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A B S T R A C T   

Correlation functions play an important role in the theoretical underpinnings of many disparate areas of the 
physical sciences: in particular, scattering theory. More recently, they have become useful in the classification of 
objects in areas such as computer vision and our area of cryoEM. Our primary classification scheme in the 
cryoEM image processing system, EMAN2, is now based on third order invariants formulated in Fourier space. 
This allows a factor of 8 speed up in the two classification procedures inherent in our software pipeline, because 
it allows for classification without the need for computationally costly alignment procedures. 

In this work, we address several formal and practical aspects of such multispectral invariants. We show that we 
can formulate such invariants in the representation in which the original signal is most compact. We explicitly 
construct transformations between invariants in different orientations for arbitrary order of correlation functions 
and dimension. We demonstrate that third order invariants distinguish 2D mirrored patterns (unlike the radial 
power spectrum), which is a fundamental aspects of its classification efficacy. We show the limitations of 3rd 
order invariants also, by giving an example of a wide family of patterns with identical (vanishing) set of 3rd order 
invariants. For sufficiently rich patterns, the third order invariants should distinguish typical images, textures 
and patterns.   

1. Introduction 

Correlation functions play a crucial role in the formulation of many 
ideas in random walks, field theory, statistical mechanics and structural 
biology. In the realm of classification purposes, they have found uses in 
EEG (Wang et al., 2015), characterization of seismic waves (Hocke and 
Kümpfer, 2008), MRI (Friedlinger et al., 1999), and generally as shape 
descriptors (Kakarala, 2012). Indeed bispectra have found ample use in 
astronomy in classification of angular patterns in cosmic microwave 
background (CMB) (Scoccimarro, Dec 2000; Huang and Vernizzi, Mar 
2013; Fergusson and Shellard, Aug 2009) and more recently trispectra 
(Lee and Dvorkin, May 2020; Bertolini et al., Jun 2016). In speckle 
interferometry, they are used to find model parameters in star systems 
by averaging bispectra (Hofmann et al., 2019). In quantum information 
science, nonGaussianinity, as measured by multispectra is also starting 
to gain a foothold (Ramon, s2019). 

In cryoEM, it was an early goal to use image invariants built from 
correlation functions like power spectra and double auto correlation 
functions to characterize misaligned images, (Frank, 2006) since in-
variants do not depend on the arbitrary choice of origin and only on the 

image content. However, the early sets of invariants were deficient in 
that they cannot, at best, capture more than 1/4 the amount of the 
original information in an image. Early attempts to solve this short-
coming and use multispectra did not gain a strong foothold (Marabini 
and Carazo, 1996). As computational power increases, multispectra are 
being studied with the intent of creating models directly from micro-
graphs (Lan et al., 2022). Among these topics, our work lies closest to the 
CMB literature, in that this literature typically focusses attention to 
specific patterns of wavevectors (Lee and Dvorkin, May 2020). 

The group of motions representing rotations and translations is 
generally termed the Euclidean group, or, more simply, the motion 
group. The associated invariants we will therefore term “motion in-
variants”. We seek motion invariants so as to do away with the very 
costly step of aligning images in order to classify them. Motion in-
variants involve constructing correlation functions and performing a 
final rotational average, and are usually formulated in Fourier space, 
because they generally are typically faster to evaluate in this represen-
tation. Additionally Fourier space is often a more natural variable due to 
the fact that SNR is more naturally formulated there. Our present work is 
the first place, to our knowledge, that has shown the efficacy of a real 
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space formulation of higher order correlation functions, and a better set 
of variables to describe them, based on making the parametrization 
more symmetric. Formulation in real space, although possibly slow, 
avoids aliasing artifacts and can be tailored for specific patterns that are 
expected to show correlations. 

A question arises, then, if such rotational averages (a sort of pro-
jection) are taken in both real and reciprocal spaces, whether there is 
always a formula by which one can transform from one set of these 
resultant correlation functions to another, meaning that there is no 
larger set of invariants one can form by developing invariants in both 
spaces. The theoretical development lies ultimately in the language of 
irreducible representations (Isaacs, 1976), where the invariants play the 
role of group characters. Indeed, there is much akin in the character 
tables of irreducible representations of symmetries, where solving for 
the characters (Wilson et al., 1955) is necessary to predict the strength of 
spectroscopic lines in Raman and vibrational spectroscopy. Here one 

must account for the possible motions of a molecule constrained by the 
symmetries, which bears some similarities to the formalism of our work. 

The situation is summarized in Fig. 1, where the projection discussed 
there, is a rotational average of the correlation function. As a simple, and 
well known (Hua, 2005; Takeshi et al., 2012) example of relating in-
variants in reciprocal spaces, consider the formula relating radial power 
spectrum (RPS) and radial distribution function (RDF) of 3D space: 

RPS(k) = 4π
∫ ∞

0
t2 dt

sinkt
kt

RDF(t) . (1.1)  

The function RPS(k), formulated from the rotational averages of the 
power of the Fourier transform, is directly related to RDF(t) formulated 
from the rotational average of the auto correlation function, with a 
similar looking inverse relationship. 

One goal in this monograph is to provide equations for other n-point 
functions and other dimensions, D. In principal, we could write down 
general formulas for arbitrary n and D with the approach here, but it is 
more practical to give expressions for D = 2, 3,4 and n = 2,3,4. We give 
some non-trivial particular cases in great detail for n = 3 (bispectrum) 
and D = 2. That such transformations exist, depends on the fact that the 
(Fourier) transforms in question are axial, as discussed at length in the 
main body: because the transform is expressed as a function of the inner 
product of real and reciprocal variables, symmetries are identical in 
reciprocal spaces. 

One is therefore at liberty to formulate motion invariants in the 
space, which is most convenient: typically the space in which the orig-
inal signal is most compact. As a calculational exercise, we give exam-
ples of dense 2D patterns (that have support on a circle in Fourier space) 
that have highly degenerate 3rd order patterns, taking on measure at 
either a single point or even completely vanishing. Conversely, for 
highly singular real space signals, we give real space expressions for the 
third order correlation function, which is equivalent to encoding all of 
the possible triangles in the original signal. The natural coordinates in 
this three dimensional representation are derived to be an alternative 
and more symmetric form than Bookstein coordinates (Dryden and 
Mardia, 2016) for triangles, which is a staple of the study of statistical 
shape analysis. Mirrored triangles may be found by flipping the sign of a 
phase angle in this triangle representation and are therefore distin-
guished. Together the above facts show that third order invariants 
distinguish mirrors, but generally cannot completely recapitulate the 

Fig. 1. N Point Correlation Functions and their projections into symmetric subspaces. In this manuscript, we show that after a rotational averaging (downward 
arrows), that one may always transform back and forth between the resulting translational and rotational invariants for all n-point functions and in all dimensions. 
We explicitly evaluate the kernels in D = 2 for 3 point functions. 

Table 1 
Decomposition of the degrees of freedom of a rigid polytope of n vertices in D 
dimension. Understanding this decomposition is necessary for writing down the 
kernel for transforming invariants between reciprocal spaces. For a triangle (n =

3), for example, in D = 2, this corresponds to the middle case, which we have 
called “Saturated”. The internal structure is essentially determined by the 
n(n − 1)/2 = 3 side lengths of the triangle, and the reorientation is governed by 
the D(D − 1)/2 = 1 orthogonal group in that dimension. Given D, smaller or 
larger n will create the unsaturated or oversaturated cases. In the prior case, the 
internal structure is governed by n(n − 1)/2 (bold face in the table), and in the 
latter case, the reorientation (bold face) is governed by orthogonal group as 
before. However both expressions are only simultaneously true for the saturated 
case. In each case, the DOF (nD) is equal to the sum of the last three columns.  
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image. 
In order to perform the transformations between reciprocal spaces, 

we ultimately need to understand the parametrizations of rigid poly-
topes. It is necessary to determine how many variables are involved in 
the expression of the projected (rotationally averaged) correlation 
function, and how many variables are involved in the convolution to 
transform the invariants, which we elaborate in the table below. To 
understand the nuances here, consider that it takes 5 coordinates (not 6, 
which is the number of pairs of vertices, and is correct for D ≥ 3) to 
parametrize a 4 vertex polytope in 2D (n = 4, D = 2). From the table, 
the internal structure of the polytope gives the dimension of the final 
invariant, whereas the reorientation gives the order of the integration 
needed to give the final rotational invariant (Table 1). 

The manuscript is organized as follows. In Section 2, we cover the 
power spectrum in great detail for dimensions 2, 3, and 4. In Section 3, 
we handle the 3 point function only for D = 2, but the same sort of 
analysis can be developed in other dimensions and other number of 
points. 

Gaussian waveforms wind up being extremely useful simplification 
of signals in many areas of signal analysis. Although, strictly speaking, 
they do not satisfy general criteria to form good basis functions, their 
implementation has been of the utmost of usefulness in disparate areas 
of signal processing, including structural biology (Wilson, 1949), elec-
trical engineering and quantum optics (Grynberg et al., 2010). For the 
purposes of cryoEM, Gaussian waveforms satisfy many remarkable 
properties: such as 1. convolutions of Gaussians remain Gaussian, and 2. 
projections of Gaussians are Gaussian. In Section 4, we reformulate the 
equations of Section 3 in terms of a Gaussian decomposition of the 
original signal. As suggested above, this allows us to very easily see that 
third order invariants distinguish mirrors, and it is easy to give closed 
form solution for the motion invariants. For highly singular signals of 
identical strengths, the invariants are the enumeration of the different 
types of polytopes that one can find in the pattern of the signal. This 
elucidates most clearly the meaning of the correlation functions. How-
ever, when specific patterns of sampling points are desired, then it is 
much easier to formulate in real space. 

Section 5 is our results section, where we show examples of 3 point 
functions formulated in both Fourier and real spaces, as well as a 
tentative discussion of some part of the 4 point correlations. Specifically, 
we show that mirrored objects can be distinguished by the 3 point 
functions in 2D, and that chiral objects can be distinguished by 4 point 
functions (but not 3pt functions) in 3D. Section 6 is a discussion and 
conclusion. In practice, motion invariants built from correlation func-
tions are easier to interpret from their real space versions, but typically 
faster to evaluate from Fourier versions. The reason is that the correla-
tion functions already involve a convolution over the entire space, 
which is easily handled in the Fourier transform domain. On the con-
trary, if a definite set of sampling points is known to be salient, it is 
numerically easiest to formulate the problem in real space directly, 
which avoids a full evaluation of a multispectrum. 

2. Radial Power Spectrum (RPS) and Radial Distribution 
Function (RDF) in D ¼ 2,3 and 4 

The simplest set of rotational and translational invariants are due to 
the two point function, RPS and RDF which form a key part of the theory 
of scattering in a wide array of systems (Hua, 2005; Takeshi et al., 2012). 
They form an incomplete description of a pattern, because they are 
based on the squared modulus of the Fourier transform, so that all the 
phase information is lost. In this section, we show the equivalence of the 
rotational invariants formed by the two point function: RPS, which is 
formulated in Fourier space, and RDF in real space. The construction for 
the transcription for the higher order correlation functions take place 
with a similar mechanism. More mathematical details are given in Ap-
pendix A. Consider a real 2D signal, f, and its Fourier transform, F, as 
well as its squared modulus: 

F
(

k
→
)

≡

∫

r→
f
(

r→
)

ei k→⋅ r→ (2.1)  

⃒
⃒
⃒
⃒F
(

k
→
)

|
2
=

∫

r→, s→
f
(

r→
)

f
(

s→
)

ei k→⋅( r→− s→). (2.2)  

Then RPS is defined as 

RPS
(

k
)

≡
1

SD

∫

k̂

⃒
⃒
⃒
⃒F
(

k
→
)

|
2
, (2.3)  

= SD

∫ ∞

0
dt tD− 1 Ker(kt)RDF(t),

Ker(kt) ≡
1

SD

∫

k̂
ei k→⋅ t→,

(2.4)  

with RDF being defined as 

RDF
(

t
)

≡
1

SD

∫

s→,̂t
f
(

s→
)

f
(

s→+ t→
)

, (2.5)  

and SD is the volume of the d-dimensional ball. 
For D = 3, the expressions become 

KerD=3

(

x
)

=
sinx

x
, (2.6)  

RPS
(

k
)

= 4π
∫ ∞

0
t2 dt

sinkt
kt

RDF
(

t
)

, (2.7)  

RDF
(

t
)

=
1

2π2

∫ ∞

0
k2 dk

sinkt
kt

RPS
(

k
)

. (2.8)  

The expressions for D = 2,4 are given in the appendix A, and are similar 
in spirit. It is not so much the derivation or the formula that we want to 
stress as that the transformation between invariants is an involution: 
they contain equivalent information. More details of the derivation are 
given in the appendix. One is at liberty to create the set of invariants in 
the space that is more convenient. Reasons to choose real space in-
variants is that i) they can be evaluated without aliasing, ii) it is easier to 
demonstrate the mirroring properties for third order invariants, which 
we shall see in the next two sections. 

3. RABS: Fourier space representation and transformation to 
real space 

In the last section, we showed the equivalence of the two point 
correlations, and in this section we demostrate the analogous con-
structions for the 3PCF (three point correlation function: the term used 
in cosmology), which we call RABS (rotationally averaged bispectrum). 
Again, the issue is that one can get invariants in both spaces, presumably 
in the space that is more convenient. The RABS is easier to develop 
computationally in Fourier space generally, however we find it easiest to 
describe intuitively the meaning of the rotationally averaged three point 
function as the resonance of the original signal with triangles of a given 
shape. (For this line of thinking, see (Shmahalo, 2019) based on (Bau-
mann et al., 2022)). 

To proceed, we formulate the 3PCF function in Fourier Space (where 
B means bispectrum): 

B
(

k
→
, q→
)
≡ F

(
k
→)

F
(

q→
)

F
(
− k
→

− q→
)
, (3.1)  

=

∫

r→, s→, t→
f
(

t→+ r→
)

f
(

t→+ s→
)

f
(

t→
)

ei k→⋅ r→ei q→⋅ s→,
(3.2)  
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=

∫

r→, s→
ei k→⋅ r→ei q→⋅ s→ b

(

r→, s→
)

.
(3.3)  

where b( r→, s→) is the real space three point function: 

b
(

r→, s→
)

≡

∫

t→
f
(

t→
)

f
(

t→+ r→
)

f
(

t→+ s→
)

. (3.4)  

In 2D, the integration leads to: 

RABS
(

k
→

q′

)

=

∫

r→s′
J0

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

k2r2 + q2s2 + 2kqrscos
(
θqk − θsr

)√

rabs
(

r→s′
)

,

(3.5)  

or, equivalently  

Here J0 is the zeroth order Bessel function, and Jm, as it appears later, is 
the Bessel function of order m. More mathematical details are given in 

Appendix B. The notation with ′ means that k
→

q′ depends on the lengths 
of k and q and the angle between these two vectors. There is a similar 
formula in the reverse direction. Notice the last two expressions only 
depend on shapes (specifically the angles between the vectors). To get 
the Fourier space RABS of a pattern, one can find its real space rabs and 
multiply it against the kernel suggested by (3.6). Some geometrical 
reasoning shows that it is the cross product term in (3.6) which changes 
sign, when a mirrored image is used: it breaks the mirror symmetry. As 
noted in the RPS-RDF discussion is the equivalence of the invariants that 
is noteworthy, for purposes of classification and others. We will discuss 
more about mirror symmetries in Section 4. That mirroring the image 
changes the values given by (3.6) is one of the key attributes that makes 
third order invariants qualitatively more powerful than lower order 
invariants. 

4. Gaussian representations for signals: a real space formulation 
of RABS 

The representation of signals by Gaussians has played a prominent 
role in many scientific endeavors such as structural biology and quan-
tum information science (Grynberg et al., 2010). Unlike wavelets and 
prolates (Lederman, 2017), such representations do not necessarily form 
a basis, but have a long history in structural biology since the seminal 
work of Wilson (Wilson, 1949). Recently have appeared many useful 
analysis in cryoEM using this latter model, to understand the limiting 
behavior of FSC curves and the transition to this limit (Singer, Sep 
2021), as well as to devise properly constructed correlation functions 
and construct their asymptotics (Marc Aurèle Gilles and Amit Singer, 
2022). 

Gaussian signals have also been employed efficaciously in deep 
learning models (Chen and Ludtke, 2021), and will continue to be part of 
developing ideas in cryoEM software packages (Bell et al., 2016). 
Similar to Wilson, we assume that some signal in question can be 
decomposed into a sum of atoms with identical form factors. This may 
not be a very good approximation for arbitrary signals, but it is a rich 
enough representation to show the utility of the third order invariants. 
Specifically, one can more quickly see the patterning of the third order 

invariants, when the signal is dominated by punctate points in real 
space. The Wilson Ansatz leads to the following expressions for the 
Fourier transform and the radial power spectrum (for example): 

F

(

k
→
)

= e−
1
2k2R2 ∑

N

j=1
ei k
→⋅ a→j , (4.1)  

RPS

(

k

)

= e− k2R2 ∑
N

j1 ,j2=1

1
SD

∫

k̂
ei k→⋅( a→j1 − a→j2 ), (4.2)  

where, as in (2.5), the factor SD is the volume of the d-dimensional unit 
ball. The further evaluation in (4.2) can proceed once the dimension is 
specified: 

RPS

(

k

)

= e− k2R2 ∑
N

j1 ,j2=1
Ker

(

k

⃒
⃒
⃒
⃒
⃒

a→j1 − a→j2

⃒
⃒
⃒
⃒
⃒

)

, (4.3)  

Ker(y) = J0(y), (D = 2) (4.4)  

=
siny

y
,

(

D = 3
)

.
(4.5)  

There is a nice convenience in that both (4.1) and (4.2) can be decom-
posed into “self” and “cross” terms. With additional techniques already 
described, one arrives at, for D = 2: 

RPS

(

k

)

= Ne− k2R2
+ 2e− k2R2 ∑

N

j1<j2=1
J0

(

k

⃒
⃒
⃒
⃒
⃒

a→j1 − a→j2

⃒
⃒
⃒
⃒
⃒

)

, (4.6)  

RDF

(

t

)

=
Ne− t2/4R2

4πR2 +
2

4πR2

∑N

j1<j2=1
e− (t− (12))2/4R2

Î 0

(

t

(

12

)/

2R2

)

.

(4.7)  

Here we use 1→2 to be shorthand for a→j1 − a→j2 etc, and (12) ≡
⃒
⃒
⃒ 1
→2
⃒
⃒
⃒. Also 

Î0(x) is the special function representing the angular average of 
e− x(1− cosθ). The latter is a weak function of x, decaying monotonically 
from 1 to 0, and asymptotically given by 1/

̅̅̅̅̅̅̅̅
2πx

√
. As seen from in-

spection from (4.7), RDF(t) will therefore have support for values of t 
that correspond to “interatomic” distances. The first (self) terms in (4.6) 
and (4.7) are not informative about the relative arrangement of the 
peaks, and can be essentially neglected as is usually done. In Fig. C1, we 
show the analogue of this situation for the bispectrum of a one- 
dimensional signal, where the interatomic distances can be read off 
from the patterning. The important point is that, just like the speckle 
imaging work in astronomy, the details of the system (model parame-
ters) can be straightforwardly read out from these patterns. 

A real space formulation of RABS 
In Appendix A, we go through a similar derivation as that which 

appears above for the two point function, but for the three point func-
tion: the real space rabs. However, the main idea in expressing the signal 
in terms of Gaussians, is that if not so many peaks are necessary to 
adequately describe the signal in real space, then it is more effective to 

RABS
(
k, q, θqk

)
=

∫

r,s,θsr

J0

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

k2r2 + q2s2 + 2
(

k
→⋅ q→

)
( r→⋅ s→) + 2

(
k
→

× q→
)

⋅
(

r→× s→
)√ )

rabs(r, s, θsr).

(3.6)   
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describe RABS in real space. Moreover there is a big advantage that there 
will not be aliasing in the real space version. There is much more dis-
cussion in Appendix C, and in Fig. C1, where we show that the “skewing” 
of the bispectrum can be justified by the same choice of linear combi-
nations of variables. 

The final expression for the rotationally averaged correlation func-
tion is given by:  

where G(1)
(

x,S
)

= 1̅̅̅̅̅̅̅̅
2πS2

√ exp−
x2
2S2 , is the properly normalized 1D Gaussian. 

Also 

Y =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

v2a2
v + w2a2

w + 2wvavawcos
(
θawav − θwv

)√ /( ̅̅̅
3

√
R2
)
, (4.9)  

and 

a→v = 33
4

(
1
3
∑3

k=1
a→jk − a→ĵ1

)

“drop”, (4.10)  

a→w =
31

4
̅̅̅
2

√

(

a→ĵ2 − a→ĵ3

)

“shortside”. (4.11)  

What we have termed “the drop” is a rescaled version of what is called 
the triangle median, and opposing the shortest side. 

As mentioned already ̂I0(y) ≡ e− yI0(y) is a weak function of y with an 
algebraically decaying tail. So the more important dependence of the 
expression (4.8) on the angle is given by the neighboring term in (4.8) 

given by e−
(

v av+w aw − Y)
3R2 , which is also a Gaussian in the angle, in the small R 

limit. In the expressions (4.10) and (4.11), the vector a→w represents the 

shortest side of the triangle given by the three points j1, j2, j3. The di-
rection is toward the vertex which belongs to the longest leg. The vector 
a→ĵ1

, represents the vertex opposite the shortest leg of the triangle. The 
scenario is shown in Fig. 2. The expression in the radical in (4.9) can be 
reorganized in the same way that was done in (3.6). 

Y =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

v2a2
v + w2a2

w + 2
(

v→⋅ w→
) (

a→v⋅ a→w
)
+ 2
(

v→× w→
)
⋅
(

a→v × a→w
)√

.

(4.12) 

Asymmetric Unit of real space, rabs, and the discernment of 
mirrors 

Given the triple of points j1, j2, j3, there is always an essentially 
unique definition, then to describe the triangle using a→v and a→w: the 
situation does not depend on the order in which j1, j2, and j3 are pre-
sented. Moreover, given these definitions there is a an asymmetric unit 
as discussed in Appendix D. Using the definition for θ as the angle be-
tween a→v and a→w, with θ > 0 meaning that a→v leads a→w in the clock-
wise sense. It is easy to show − π/2⩽θ⩽π/2 and moreover 

aw⩽av

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
3 + cos2θ

√
− cosθ

)
1̅ ̅
6

√ , as seen in Fig. 2 and derived in Appendix 

D. 

Fig. 2. An explication of convenient coordinates for triangles, stemming orig-
inally from a correlation analysis. Sides are denoted by a, b, and c, and are 
opposite the corresponding vertices, A→, B→, and C→. The shortest and longest 
sides are termed b and c respectively. The median O→ of the triangle is con-
structed as well as the vector from B→ to O→, which we term “the drop”, X→. The 
three coordinates describing the triangle are given by the lengths, X, b and by 
the angle between A→− C→ and X→. This angle is always less than or equal to π/2 
in magnitude. Mirroring the triangle can be represented by changing the sign of 
this last angle. 

Fig. 3. Example of compact Fourier Space pattern and its third order invariant. 
In (a) on the left is a Fourier space pattern in 2D which has a rotational sym-
metry and is concentrated on a ring at density, 1/R. The real space pattern is on 
the right. In Fourier space, the third order correlation function is built from 
three vectors of the form shown in (b). There is a unique shape such that all 

three wavevectors: k
→
, q→, − k

→
− q→ lie on the circle as shown. The vectors, q→, 

and k
→

+ q→ are shown a second time bordering the shaded area in panel (b). 
Using this idea, it is easy to construct a function such as described in Fourier 
(left) and real (right) spaces as shown in panel (c), that have everywhere 
vanishing RABS as given in Eq. 5.2. 

rabs

(

v,w, θwv

)

=
1

2πR2
̅̅̅
3

√
∑n

j1 ,j2 ,j3=1
G(1)

(

v − av,R31
4

)

G(1)

(

w − aw,R31
4

)

