energetic support is essen-
tial for long-term memory formation.45 The astrocyte regulates brain 
neuroplasticity and neurogenesis by releasing glial transmitters 
such as brain-derived neurotrophic factor (BDNF) and astrocyte-
derived neurotrophic factor (ADNF).45 Astrocytes regulate syn-
aptic plasticity via metabolic pathways with neurons, such as the 
glutamine-glutamate cycle46,47 and the astrocyte-neuron lactate 
shuttle (ANLS),48,49 thereby affecting memory formation. To main-
tain neural circuit homeostasis and thus support cognitive function, 
astrocytes eliminate unnecessary excitatory synaptic connections.50 
The astrocyte also works on neural network projections. Kol et al.51 
demonstrated that astrocytes could modulate hippocampal-cortical 
communication in the anterior cingulate cortex during learning, 
thereby promoting the formation of remote memory.

Reactive astrocytes contribute to cognitive decline and met-
abolic homeostasis disorders.27 Astrocyte proliferation and high 
expression of the activation marker protein glial fibrillary acidic pro-
tein (GFAP) are hallmarks of neuroinflammation that arise with the 
neurodegenerative state. Astrocyte activation has been observed 
in various animal models of diabetes (Table 1). Zhang et al.52 have 
demonstrated that a high-fat diet (HFD) induces upregulation of as-
trocyte IκK/NF-κB, which in turn impairs astrocytic processes' plas-
ticity. The astrocyte led to changes in extracellular GABA and BDNF 
in the hypothalamus, thus contributing to weight gain and impaired 
glucose tolerance. García-Cáceres et al.53 showed that hypothalamic 
astrocytes regulate glucose uptake rate at the BBB by modulating 
insulin signaling/GLUT1, which co-controls brain glucose sensing 
and systemic glucose metabolism. The potential immunometabolic 
mechanism makes the astrocyte activation accompanied by its met-
abolic plasticity damage, which leads to the attenuation of brain en-
ergy metabolism and its adaptive changes. Rahma et al.54 showed 
that the hypothalamic neuroinflammatory response in T2DM is asso-
ciated with the metabolic shift from glycolysis to OXPHOS. Specific 
inhibition of astrocyte pyruvate dehydrogenase kinase (PDK)-2 re-
duces hypothalamic inflammation and lactate levels, reversing the 
diabetes-induced increase in food intake.

3  |  INTESTINAL DYSBAC TERIOSIS IS A 
COMMON PATHOLOGIC AL FE ATURE OF 
T2DM AND COGNITIVE DYSFUNC TION

The interplay between gut microbiota and host metabolism pre-
disposes to drive T2DM pathogenesis through gut permeability 
change, chronic metabolic inflammation, IR, and metabolic energy 
disorder. The commonly reported results are that the genera of 
Bifidobacterium, Bacteroides, Faecalibacterium, Akkermansia, and 
Roseburia have a potential role in preventing T2DM, whereas 
Ruminococcus, Fusobacteria, and Blautia genera are associated with 
T2DM pathogenesis.68 A microbiome research of 123 nonobese 
and 169 obese Danish subjects showed that individuals with low 
gut microbiota abundance were more likely to be obese, IR and dys-
lipidemia, and the inflammatory phenotype is more pronounced.69 A 
cross-sectional analysis of prospective cohorts from the Rotterdam 
study and Life Lines-DEEP suggests that higher microbial α-diversity 
and more butyrate (NaB)-producing bacteria are associated with 
lower T2DM incidence and lower levels of IR.70

Microbial balance is essential for maintaining metabolic homeo-
stasis and protecting cognitive function.71 Restoring intestinal flora 
balance can alleviate cognitive impairment and neuropsychiatric 
symptoms. A cross-sectional study of microbiome data from 597 
young Cardia patients examined the association between β-diversity 
of the gut microbiota and multiple cognitive test results.72 A recent 
clinical study found a decrease in the abundance of Bifidobacterium 
and unnamed bacteria RF39 and an increase in the abundance of 
Peptidococcus and Leucococcus in patients with DCD. The gut mi-
crobiota regulates calcium signaling and renin–angiotensin system 
in relation to DCD.73 Given the wide variation in gut bacterial dys-
regulation in DCD, further studies are required to elucidate the un-
derlying mechanisms, and restoration of gut microbiota would be a 
promising therapeutic avenue for DCD.

4  |  GUT MICROBIOTA AND ITS 
METABOLIC PRODUC TS TARGET 
A STROCY TES

Intestinal microflora regulates the development and function of as-
trocytes through neural, endocrine, and immune pathways. The gut 
microbiota is regulated by genetic and environmental factors, re-
ferred to as the second brain, and is also an important shaper of the 
intestinal microenvironment. Microbial metabolites are important 
information mediators of the dialogue between gut and brain, most 
of which can cross the BBB and act directly on the neural microen-
vironment, and also drive the activation of peripheral immune cells 
and resident neuroglia of the brain.74 By expressing pattern recogni-
tion receptor receptors (PRRs), such as toll-like receptors (TLRs) and 
nod-like receptors (NLRs), astrocyte constantly detects microbial-
associated molecular patterns (MAMPs) in the neural microenviron-
ment in response to gut bacteria-derived stimuli and initiate innate 
immune responses.75,76 Astrocytes express major histocompatibility 
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complex class II antigens and costimulatory molecules that activate 
T cell, thus exacerbating neuroinflammation.77 Short-chain fatty 
acids (SCFAs), trimethylamine N-oxide (TMAO), and aryl hydrocar-
bon receptors (AhR) ligands are significantly related metabolites of 
T2DM, and also have the potential to activate astrocytes (Figure 1).

4.1  |  Short-chain fatty acids

Short-chain fatty acids generated by colonic digestion and fer-
mentation of dietary fiber have several roles within in gut 
microbiota-astrocyte axis, including maintaining energy and glu-
cose homeostasis, relieving inflammation of CNS, and regulating 
the secretion of neurotransmitters to ameliorate neurodegenera-
tion. SCFAs regulate central satiety and insulin secretion through 
AMPK signaling, GPCR-dependent pathway, and histone deacety-
lase inhibition, and influence immune cells and neuroglia to exert 
beneficial metabolic modulation.78 The regulation of short-chain 
fatty acid on astrocytes is gender-related.79 A decrease in acetate 
(AC)-producing bacteria was found in streptozocin (STZ)-induced 
mice, resulting in a decrease in hippocampal synaptophysin and 
learning and memory.80

A variety of short-chain fatty acids cause different changes in 
astrocyte metabolism and immune function. According to Cuervo-
Zanatta et al.,81 the ratio of propionate (PA)and NaB was altered in 
Tg mice but recovered to control values after plant-based diet rich 
in   soluble fiber feed intake, inhibiting astrocyte activation, and 
ameliorated neuroinflammation. PA promotes higher glycolysis and 
mitochondrial respiration in astrocytes further, promoting neuroin-
flammation, whereas NaB induces more quiescent metabolism with 
anti-inflammatory actions. Sodium NaB promotes astrocyte differ-
entiation into the neuroprotective A2 subtype, improves astrocyte 
mitochondrial function, and promotes the ANLS.82 PA treatment 
recuperated the astrocyte-microglia bidirectional interplay impair-
ment, thereby increasing the level of GFAP and restoring ZO-1 
protein increased to the level of the control group.83 AC serves as 
a specific energy substrate and metabolic marker for astrocyte.84 
Studies using acetate 1-c-11 electron emission tomography have 
shown that activation of astrocytes is closely tied with demyelin-
ation and loss of neuron axons.85

4.2  |  Trimethylamine N-oxide

Trimethylamine N-oxide is an influential mediator of gut-brain meta-
bolic interaction. Multiple evidence supports TMAO as a common 
risk factor for cognitive function86,87 and metabolic syndrome.88 
The nutrients such as l-choline, carnitine, and betaine in the high-
choline diet are decomposed into trimethylamine (TMA) by intes-
tinal flora Trimethylamine lyase, flavin-containing monooxygenase 
3 (FMO3) is oxidized to TMAO by the liver after entering the por-
tal vein. Meanwhile, a high-fat diet indirectly increases circulating 
TMAO concentrations by causing intestinal mucosal inflammation, Sp
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disrupting the hypoxic environment of the colon, increasing the 
abundance of gut bacteria, and promoting the catabolism of choline 
by the microbiota.89

The deterioration of insulin sensitivity and glucose homeosta-
sis in T2DM was correlated with the increase in plasma TMAO con-
centration. Meta-analysis results showed that for every 5  μmol/L 
increase in TMAO in plasma, the prevalence of diabetes increased 
by 54%.90 Hepatic FMO3 expression is increased in animal models 
of obesity and IR in human samples. IR can increase plasma TMAO 
concentration by promoting the FMO3 pathway.91 TMAO binds the 
liver PERK, which induces the transcription of FOXO1, leading to 
hyperglycaemia.92

Pathological concentrations of TMAO are upstream factors 
that activate the proinflammatory phenotype of astrocytes, impair 
their aerobic glycolytic metabolic plasticity, cause abnormalities 
in brain energy metabolism, and result in cognitive dysfunction. 

The 27-month-old mice had higher concentrations of TMAO in 
their plasma and brains, performed worse on new object recogni-
tion tests, and were associated with higher proinflammatory cyto-
kine and astrocyte activation markers. Primary human astrocytes 
co-cultured with TMAO exhibited morphological proliferation and 
hypertrophy, as well as increased reactive activation of LCN2 and 
CD44 protein markers.93 TMAO promotes microglia and astrocyte 
activation in mice with intracerebral hemorrhage and promotes 
a cellular inflammatory response.94 TMAO exacerbates ischemic 
nerve damage by activating astrocytes and forming glial scars 
via the Smurf2/ALK5 axis.95 In addition, chronic low-dose long-
term exposure to TMAO protected the BBB from inflammatory 
challenges and preserves cognitive function. LPS exposure was 
associated with a significant decrease in endothelial GFAP+ astro-
cytes and IBA1+ microglia, which was effectively reversed with 
TMAO treatment.96

F I G U R E  1  Gut microbiota metabolites drive astrocyte phenotypes. Trimethylamine N-oxide could increase the number of reactive 
astrocytes and change the marker of reactive activated LCN2 and CD44 protein through the Smuef2/ALK5 axis. Improvement of short-chain 
fatty acids ratio inhibited astrocytic activation and proinflammatory phenotype. The expression of PGC1-α and brain-derived neurotrophic 
factor in female mice was increased by HDACi, while the function of astrocyte mitochondria and ANLS were improved by butyrate (NaB). A 
significant correlation between acetate and aryl hydrocarbon receptors (AhR) and GFAP expression was observed in male mice, and the BBB 
structure was improved. Propionate promotes higher glycolysis and mitochondrial respiration in astrocytes and increases IL-22 expression in 
male mice. AhR promotes the production of TGF-α and VEGF-B by microglia to indirectly regulate the transcriptional program of astrocytes. 
In combination with tryptophan-derived metabolites, IFN-I signaling activates in astrocytes and inhibits neuroinflammation.
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4.3  |  Aryl hydrocarbon receptors ligands

The microbial metabolism of dietary tryptophan can be decom-
posed into various biologically active molecules that bind directly 
to AhR as hydrocarbon receptor ligands. Through the gut micro-
biota, tryptophan metabolites may also affect CNS inflammation 
and contribute to neuropsychiatric disorders. As diabetes severity 
increases in the PREDIMED cohort, plasma tryptophan levels are 
likely to rise first and then deplete.97 The AhR pathway promotes 
microglia to produce TGF-α and VEGF-B to indirectly regulate 
the astrocyte transcriptional program. Microglia TGF-α exerts its 
neuroprotective function through the ErbB1 receptor, promoting 
beneficial astrocyte activity. VEGF-B triggers vascular endothe-
lial growth factor receptor 1 (Flt-1) signaling in the astrocyte.90 
Conversely, Type I interferons (IFN-I) signaling in combination with 
gut microbiota metabolites derived from dietary tryptophan ac-
tivates AhR in astrocytes. Interferon alpha receptor 1 (IFNAR1-1) 
plays an important role in anti-neuroinflammation and preventing 
neurodegeneration.98

5  |  GUT MICROBIOTA-A STROCY TE 
A XIS CONNEC TS T2DM WITH COGNITIVE 
DYSFUNC TION

Diabetes-related cognitive impairment is secondary to metabolic 
disturbances via the gut-brain axis. Gut microbiota disturbance is 
the key link of metabolic inflammation, immune barrier damage, and 
energy metabolism. The astrocyte is an important regulator of the 
immune and metabolic balance of the brain. Gut microbiota, which 
drives astrocyte activation via neuroimmune pathways, is a target 
for the treatment and diagnosis of cognitive impairment in diabetes 
(Figure 2).

5.1  |  Gut microbiota and astrocyte co-regulate 
central and peripheral inflammation

Chronic low-grade inflammation is a hallmark of type 2 diabetes, 
leading to impaired β cell islet structure and function, inducing 
hepatic IR, and impairing glucose tolerance by blocking glucose-
stimulated insulin secretion (GSIS). Through dysbiosis of the gut 
microbiota, pathogen-associated molecular patterns, damage-
associated and microbial-associated patterns enter the circulatory 
system, inducing systemic inflammation and immune responses.68,99 
A cell wall component of gram-negative bacteria, lipopolysaccha-
ride (LPS), has been reported to be a source of metabolic inflamma-
tion. By activating macrophages through the inflammatory cytokine 
TLR4-MyD88 pathway, LPS induces macrophages, dendritic cells, 
and other inflammation-causing cells to form a worsened inflamma-
tory microenvironment in metabolic tissues.99,100

As a relatively immune-privileged site, the neuroinflammation 
of the brain mostly results from the stimulation of circulating and 
gut-derived inflammatory factors. The central recruitment and mi-
gration of metabolic inflammatory factors across the BBB promote 
astrocyte activation and transition to a responsive proinflammatory 
phenotype. It enhances inflammatory signaling and exacerbates 
neurodegeneration.101

Systemic chronic low-grade inflammation is a common patholog-
ical mechanism of diabetes and dementia and is an important factor 
in accelerating central nerve damage in diabetes.102 Chronic inflam-
mation within the peripheral and central nervous systems underlies 
cognitive dysfunction associated with metabolic syndrome.103 A 
prospective cohort study showed that plasma levels of C-reactive 
protein (CRP), interleukin-1 (IL-1), interleukin-6 (IL-6), and tumor 
necrosis factor (TNF-α) are associated with cognitive difficulties in 
older adults with T2DM.104 In a meta-analysis of 40 clinical stud-
ies, elevated IL-6, CRP, SVCAM-1, and AGEs levels were suggested 

F I G U R E  2  The “gut microbiota-
astrocyte” axis is coupled to the 
pathogenesis of cognitive dysfunction 
secondary to type 2 diabetes mellitus. 
Gut microbes and astrocytes are critical 
factors in the gut-brain axis, leading to 
diabetic cognitive dysfunction through 
peripheral and central inflammation, 
gut and blood–brain barriers, and 
systemic and brain energy metabolism. 
Gut microbiota and its metabolites as 
upstream drivers of astrocytic activation. 
The reactive astrocytes' morphology and 
function changes result in blood–brain 
barrier injury, neuroinflammation, and 
brain energy metabolic disorder.
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in cognitively impaired T2DM patients.105 Besides these peripheral 
markers of inflammation, CNS inflammation is also present in obese 
and T2DM patients, which manifests as neural immune cell infiltra-
tion, microglia, and astrocyte activation.

Astrocyte activation is a significant feature of neuroinflamma-
tion. Activated astrocyte gene expression switches to a proinflam-
matory and cytotoxic state, producing a variety of proinflammatory 
molecules, including cytokines, chemokines, complement factors, 
and ROS.97 The synthesis of LacCer in astrocytes promotes CNS-
infiltrating monocytes and microglia.106 The metabesity factor 
HMG20A is increased under mild inflammation induced by obesity 
and IR, inducing reactive astrocyte hyperplasia, protecting neurons 
from metabolic stress, and re-establishing glucose homeostasis.107 
Regulating COX-mediated oxylipin synthesis in astrocytes as a novel 
potential target in the treatment of hyperglycemia-associated brain 
injury.108

