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Abstract

Trauma is the worldwide leading cause of death and disability in those younger than 45 years, 

and pelvic fractures are a major source of morbidity and mortality. Automated segmentation of 

multiple foci of arterial bleeding from ab-dominopelvic trauma CT could provide rapid objective 

measurements of the total extent of active bleeding, potentially augmenting outcome prediction at 

the point of care, while improving patient triage, allocation of appropriate resources, and time to 

definitive intervention. In spite of the importance of active bleeding in the quick tempo of trauma 

care, the task is still quite challenging due to the variable contrast, intensity, location, size, shape, 

and multiplicity of bleeding foci. Existing work presents a heuristic rule-based segmentation 

technique which requires multiple stages and cannot be efficiently optimized end-to-end. To 

this end, we present, Multi-Scale Attentional Network (MSAN), the first yet reliable end-to-end 

network, for automated segmentation of active hemorrhage from contrast-enhanced trauma CT 

scans. MSAN consists of the following components: 1) an encoder which fully integrates the 

global contextual information from holistic 2D slices; 2) a multi-scale strategy applied both in the 

training stage and the inference stage to handle the challenges induced by variation of target sizes; 

3) an attentional module to further refine the deep features, leading to better segmentation quality; 

and 4) a multi-view mechanism to leverage the 3D information. MSAN reports a significant 

improvement of more than 7% compared to prior arts in terms of DSC.

1 Introduction

High-energy pelvic fractures, which are usually related to motor vehicle accidents, falls from 

height, or crush injury, are the second leading cause of death from acute physical trauma 

after brain injury. The mortality rate of pelvic fractures ranges from 5%~15%, overall, 

increasing from 36% to 54% in those with hemorrhagic shock [12]. With the widespread 

availability of CT in trauma bays, the majority of patients with severe pelvic trauma 

admitted to level I trauma centers currently undergo an examination with contrast-enhanced 

trauma CT, in part to assess for foci of active bleeding, manifesting as contrast extravasation 

[3]. The size of foci of contrast extravasation from bleeding vessels correlates with the need 

for blood transfusion, angiographic or surgical hemostatic intervention, and mortality, but 

reliable measurements of contrast extravasation volume cannot be derived at the point of 

care using manual, semi-automated, or short-hand diameter-based methods. Fully automated 

methods are necessary for real-time point-of-care decision making, treatment planning, and 

prognostication.
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In this paper, we focus on volumetric segmentation of foci of active bleeding (i.e. contrast 

extravasation) after pelvic fractures. This task is of vital importance yet challenging for 

the following reasons: 1) hemorrhage gray levels vary from patient to patient, depending 

on a variety of factors (e.g., the rate of bleeding, the timing of the scan, and the patients 

physiologic state after trauma), 2) hemorrhage boundaries are often very poorly defined 

and highly irregular; and 3) the intensity levels are inconsistent throughout the region of a 

hemorrhagic focus. Prior works have utilized semi-automated threshold- or region growing-

based methods using post-processing software [5]. However, these techniques are too time-

consuming for clinical use in the trauma radiology setting. To overcome this difficulty, 

a method [4] was previously proposed to first utilize spatial contextual information from 

artery and bone to detect the hemorrhage, and then employ a rule-based strategy to refine 

the segmentation results. This heuristic approach requires multiple stages which cannot 

be efficiently optimized end-to-end. Moreover, this method cannot properly handle other 

challenges such as variation of target sizes and ambiguous boundaries.

Recently, the emerge of deep learning has largely advanced the field of computer 

aided diagnosis (CAD). Riding on the success of convolutional neural networks, e.g., 

fully convolutional networks [9], researchers have achieved accurate segmentation on 

many medical image analysis tasks [16,10,15,11,18,19]. Existing coarse-to-fine methods 

[18,17,14], which propose to refine segmentation results through explicit cropping of a 

single region of interest (ROI) are more suitable for single connected structures such as 

the pancreas or liver, while sites of active bleeding are frequently discontinuous and multi-

focal and occur in widely disparate vascular territories. Herein, we present a multi-scale 

attentional network (MSAN), for segmenting active bleed after pelvic features, the first 

yet reliable framework, for segmenting active bleed after pelvic features. Specifically, our 

framework is able to 1) fully exploit contextual information from holistic 2D slices via 

using an encoder which is capable of extracting the global contextual information across 

different levels of image features; 2) efficiently handle the variation of active hemorrhage 

sizes by adopting multi-scale strategies during the training phase and the testing phase; 

3) deal with the ambiguous boundaries by utilizing an attentional mechanism to better 

enhance the discrimination between trauma region and non-trauma region; 4) utilize the 

aggregation of multiple views (i.e., Coronal, Sagittal and Axial views) to further leverage 

the 3D information. To assess the effectiveness of our framework, we collect a dataset of 

65 patients with pelvic fractures and active hemorrhage with widely varying degrees of 

severity. For each case, every pixel/voxel of active hemorrhage was manually labeled by 

an experienced radiologist. Unlike the previously described heuristic method which used 

crude and not widely adopted measurements of accuracy such as missegmented area [4], 

we employed the Dice-Sørensen coefficient (DSC) for evaluation based on pixel/voxel-wise 

predictions. Experimental results demonstrate the superiority of our framework compared 

with a series of 2D/3D state-of-the-art deep learning algorithms.
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2 Multi-Scale Attentional Network

2.1 Overall Framework

We denote a 3D CT-scanned image as X with size W × H × L, where each element of 

X indicated the Housefield Unit (HU) of a voxel. The corresponding binary ground-truth 

segmentation mask is denoted as Y where yi = 1 indicates a foreground voxel. Consider 

a segmentation model M:Z = f X; Θ , where M is parameterized by Θ, our goal is to 

predict a binary output volume Z of the same dimension as X. We denote Y and Ƶ as 

the set of foreground voxels in the ground-truth and prediction, i.e., Y = i ∣ yi = 1  and 

Ƶ = i ∣ zi = 1 . The accuracy of segmentation is evaluated by the Dice-Sørensen coefficient 

(DSC): DSC Y, Ƶ = 2 × Y ∩ Ƶ
Y + Ƶ . This metric falls in the range of [0,1], and DSC = 1 implies 

a perfect segmentation.

Following [18,14,11], 3 sets of images, i.e., XC, w w = 1,2, …, W , XS, ℎ ℎ = 1,2, …, H  and 

XA, l l = 1,2, …, L  are obtained along three axes. The subscripts C, S and A stand for 

“coronal”, “sagittal” and “axial”, respectively. We train an individual model M for each 

of the three viewpoints. Without loss of generality, we consider a 2D slice along the 

axial view, denoted by XA, l. Our goal is to infer a binary segmentation mask ZA, l of the 

same dimensionality. In the context of deep networks [9,1], it is achieved by computing a 

probability map PA, l = f XA, l; θ , where f ⋅ ; θ  is the architecture as in Fig. 2(a). This network 

contains an encoder (Sec. 2.2) to extract different levels of features for distilling global 

context and an attentional module (Sec. 2.3) as further refinement.

Specifically, we apply Atrous Spatial Pyramid Pooling (ASPP) [1] at the end of the 

backbone model to extract high-level features with enriched global context. