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a b s t r a c t

Regenerative medicine is a highly advanced medical field that aims to restore tissues and organs lost due
to diseases and injury using a person's own cells or those of others. Direct cellular reprogramming is a
promising technology that can directly induce cell-fate conversion from terminally differentiated cells to
other cell types and is expected to play a pivotal role in applications in regenerative medicine. The in-
duction of direct cellular reprogramming requires one or more master transcription factors with the
potential to reconstitute cell type-specific transcription factor networks. The set of master transcription
factors may contain unique transcription factors called pioneer factors that can open compacted chro-
matin structures and drive the transcriptional activation of target genes. Therefore, pioneer factors may
play a central role in direct cellular reprogramming. However, our understanding of the molecular
mechanisms by which pioneer factors induce cell-fate conversion is still limited. This review briefly
summarizes the outcomes of recent findings and discusses future perspectives, focusing on the role of
pioneer factors in direct cellular reprogramming.
© 2023, The Japanese Society for Regenerative Medicine. Production and hosting by Elsevier B.V. This is
an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
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1. Direct cellular reprogramming: a technology for inducing
cell-fate conversion

In regenerative medicine, tissues and organs lost owing to dis-
ease and injury are expected to be restored using cells harvested
from patients or others, utilizing the inherent plasticity and ability
of cells to self-organize. Induced pluripotent stem cells (iPSCs) are
powerful tools for regenerative medicine [1]. Nonetheless, the risk
of tumor formation from residual undifferentiated cells and the
time and cost inefficiencies associated with obtaining a sufficient
number of differentiated cells for medical applications remain
significant challenges.
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Direct cellular reprogramming is an emerging technology that
directly converts terminally differentiated cells into cells of other
lineages without going through an intermediate pluripotent state
[2]. This technology could potentially overcome the aforemen-
tioned issues associated with iPSCs and is gaining interest as a
complementary approach to iPSCs in regenerative medicine.
Moreover, recent advances in the study of cell-fate conversion have
demonstrated that the technology of in vivo cellular reprogram-
ming will be developed as ameans to regenerate tissues and organs
by directly inducing in situ reprogramming of cells in the vicinity of
damaged and diseased areas rather than relying on transplantation
[3].

2. Transcription factor sets used in direct cellular
reprogramming

Research on direct cellular reprogramming began attracting
much attention in 1987, with a landmark study on the cell-fate
conversion of mouse fibroblasts to myoblasts induced by forced
expression of the transcription factor MyoD [4]. Almost 20 years
after its discovery, multiple combinations of transcription factors
have been introduced into cells to screen for cell-type-specific sets
of transcription factors, as in the case of iPSC induction. After much
effort, defined transcription factors that enable the direct induction
of various cell types, including cells characterized as neurons
(induced neuronal cells: iNCs [5]), cardiomyocytes (induced car-
diomyocytes: iCMs [6]), and hepatocytes (induced hepatocyte-like
cells: iHepCs [7,8]), were identified. Subsequently, these cell type-
specific transcription factors can be inferred using computational
approaches [9e11], which are required for validation experiments
using cells. Consequently, more than 40 different types of differ-
entiated cells have been generated from other types of differenti-
ated cells [2,12]. Recent studies have challenged the direct
induction of tissue-specific stem cells and progenitor cells from
fully differentiated cells [13,14]. These directly induced stem and
progenitor cells may be preferred over terminally differentiated
cells because of their potential for propagation and differentiation
in culture and after transplantation into injured tissues and organs.
In addition, cell reprogramming technology has enabled the direct
induction of tumor-forming cells from normal somatic cells [15,16]
and has evolved to induce stable inhibition of tumor cell prolifer-
ation and functional differentiation of tumor cells using a defined
set of transcription factors [17e19]. Direct reprogramming tech-
nology, which uses specific combinations of transcription factors, is
expanding into many fields beyond regenerative medicine.

In direct cellular reprogramming methods using two or more
defined transcription factors, some of these transcription factors
can be replaced with other transcription factors to induce different
but related types of cells (Fig. 1). For example, induction of dopa-
minergic neuron-like cells from mouse and human fibroblasts re-
quires Ascl1, Lmx1a, and Nurr1, whereas replacement of Lmx1a and
Nurr1 with other transcription factors, such as Isl1, Neurod1, Brn2,
Hb9, Lhx3, Myt1l, and Ngn2, results in the induction of motor
neuron-like cells [20,21]. Thus, it is suggested that the cell-type-
specific sets of transcription factors contain at least two kinds:
one is fundamentally required to initiate the induction of cell-fate
conversion, and the others are transcription factors involved in
acquiring the target cell properties. Our previous study demon-
strated that prior chromatin binding of Foxa protein family mem-
bers (Foxa1, Foxa2, and Foxa3) leads to subsequent Hnf4a binding
to similar regions during the reprogramming of mouse fibroblasts
to iHepCs [22]. The combination of transcription factors required to
induce cell-fate conversion may also depend on the original cell
types [2]. If the original cells endogenously express reprogramming
factors, introducing these factors may not be necessary to induce
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cell-fate conversion. Indeed, direct cellular reprogramming be-
tween related cell types is often induced using a smaller number of
transcription factors than between different cell types [2,12].