The Proinflammatory cytokine produced by dysbacteriosis is 
an important immune signal that directly activates astrocytes. The 
db/db mice have significantly increased escape latency at 6, 18, and 
26 weeks of age, and their senescence-associated cognitive decline 
is associated with the gut microbiome.109,110 Phulwani et al.111 have 
shown that LPS induces astrocyte TLR2 via TNF-α and NF-κB path-
ways. Fecal microbiota transplantation (FMT)112 and vancomycin113 
can inhibit the TLR4/TNF-α and alleviate astrocyte-related neuroin-
flammation. FMT treatment was involved in reducing depressive be-
havior by inhibiting astrocyte dysfunction in CIRCHIPK2-expressing 
good mice.114 Recent studies have shown that gut microbes regu-
late the expression of Interferon-γ in meningeal NK cells, thereby 
promoting the expression of astrocyte TRAIL, limiting CNS inflam-
mation through induction of T-cell apoptosis by Lamp1+ TRAIL+ 
astrocyte.115

5.2  |  Gut microbiota and astrocyte are critical hubs 
to the intestinal and blood–brain barrier

The TJs of the BBB are similar to those of the intestinal immune 
barrier, including Claudin-5, occulin, and ZO-1. An energetically fa-
vorable change in the gut barrier and BBB is an important pathway 
for interaction between the gut-brain axis. The results showed 
that BBB dysfunction preceded early biomarkers of cognitive de-
cline other than the accumulation of amyloid and tau proteins.116 
Increased BBB permeability is one of the key pathologies of cog-
nitive impairment in diabetes.117,118 The accumulation of lipid 
peroxidation by-products, advanced glycation end products, and 
mitochondrial superoxide production in diabetes mellitus, causing 
neovascularization abnormalities and increased capillary density 
in the CNS.

Blood–brain barrier damage varies in different types of diabetic 
animals. Increased BBB permeability in more than 84% of brain 
regions was found in BBZDR/WOR rats, whereas no significant 
changes were observed in the cerebellum and midbrain.119 In STZ-
induced diabetic rats, BBB permeability to small molecules gradually 

increased over a 28 to 90-day period, and these changes were mainly 
observed in the midbrain, basal ganglia, cortex, and hippocampal re-
gions.120 In the HFD diet-induced model of obese T2DM rats, BBB 
damage predates cognitive impairment and occurs predominantly in 
the hypothalamus and hippocampus, and continues to deteriorate 
with the course of the disease.121 High-fat and high-fructose (HFHF) 
diet-induced prediabetes mice experienced significant cognitive 
deterioration, accompanied by the permeability of the BBB and en-
hanced neuroinflammation in the cortex and hippocampus.56

Astrocyte is required for the maintenance of BBB integrity in 
the adult brain, and BBB regulators secreted by other cell types are 
insufficient to compensate for the loss of astrocyte.122 In addition 
to its role in vascularization, astrocytes exert synergic action with 
endothelial cells via paracrine and extracellular vesicle pathways 
to regulate TJ protein expression to control BBB integrity.123 For 
instance, astrocyte-derived Wnt maintains the activity of Wnt/β-
catenin, thereby controlling Cav-1 expression, vesicle abundance, 
and terminal integrity of the foot in NVU cells.124 During sustained 
inflammation, microglia phagocytose astrocytic endfeet and impair 
BBB function.125 Impaired BBB is accompanied by elevated GFAP 
and serves as a biomarker of cognitive impairment in diabetes.126 
The co-culture system of astrocyte and cerebral microvascular 
(CMEC) suggests that high glucose concentrations alter the expres-
sion of astrocyte Cx43 and increase VEGF secretion, resulting in im-
paired CMEC barrier properties.127