Î 0

(

Y

)

e
−

(
v av+w aw − Y)̅̅

3
√

R2
, (4.8)   
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5. Results 

We give examples of simple patterns allowing for evaluations of the 
third order correlations in either real or reciprocal spaces. If the data is 
not highly compact in real space, it is typically more efficient to evaluate 
the third order invariants starting from Fourier space. We will discuss 
this approach at length in later work using our cryoEM software EMAN2. 
A simple function which is compact in Fourier space and has a natural 
looking pattern in real space is given by a function which has only 
support over a circle in Fourier space. For example in D = 2, the function 
given by 

f ( r→) = J0(r/R), (5.1)  

has a Fourier transform which is concentrated on a ring at Fourier 
radius, 1/R. In this case, the only triangles that can be constructed in 
Fourier space, whose wavevectors sum to zero (necessary by trans-
lational invariance and discussed below Eq. 3.1), are given by equilat-
eral triangles, as shown in Fig. 3. In that case the geometry is therefore 
fixed by a single type of triangle, so that the support of the Fourier space 
RABS is simply a single point, corresponding to an equilateral triangle of 
side length 

̅̅̅
3

√
/R (in Fourier space). Indeed all of the individual Fourier 

harmonics (Baldwin and Penczek, 2005) have RABS, which have sup-
port at either one point or have RABS which are identically zero. For 
example, the function 

cos(2mθr)J2m(r/R), (5.2)  

which is depicted on the right side of Fig. 3c (the Fourier amplitude is on 
the left side of Fig. 3c), can be shown to have a vanishing RABS, for all 
integer, m (in the Figure m = 10). This shows immediately that 3rd 
order invariants cannot act perfectly as classifiers. 

This manuscript is motivated by the idea that the image invariants 
may be formulated in the space where the original function is most 
compact. In the case of sums of Gaussians, which has become a 
repeatedly useful representation for data in cryo EM for a multitude of 
reasons, we arrived at the expressions derived in Section 4, where there 
are peaks in the real space RABS representation. If, in addition, the 
width of the original Gaussians is exceedingly small, the functional 
behavior of the expression (4.8) in terms of angle is also singular and 
Gaussian. Indeed the expression (4.9) describes a representation that 
recreates the triangles of the original signal as in (3.2). Examining Fig. 4, 
the 5 points in an original signal in (a) create 10 triangles in (b) as given 
by Eq. 4.8). These are the 10 points shown there with a representation 
where the angles (θwv) are shown by a vector, so that the data can be 

Fig. 4. Examples of patterns compact in (a) real space 
(5 points) and their (b) third order invariants as given 
by Eq. (4.8). The real space invariants are expressed 
by writing down for each of the 10 triangles formed 
by the 5 points, the 1. short side, 2. the drop (as 
discussed in Fig. 3 and the angle between these two 
vectors. Short side and drop are given by the two axes 
shown, whereas the angle is represented by the di-
rection of the arrow on top of the point. Each pattern 
of invariants are very different except for the pattern 
of invariants of the last two of the (b) subpanel. The 
original real space set of points are shown in the last 
two plots of panel (a); these patterns are clearly seen 
to be mirrors. In the invariants, this corresponds to 
mirroring the vectors across the x-axis.   

Fig. 5. We create a jumble of chiral “pro-
pellers” as described in the text. A single 
plane of the volume of a combined pattern 
of 100 of such fragments is shown on the 
first row of a). Gaussian noise is added to it 
as shown in b), with the resultant shown in 
c). The SNR can be estimated as 6%. Four 
point correlations are then sought using the 
same style of sampling but with varying 
radius and (signed) pitch with a strong 
resonance at the correct value. A mirror 
operation in 3D, changes the chirality of an 
object and would take a positive pitch object 
to negative pitch, but the pitch is clearly 
distinguished as shown in d). This is pre-
cursor to study of the trispectrum.   
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shown conveniently in 2D (and not 3D). All of the patterns of third order 
invariants look completely unlike one another, except for the third order 
invariants representing the last two patterns, which are mirrors. The 
invariants for the mirrors can be transformed into one another by mir-
roring the vector across the x-axis, which sends the angle to its negative 
as described in Fig. 2. That mirrors can be distinguished by third order 
quantities is one of the features that make them attractive as a classifier, 
and why we have gone over the aspect in such detail. 

Looking forward, we note that third order correlations are able to 
distinguish mirrors and intrinsically 2D textures, whereas it is necessary 
to go to a 4 point function to study 3D textures. Toward that end, in 
Fig. C1 we give briefly an example of a four point function that is a 4 
point sampling of a single turn of a helix, and the efficacy of identifying a 
mix of such objects in large noise within a small volume. Four points are 
assigned a unit value at a radial distance R from the z-axis and also at π/2 
from each other, as one progresses one unit of “pitch” along the z axis, to 
create the simplest complete turn of a helix that can be imagined. One 
hundred of such entities are inserted into a 323 array, at random posi-
tions, and also at one of the 24 directions corresponding to cubic sym-
metry. The situation is summarized in Fig. 5. Gaussian noise (Fig. 5b) at 
amplitude level 0.45 is now added to each voxel as shown, resulting in 
the third row, where any systematic amount of signal is not discernible 
to the eye. There is a strong resonance of a high quality factor (peak at 
correct radius and pitch six times that of the other peaks). The SNR for 
the original signal can be estimated as 4x100 (that is, the number of 
points in the propeller times the number of propellers) divided by the 
number of voxels divided by the strength of the noise, which gives a 
value of 6%. This is empirically the highest noise level at which we can 
still see a good resonance. 

6. Discussion 

We have given formulae relating motion invariants formulated in 
either real or Fourier spaces. We have given examples of such motion 
invariants, depending on which space forms the most compact repre-
sentation. Ultimately, motion invariants of signals can play a prominent 
role in classification of signals in cryoEM, and is a core part of the 
(cryoEM) EMAN2 classification scheme. So it is imperative how many 
invariants there are, and how they are related. 

For an arbitrary signal, it is generally numerically advantageous to 
formulate the motion invariants in Fourier space, because one less vol-
ume integration needs to be performed (the invariants are a real space 
convolution). We saw that it was easy to construct signals that have 
dense support in real space, but have vanishing third order correlations, 
so that the third order motion invariants can never act as a perfect 
classifier. In general, one can argue that the third order represents an 
interference pattern of Fourier harmonic modes (Baldwin and Penczek, 
2005), and we expect, but cannot prove, that the original signal can be 
reconstructed, in the typical case, from the motion invariants. 