3. Molecular mechanisms of transcriptional and chromatin
regulation during direct cellular reprogramming

Ascl1 and Foxa protein family members act as pioneer factors
that are transcription factors responsible for relaxing closed chro-
matin and recruiting co-binding factors (Fig. 2) [23e28]. These
pioneer factors may be critical for creating the capacity of cells to
accept and initiate direct cellular reprogramming. Previous studies
have shown that pioneer factors are present in almost all sets of
transcription factors used to induce direct cellular reprogramming
(Fig. 1) [29]. Our analyses and those of other groups revealed that
pioneer factors play a central role in the induction of cell-fate
conversion [22,26]. Only pioneer factors can make chromatin
competent for recruiting other transcription factors associated with
cell differentiation [25,30]. By contrast, recent studies have sug-
gested that all transcription factors can act as pioneer factors
depending on their expression levels and abundance ratios [31,32].
This idea is partially supported by other studies showing that the
outcome of cellular reprogramming is influenced by the expression
levels and abundance ratios of reprogramming-inducing tran-
scription factors [16,33,34]. It has also been reported that tran-
scription factors introduced and exogenously expressed in cells can
either promote or inhibit chromatin binding to each other [35].
Moreover, the pioneering activity of pioneer factors may depend on
the type of transcription factors introduced into the cells [36,37].
These findings indicate that understanding the molecular mecha-
nisms underlying direct cellular reprogramming requires further
investigation.

Once pioneer factors bind to and open chromatin, chromatin
accessibility is preserved by binding other transcription factors
recruited to these regions [38]. Although this phenomenon has also
been observed in direct cellular reprogramming [39], chromatin
binding of pioneer factors persists even after the completion of cell
reprogramming [22,26]. Thus, it has been suggested that pioneer
factors continuously bind to chromatin to maintain chromatin
accessibility and binding of other transcription factors. The ablation
of all Foxa protein family members in the liver decreases chromatin
accessibility and induces the dissociation of Hnf4a [40]. In addition
to the regulation by direct chromatin binding, pioneer factors may
also epigenetically contribute to the maintenance of cell identity
after the induction of direct cellular reprogramming because
pioneer factors could regulate DNA methylation and mitotic gene
bookmarking [41e44]. Future studies will be useful for a better
understanding the relationship between the role of pioneer factors
and the maintenance of induced cell identity.

Direct cellular reprogramming involves both the acquisition of
target cell traits and the elimination of the original cell traits.
Recent studies have shown that transcription factors exogenously
introduced into cells act as transcriptional activators or suppres-
sors, depending on the context of the target genes (Fig. 3) [45,46].
Our previous study demonstrated that the Foxa protein family of
pioneer factors might be involved in both the activation and
suppression of target gene transcription [22]. Interaction with a
REST complex and regulation of the repressive histone mark
H3K27me3 with a Polycomb complex may be important for sup-
pressing target gene expression in direct cellular reprogramming
[47e56]. It would be interesting to understand how pioneer fac-
tors select which genes to activate and suppress during direct
cellular reprogramming.

In our previous study, Foxa1/Foxa2 and Foxa3 exhibited diverse
molecular dynamics and unforeseen behaviors (Fig. 4) [22]. Only
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Fig. 1. Representative sets of transcription factors used to induce direct cellular reprogramming. Three different types of differentiated cells directly induced from fibroblasts
using defined transcription factors are shown. In this figure, neuronal subtypes induced by different sets of transcription factors are collectively called ‘induced neuronal lineage cell
(iNLC).’ Pioneer factors in the list of transcription factor sets are highlighted in red.

P
F

Closed chromatin

Binding motif

Open chromatin Transcriptionaly active
chromatin

Chromatin scanning
on closed chromatin

Chromatin opening
Recruitment and

co-binding of non-PFs

P
F

P
F

non-P
F
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Fig. 3. Dual functions of the transcription factors exogenously expressing in cells. Transcription factors used for inducing direct cellular reprogramming act as suppressors and
activators in expressing original and induced cell-specific genes, respectively.
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Foxa3 has a specific property in which it binds to and co-moves
with RNA polymerase II (Pol2) and Hnf4a on the target genes, in
addition to characteristic pioneering activities such as chromatin
opening, recruitment of a co-factor Hnf4a, enhancer activation, and
stimulation and suppression of the transcription of target genes.
Compared with the dynamic behavior of Foxa3, Foxa1 and Foxa2
exhibit static behavior in the enhancer regions far from the tran-
scription start sites. Notably, all members of the Foxa protein family
can induce similar transcriptomic states by controlling the
expression of common gene sets. Similar to Foxa3, other pioneer
factors have additional functions required for cellular programming
and reprogramming.

4. Conclusion

Although the molecular mechanisms underlying direct cellular
reprogramming are currently being elucidated, many aspects
require clarification. Further investigations are required to unveil
the crucial involvement of pioneer factors in direct cellular
reprogramming. For this purpose, emerging analytical technologies
may be useful, including single-cell transcriptome and epigenome
analyses, three-dimensional genome analysis, proteomics, and
single-molecule imaging. In addition, traditional research fields
such as developmental biology, cell biology, and biochemistry
should be incorporated to analyze the molecular mechanisms un-
derlying direct cellular reprogramming more comprehensively for
a deeper understanding.
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