Gut microbiota-associated metabolites promote peripheral 
immune cells to alter the structural integrity of the BBB.128 Gut 
microbiota-BBB communication begins during pregnancy and 
spreads throughout life. Germ-free mice showed increased BBB per-
meability and a consistent reduction in TJ protein expressions such 
as occulin and Claudin-5 after birth and adulthood.129 Dysregulation 
of gut metabolites and disruption of the intestinal barrier caused by 
microbial perturbations promote the entry of deleterious metabo-
lites into the circulatory system. Yu et al.57 showed that intestinal 
dysbiosis caused by a high-fructose diet (HFrD) reduces SCFAs and 
damages the intestinal epithelial barrier, thus promoting astrocyte 
activation and BBB damage. In mouse models of obesity and diabe-
tes, hyperglycemia entrains the permeability of the intestinal barrier. 
High glucose levels lead to retrograde glucose transport to intesti-
nal epithelial cells via GLUT2, which subsequently alters intracellu-
lar glucose metabolism and transcriptional reprogramming, altering 
intestinal mucosal compactness and adhesion junction integrity.130 
Microbiome and altered intestinal permeability increase circulating 
high mobility group protein 1 (HMGB1) and LPS, leading to systemic 
inflammation and disruption of the BBB.131 HMGB1 induces the pro-
duction of proinflammatory cytokines and promotes neuroinflam-
mation by activating TLR4 and RAGE in the astrocyte. Astrocyte's 
endfeet swelling, detachment from the basement membrane, and 
opening of the TJ between endothelial cells were strongly inhibited 
by the anti-HMGB1 monoclonal antibody.132 The induction of astro-
cyte proliferation and activation by LPS promotes high expression of 
proinflammatory and cytotoxic genes, which may be related to BBB 
destruction.133
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5.3  |  The gut microbiota-astrocyte axis couples 
systemic and brain energy metabolism disorders

The brain uses glucose as its primary energy substrate, consuming 
20 percent of the body's glucose and oxygen, to support the energy-
dependent synaptic activity of neurons. Brain energy metabolism 
decline is a hallmark event of cognitive decline, restoring energy me-
tabolism as a novel therapeutic Neurodegeneration.134

Blood glucose fluctuation, frequent hypoglycemia events, IR, 
and other metabolic disorders are all risk factors for regional energy 
metabolism decline in the brain. Diabetes has been found in exist-
ing studies to reduce cerebral glucose utilization and cause nerve 
damage, possibly by altering BBB glucose transport uptake, neu-
rotransmitter metabolism, and the ability to regulate cerebral blood 
flow.135,136 According to a study including 323 adults with predia-
betes, hyperglycemia was negatively associated with 18F-FDG 
uptake in the prewedge lobe and occipital cortex.104 The brain is 
inefficient at energy acquisition after glucose loading in obese men, 
which could be due to abnormalities in glucose transport across the 
BBB or downregulation of energy synthesis during mitochondrial 
oxidation.137

The adaptive changes in brain energy metabolism were also ob-
served in different animal models of diabetes. A recent multi-omics 
analysis in 4-month-old db/db mice of cognitive impairment has 
identified disturbances in cerebral and circulatory mitochondrial 
metabolism.138 Huang et al.139 found that 26-week-old db/db mice 
had significantly reduced mitochondrial function and ATP content 
in the hippocampus. Andersen et al.140 found glucose hypometab-
olism in the cortex and hippocampal slices of db/db mice. The hip-
pocampus showed enhanced ketone metabolism, and mitochondria 
in the cerebral cortex showed enhanced OXPHOS. These metabolic 
changes may be adaptive changes associated with low brain energy 
metabolism.

Astrocytes generate abundant mitochondrial reactive oxygen 
species, including lactic acid and serine, during glycolysis, which is 
coupled to neuronal OXPHOS to maintain brain energy require-
ments and relieve oxidative stress, and regulate the activity of 
neurotransmitter receptor.39 Astrocytes' glucose uptake and gly-
colytic plasticity play an essential role in maintaining brain energy 
metabolic balance. Astrocyte metabolic disorders have been ob-
served in various animal models of diabetes. Girault et al.141 ex-
amined GK rats using 13C magnetic resonance spectroscopy and 
found that T2D impairs glutamate-L-Glutamine circuits in the 
brain between neurons and astrocytes, increasing the rate of TCA 
astrocytes.

Biological communication between the gut and brain is mediated 
by the gut microbiome, regulating the system and cerebral energy 
balance. C57BL/6J mice treated with HFD antibiotics altered the 
gut microbiota and multiple metabolites and improved insulin signal-
ing and energy metabolism in the brain.142 Intermittent fasting (IF) 
can reconstitute the gut microbiota and metabolites of db/db mice, 
which in turn improves mitochondrial metabolism in the hippocam-
pus and enhances genes associated with the OXPHOS pathway.143 

Akkermansia muciniphila CIP107961 and environmental enrichment 
has been shown to reverse the metabolic abnormalities in the brain 
induced by the high-fat, high-cholesterol diet.144