In the real space, we showed examples where a signal was comprised 
of Gaussians of the same strength and shape, but otheriwise different 
centers. For a highly punctate signal, the real space third order corre-
lation (RABS) simply reproduces, all of the real space triangles that 
appear on the pattern. Indeed, this is a numerically very efficient way to 
characterize the image. It seems likely that in general one should be able 
to recreate the placement of N points on the plane by knowledge of the 
N(N− 1)(N− 2)

6 triangles that they form. 
The problem is reminiscent of multidimensional scaling, where cities 

Fig. C1. 1D bispectrum: Many of the coordinate transformations developed in this manuscript, apply to the 1D bispectrum as well. In a) is a simple nicely windowed 
and smooth signal. The bispectrum, in frequency space, usually appears (Chua et al., 2008) in the literature as an ellipsoid as in the left side of b). However, with the 
similar type of coordinate changes introduced here, a 3–2 symmetry emerges, which corresponds to the 6 orderings in size that the lengths of a triangle may have. We 
call this the justified pattern (in Fourier space) which appears in the right side of b). In c) is drawn a highly punctate 1D signal with 4 peaks. The justified bispectrum 
is created and inverse Fourier transform can be taken as described in Section 4. Along the 3–2 symmetry lines lie the “skinny triangles” arising from the interference 
of the same peak twice, whereas the bright spot in the center corresponds to the triple correlations of single peaks. Triangles corresponding to three different peaks lie 
in the wedge between the 3–2 symmetry lines. Four peaks can form a total of 4 different true triple correlations (combinatorially, this is 4 choose 3). These 4 peaks are 
shown clearly in the wedges. One can infer the relative positions of the peaks, by the placement of the 4 peaks in the real space wedge. The situation for rabs in 
arbitrary dimension has all this same facets: i) symmetry hyperplanes corresponding to self terms, and ii) a 6-fold symmetry from which one should choose an 
asymmetric unit. 
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can be placed on the plane by knowing the intercity distances. Multi-
dimensional scaling algorithms can accurately estimate city positions 
from inter-city distances, up to an overall mirroring. The inter-city dis-
tances contain information that is essentially equivalent to the radial 
power spectrum. However, a more detailed representation of the signal 
can be obtained by annotating all the possible triangles formed from the 
cities. This triangle representation is related to the information con-
tained in the rabs function. Such an annotation is, in contrast, able to 
distinguish the overall mirror of the pattern, for example. 

The formulation of triangles that we reproduce here should be 
compared with so-called Bookstein (Dryden and Mardia, 2016) co-
ordinates, which represent triangles as two dimensional points, because 
the scale of the triangles are considered to be set. We consider that the 
representation here is more symmetric. 
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Appendix A. Relation between RPS and RDF 

In this appendix, we show the equivalence of the rotational invariants formed by the two point functions: RPS, which is formulated in Fourier 
space, and RDF in real space. These are more of the technical details than what appears in the main body of the text in Section 2. The construction for 
the transcription for the higher order correlation functions take place with a similar mechanism. Consider a real 2D signal, f, and its Fourier transform, 
F, as well as its squared modulus: 
⃒
⃒
⃒
⃒F
(

k
→
)

|
2
=

∫

r→, s→
f
(

r→
)

f
(

s→
)

ei k
→⋅( r→− s→), (A.1)  

=

∫

t→, s→
f
(

s→+ t→
)

f
(

s→
)

ei k→⋅ t→.
(A.2)  

In going from (A.1) to (A.2), we have used r→ = s→ + t→. Notice that because the integration kernel depends on the product k
→

⋅ t→ (the transform is 
“axial”), that an angular average of the kernel over k̂ has the same effect as an angular average over ̂t inside the integral. We use this idea throughout 
these derivations. We can use this idea to calculate the rotational average of the power spectrum, which is mainly called the Radial Power spectrum 
(RPS): 

RPS
(

k
)

≡
1

SD

∫

k̂

⃒
⃒
⃒
⃒F
(

k
→
)

|
2
, (A.3)  

=

∫

t

(
1

SD

∫

k̂
ei k→⋅ t→

)∫

s→
f
(

s→
)∫

t̂
f
(

s→+ t→
)

,
(A.4)  

= SD

∫

t

(
1

SD

∫

k̂
ei k→⋅ t→

)

RDF
(

t
)

,
(A.5)  

= SD

∫ ∞

0
dt tD− 1 Ker

(

kt
)

RDF
(

t
)

,
(A.6)  

Ker
(

kt
)

≡
1

SD

∫

k̂
ei k→⋅ t→, (A.7)  

where SD is the surface area of the D dimensional ball. For example, S2 = 2π, S3 = 4π,S4 = 2π2, and the general expression can be found many places. 
Also RDF(t) in (A.5), the radial distribution function, is given by: 

RDF
(

t
)

≡
1

SD

∫

s→,̂t
f
(

s→
)

f
(

s→+ t→
)

. (A.8)  

In 2D, using Ker(kt) = J0(kt), the expression (A.6) now becomes 

RPS
(

k
)

= 2π
∫ ∞

0
dt t J0

(

kt
)

RDF
(

t
)

, (A.9)  

where J0 is the zeroth order Bessel function of the first kind. 
The reciprocal can be found in a similar manner. Substituting for the Fourier transforms in (A.8), via: 
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RDF

(

t

)

=

(
1

SD

)∫

k→

∫

l→
F

(

k
→
)

F

(

− l
→
)(

1
2π

)2D∫

s→,̂t
e− i k→⋅ s→ei l→⋅( s→+ t→), (A.10)  

=

(
1

SD

)∫

k→
F

(

k
→
)

F

(

− k
→
)(

1
2π

)D∫

t̂
ei k→⋅ t→,

(A.11)  

=

(
1

2π

)D∫

k

(∫

t̂e
i k→⋅ t→

SD

)∫

k̂
F

(

k
→
)

F

(

− k
→
)

,
(A.12)  

= SD

(
1

2π

)D ∫ ∞

0
dk kD− 1 Ker

(

kt

)

RPS

(

k

)

.
(A.13)  

In 2D, again using Ker(kt) = J0(kt), the last expression becomes: 

RDF
(

t
)

=
1

2π

∫ ∞

0
dk k J0

(

kt
)

RPS
(

k
)

. (A.14)  

The transcriptions given by (A.9) and (A.14) are well known. They are consistent with the orthogonality condition 
∫ ∞

0
dk k J0

(

kt
)

J0

(

ks
)

=
1
s

δ
(

t − s
)

. (A.15)  