Gut microbiota drives astrocyte activation along with meta-
bolic switching, which in turn improves brain energy metabolism. 
Gut microbiota promotes the expression of PFKFB3 and ATP1A2, 
key proteins of hippocampal ANLS.145 STZ-induced diabetic SD 
rats have cognitive impairment and intestinal flora disturbance. 
Disturbances in Glu/GABA-Gln cycling and astrocyte energy 
metabolism in the rat hippocampus are thought to be associ-
ated with changes in Clostridium_sensu_stricto_1, Romboutsia and 
Turicibacter.146

6  |  THER APEUTIC STR ATEGIES OF GUT 
MICROBIOTA AND A STROCY TE

Clinical guidelines on DCD emphasize the management of glu-
cose and other metabolic homeostasis, reducing glucose fluctua-
tions and avoiding hypoglycemic events.147 However, the benefits 
and mechanisms of anti-diabetic drugs for DCD remain unclear. 
Cholinesterase inhibitors improve some dementia symptoms but 
fail to reverse the ongoing deterioration of cognitive impairment. 
The overlapping risk factors and the close pathophysiological 
relationship between diabetes and cognitive impairment have 
prompted interest in the role of anti-diabetic drugs for cognition. 
There have been many excellent reviews suggesting the effects of 
sodium-glucose co-transporter 2 (SGLT2),148 dipeptidyl peptidase-
4 (DPP-4) inhibitors,149 metformin,150 and glucagon-like peptide-1 
receptor (GLP-1R) agonist151 on cognitive function. But conflicting 
and divergent findings remain between the current studies, and 
the benefits and mechanisms of anti-diabetic drugs on DCD re-
main unclear.152

Preclinical studies have observed that many anti-diabetic drugs 
drive astrocyte phenotypic transformation. IR deficiency in astro-
cytes leads to impaired glucose tolerance and increases anxious-
depressive behavior. Intranasal insulin administration improves 
cognitive function.153 Astrocytes express IR and GLP-1R, which acti-
vation affects brain glucose uptake and neurocognitive function. As 
an intestinal hormone, GLP-1R agonists selectively block Aβ protein-
induced microglia activation and inhibits astrocyte-responsive 
activation.154 GLP-1R agonists also reduce astrocyte-derived acti-
vators to protect the BBB and inhibit neuroinflammation.155 In ad-
dition, thiazolidinediones act as peroxisome proliferator-activated 
receptor-γ (PPARγ) agonists and exert neuroprotective effects 
by inhibiting GFAP expression and morphological proliferation of 
astrocytes.156,157

Currently, new drug developments such as the seaweed deriv-
ative sodium oligomannate (GV-971), have gone beyond neuronal 
centers and act by targeting the gut-brain axis.158 Based on the 
broad utility of astrocytes and gut microbiota in neuroendocrinol-
ogy, we take a step back and discuss those dietary interventions and 
natural compounds with considerable therapeutic potential.
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6.1  |  Dietary interventions and probiotics

Restructuring the dietary structure is a direct way to modulate 
the gut microbiota and explore its effects. Intensive lifestyle in-
terventions have been recognized as an essential clinical approach 
to reversing the course of diabetes and delaying the development 
of complications.159 Researchers' interest in nutritional psychia-
try has driven many studies of specific dietary approaches such as 
the ketogenic diet,160 the Mediterranean diet,161 and Intermittent 
fasting143 to improve neurocognitive function. Genomic and prot-
eomic sequencing reveals extensive immune and metabolic shifts 
in arcuate nucleus astrocytes in response to a high-fat, high-sugar 
diet.162 The ketogenic diet affects the metabolic plasticity of neu-
rons and astrocytes,163 and research has shown that gut microbiota 
is necessary and sufficient for the neuroprotective effects.164 The 
calorie-restricted diet reduces astrocyte glycolysis thereby limiting 
neuroinflammation.165,166

Probiotics and synbiotics have been proposed as dietary supple-
ments to intervene in metabolic disorders and cognitive impairment. 
Several research studies in vitro and in vivo have demonstrated 
that intake of probiotics can protect the intestinal mucosal bar-
rier and promote the release of beneficial intestinal hormones 
and gut microbiota metabolites in patients with diabetes, thereby 
improving glycemic control and insulin resistance.167,168 Probiotic 
supplementation increased the ratio of Lactobacillus/Clostridium 
and Lactobacillus/Bacteroidetes, promoted the BDNF/TrkB/CREB 
signaling pathway in diabetic rats, decreased the level of neuro-
nal apoptosis, and effectively reversed the synaptic long-time 
enhancement.169,170

6.2  |  Traditional herbals and their active 
ingredients

Herbs and their active ingredients are potential treasures for target-
ing gut microflora dysbiosis and thereby improving cognitive func-
tion. A wealth of contemporary evidence supports its important role 
in preventing diabetic complications.171,172 With the advancement 
of multi-omics and genome sequencing technologies, in-depth bio-
logical mechanisms have elaborated the holistic systemic concept 
of governance and multi-targeted efficacy of TCM.173,174 Focusing 
on the “gut microbiota-astrocyte” axis, we screened the five most 
potentially therapeutic herbs and their derivatives. Ginsenosides are 
ginseng's main active pharmacological components.

Ginsenoside Rh4 inhibits astrocyte overactivation by promoting 
the enrichment of beneficial gut microbiota and increasing SCFAs 
content, thereby reducing hippocampal neuronal apoptosis and syn-
aptic structural damage.175

Astragalus polysaccharide (APP) possesses hypoglycemic and 
cognitive protective effects on both db/db mice176 and STZ-induced 
diabetic models of rats.177 APP increases the diversity of the gut mi-
crobiota, inhibits the potential intestinal pathogen Shigella, and en-
riches the beneficial bacteria Homococcus and Lactobacillus.178 APP 

improves insulin resistance status in metabolically stressed mice and 
reduces astrocyte proliferation and activation around neuronal am-
yloid plaques.179

Berberine (BBR) is characterized by low oral utilization and sig-
nificant regulation in the intestinal microflora. It has been found in 
many plants, such as Coptis chinensis Franch and Phellodendron chin-
ense Schneid.180 BBR reduced hyperglycemia in diabetic rats while 
reducing oxidative stress in the hippocampus and preventing exces-
sive activation of GFAP.181,182

Curcumin and its analogs attenuate DCD by modulating in-
flammation and oxidative stress, and reduce aberrantly activated 
astrocytes in the hippocampus.183,184 Curcumin reverses gut mi-
crobiota dysbiosis in diabetic rats, and increases Bacteroides and 
Bifidobacterium but inhibits Enterobacteriaceae and Thicketella phy-
lum.185 In vitro studies have shown that curcumin modulates the 
binding of endogenous ligands to AhR, promotes AhR activation, 
and decreases LPS-induced NF-κB activation, thereby regulating in-
flammatory astrocyte proliferation.186 In addition, herbal active sub-
stances such as forsythoside B, rhubarb phenol, chrysin, resveratrol, 
and paeoniflorin have the effect of ameliorating DCD over gut mi-
crobiota and astrocytes, but direct and complete research evidence 
is still lacking.

Overall, the study of the gut-brain axis in traditional medicine 
still needs to shift from analyzing correlations to establishing cause-
effect relationships. Observations on astrocytes have been mostly 
limited to neuroinflammation. Further enrichment of the modulatory 
effects of herbs on astrocyte phenotypes will help to uncover po-
tential treatment of DCD and provide insight into the clinical effi-
cacy of traditional herbals.

7  |  CONCLUSION

Though there is much evidence for cognitive impairment in pa-
tients with diabetes, the pathogenesis of DCD as a complication 
of diabetes is unclear and it is difficult to differentiate DCD from 
AD. Out of the multiple pathological factors, gut microbiota and its 
metabolites are important mediators to couple visceral and central 
environment, through the gut-brain axis neuroimmune pathway, the 
unique two-sided relationship between metabolic health and cog-
nitive mind is highlighted. Unique anatomical and functional char-
acteristics of astrocytes serve as intermediary glia in contact with 
circulating substances and brain microenvironment, maintaining im-
mune and metabolic brain homeostasis and providing a continuous 
supply of energy-dependent neuronal activity. With the develop-
ment of genomics and cell sequencing technology, “gut microbiota-
astrocyte” axis research using the concept of system biology will 
help to deepen the understanding of the pathological mechanism of 
metabolic cognitive disorders, to explore an accurate and compre-
hensive treatment plan.
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