More common are the orthogonality relationships between Bessel functions using Bessel zeros and finite intervals, but (A.15) also exists (Watson, 
1944) as a formal result 
∫ ∞

0
dk k Jm

(

kt
)

Jm

(

ks
)

=
1
s

δ
(

t − s
)

. (A.16)  

The general orthogonality condition can be written as 

S2
D

(2π)D

∫ ∞

0
dk kD− 1 Ker

(

kt

)

Ker

(

ks

)

=
1

tD− 1 δ

(

t − s

)

. (A.17)  

In each dimension, D, we simply needed to evaluate the average of the phase over the unit sphere to get Ker, and then use (A.6), (A.13), and (A.17) to 
get expressions for the RPS, RDF, and orthogonality relationship. For D = 3, we have 

KerD=3

(

x
)

=
sinx

x
, (A.18)  

RPS
(

k
)

= 4π
∫ ∞

0
dt t2 sinkt

kt
RDF

(

t
)

, (A.19)  

RDF
(

t
)

=
1

2π2

∫ ∞

0
dk k2 sinkt

kt
RPS

(

k
)

. (A.20)  

For D = 4, we simply write down the kernel, by which all of the other expressions follow. 

KerD=4(x) = J0(x)+ J2(x). (A.21)  

This completes the derivations that appear in Section 2, between the simplest set of motion invariants: the RPS and RDF. 

Appendix B. Three point correlation function (3PCF): Fourier space representation and transformation to real space (rabs) 

In this appendix, we give more details to the derivations in Section 3, relating three point motion invariants between real (rabs) and Fourier space 
(RABS). The RABS is easier to develop computationally in Fourier space generally, however we find it easiest to describe intuitively the meaning of the 
rotationally averaged three point function as the resonance of the original signal with triangles of a given shape. 

To proceed, we formulate the 3PCF in Fourier Space: 

B
(

k
→
, q→
)
≡ F

(
k
→)

F
(

q→
)

F
(
− k
→

− q→
)
, (B.1)  

=

∫

r→, s→, t→
f
(

t→+ r→
)

f
(

t→+ s→
)

f
(

t→
)

ei k→⋅ r→ei q→⋅ s→,
(B.2) 
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=

∫

r→, s→
ei k→⋅ r→ei q→⋅ s→ b

(

r→, s→
)

.
(B.3)  

where b( r→, s→) is the real space three point function (bispectrum): 

b
(

r→, s→
)

≡

∫

t→
f
(

t→
)

f
(

t→+ r→
)

f
(

t→+ s→
)

. (B.4)  

To make the rest of the argument simpler, we introduce 4-vectors 

r→s = (r1, r2, s1, s2), (B.5)  

k
→

q =
(

k1, k2, q1, q2
)
, (B.6)  

where r→≡ (r1, r2), etc. Then Eq (B.3) may be rewritten: 

B
(

k
→

q
)

=

∫

r→s
ei k→q⋅ r→s b

(

r→s
)

, (B.7)  

Here k
→

q⋅ r→s = k1⋅r1 + k2⋅r2 + q1⋅s1 + q2⋅s2is a useful shorthand. 

The idea now is that if one does a global rotation of k
→

q while holding the angle between k and q constant (the shape of the Fourier space triangle), 
this leads to 

RABS
(

k
→

q′

)

=

∫

k̂
B
(

k
→

q
)

, (B.8)  

=

∫

r→s

(∫

k̂
ei k→q⋅ r→s

)

b
(

r→s
)

,
(B.9)  

=

∫

r→s′

(∫

k̂
ei k→q⋅ r→s

) ∫

r̂
b
(

r→s
)

,
(B.10)  

=

∫

r→s′

(∫

k̂
ei k
→

q⋅ r→s
)

rabs
(

r→s′
)

.
(B.11)  

The notation with ′ means that k
→

q′ depends on the lengths of k and q and the angle between these two vectors. Notice that, requiring that there be 
translational invariance, requires that the correlation function in Fourier space be built from Fourier vectors, whose vector sum is zero as can be 
noticed from (3.1). This is true for arbitrary dimension and correlation function order. In 2D, the integration leads to: 

RABS
(

k
→

q′

)

=

∫

r→s′
J0

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

k2r2 + q2s2 + 2kqrscos
(
θqk − θsr

)√

rabs
(

r→s′
)

, (B.12)  

or, equivalently 

RABS
(
k, q, θqk

)
=

∫

r,s,θsr

J0

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

k2r2 + q2s2 + 2
(

k
→⋅ q→

)
( r→⋅ s→) + 2

(
k
→

× q→
)

⋅
(

r→× s→
)√ )

rabs(r, s, θsr).

(B.13)  

There is a similar formula in the reverse direction, taking real space rabs to its Fourier version. Notice the last two expressions only depend on shapes 
(specifically the angles between the vectors). To get the Fourier space RABS of a real space pattern, one can find its real space rabs and multiply it 
against the kernel suggested by (B.13). Some geometrical reasoning shows that it is the cross product term in (B.13) which changes sign, when a 
mirrored image is used: it breaks the mirror symmetry. We discuss more about mirror symmetries in Section 4, using the real space formulation of 
invariants. 

Appendix C. Gaussian Model of Signal for Third Order Invariants 

We begin with (3.4) 

b
(

r→, s→
)

≡

∫

t→
f
(

t→
)

f
(

t→+ r→
)

f
(

t→+ s→
)

. (C.1)  

and the expression in real space for the signal consistent with (4.1) which is 

P.R. Baldwin                                                                                                                                                                                                                                     



Journal of Structural Biology: X 7 (2023) 100089

11

f

(

t→
)

=
∑N

j=1
G(2)

(

t→− a→j,R

)

, (C.2) 

where G(2) is the properly normalized 2D Gaussian consistent with (C.1). Most explicitly G(2)
(

r→,R
)
≡ 1

2πR2e−
r2

2R2 . To perform the t integration, it is 
convenient to complete terms in the resulting exponential in (C.1) in the most symmetric fashion possible: 
(

t→− a→j1

)2
+
(

t→+ r→− a→j2

)2
+
(

t→+ s→− a→j3

)2
=

3

(

t→−
3O→− r→− s→

3

)2

+
2
3

(

r2 − r→⋅ s→+ s2

)

− 2 a→j2
′⋅ r→− 2 a→j3

′⋅ s→+
∑3

p=1

(
aj3

′
)2
.

(C.3)  

where 

O→≡
1
3
∑3

k=1
a→jk , (C.4)  

is the median of the three points and 

a→jk
′
≡ a→jk − O→. (C.5)  

We wish to further transform to eliminate cross terms in (C.1). One notes 

r2 − r→⋅ s→+ s2 =
1
4
( r→+ s→)

2
+

3
4
( r→− s→)

2
. (C.6)  

This leads one to be able to write (C.3) as 

3

(

t→−
3O→− r→− s→

3

)2

+
1
6
(

r→+ s→+ 3 a→j1
′)2

+
1
2
(

r→− s→−
(

a→j2
′
− a→j3

′))2 (C.7)  

One makes a final area preserving change of coordinates 

31
4 v→≡

1̅
̅̅
2

√

(

r→+ s→
)

, (C.8)  

3− 1
4 w→≡

1̅
̅̅
2

√

(

r→− s→
)

. (C.9)  

so that the variances of the remaining Gaussians are identical. These types of transformations yield, the types of patterns in Fig. C1. 
So finally (C.3) has become 

(
t→− a→j1

)2
+
(

t→+ r→− a→j2

)2
+
(

t→+ s→− a→j3

)2
=

3

(

t→−
3O→− r→− s→

3

)2

+
1̅
̅̅
3

√ ( v→− a→v)
2
+

1̅
̅̅
3

√ (w→− a→w)
2
,

(C.10)  

a→v =
3− 1

4
̅̅̅
2

√
(
− 3 a→j1 ,

′
)

(C.11)  

a→w =
31

4
̅̅̅
2

√

(

a→j2 − a→j3

)

. (C.12)  

Now that we have completed the square, the t→ convolution in (C.1) can be performed: 

b

(

v→, w→
)

=
∑n

j1 ,j2 ,j3=1
G(2)

(

v→− a→v,R31
4

)

G(2)

(

w→− a→w,R, 31
4

)

. (C.13)  

Finally we would like to push this in a form that is amenable to the final overall angular integration: 

1
2
( v→− a→v)

2
+

1
2
(w→− a→w)

2
=

1
2
(v − av)

2
+

1
2
(w − aw)

2
+

(

vav +waw − v→⋅ a→v − w→⋅ a→w

)

(C.14)  

We are rewriting the symbols so that it is easy to see that in the limit of very punctate data (R→0, tight peaks), the variables take on values corre-
sponding to the same triangles that appear in the original 2D pattern. 
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So after the angular average of (C.13), while keeping the shape of the triangle constant 

rabs

(

v,w, θwv

)

=
1

2πR2
̅̅̅
3

√
∑n

j1 ,j2 ,j3=1
G(1)

(

v − av,R31
4

)

G(1)

(

w − aw,R31
4

)

e−
v av+w aw̅̅

3
√

R2
1

2π

∫

θv

e− ( v→⋅ a→v+ w→⋅ a→w)/
̅̅
3

√
R2
, (C.15)  

where G(1)
(

x, S
)
= 1̅̅̅̅̅̅̅̅

2πS2
√ exp−

x2
2S2 is the properly normalized 1D Gaussian. 

The last integral is performed, while the angle between v→and w→ is constant. The answer to the last integral is: 

I0(Y), with Y ≡

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

v2a2
v + w2a2

w + 2wvavawcos(θawav − θwv)

√ /( ̅̅̅
3

√
R2
)

(C.16)  

Recall that ̂I0(y) ≡ e− yI0(y) is a weak function of y with an algebraically decaying tail. So 

rabs

(

v,w, θwv

)

=
1

2πR2
̅̅̅
3

√
∑n

j1 ,j2 ,j3=1
G(1)

(

v − av,R31
4

)

G(1)

(

w − aw,R31
4

)

Î 0

(

Y

)

e
−

(
v av+w aw − Y)̅̅

3
√

R2
. (C.17) 

The singular limit R→0. 
From the first two terms, clearly the singular limit constrains v = av as well as w = aw. However the term in the last exponential attains its 

maximum when the angle θvw matches the angle that rotates aw along av at which this term vanishes. So, using asymptotics, one may also write this as a 
Gaussian in the angle. 

The upshot, is that if the initial signal is highly punctate, then the bispectrum as expressed in real space also is highly punctate. And it simply 
represents the patterns of all possible triangles that can be drawn, where any possible triple of points that might comprise a triangle are represented by 
a single point in the asymmetric unit of the real space RABS. 

This is not so easy to visualize as it takes place in a 3D space. In Fig. 4, we used a convenient representation to express the situation in a 2D plane, by 
using a phase to represent an interior angle of the triangle. 

Appendix D. Asymmetric Unit Real Space Rabs 

In order to plot the real space version of RABS suggested in Section 4, one must carefully consider the domain of the variables representing tri-
angles, which is not simple, in general. Starting from the Fig. 2, we look for a constraint between the short side length, the length of the drop, and the 
angle, θ, between them. The angle is termed positive if A→− C→ leads X→ in the clockwise sense as is the case in the example shown in the figure. The 
mirrored triangle would have a negative θ. One defines: 

3 X→= A→+ C→− 2 B→ (D.1)  

leading to 

9X2 = a2 + c2 + 2
(

A→− B→
)

⋅
(

C→− B→
)
. (D.2)  

But one can use the law of cosines to reduce this to 

9X2 = 2a2 + 2c2 − b2 . (D.3)  

On the other hand, 

3Xbcosθ = 3 X→⋅
(

A→− C→
)
=

⃒
⃒
⃒A
→

− B→|
2
−

⃒
⃒
⃒C
→

− B→|
2
= c2 − a2 (D.4)  

Recall from the figure: c⩾a⩾b So 

9X2 − 6Xbcosθ = 4a2 − b2⩾3b2 (D.5)  

So 

(b + Xcosθ)2⩽3X2 + cosθ2X2 (D.6)  

And finally: 

b⩽X
( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

3 + cos2θ
√

− cosθ
)

(D.7)  

Every triangle has a unique presentation in the region given by 
⃒
⃒
⃒θ
⃒
⃒
⃒⩽π/2, b⩽X(

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
3 + cos2θ

√
− cosθ) Recall that b was singled out as the smallest of the 

three sides, and the definition of θ was such that it is less in magnitude to π/2. 
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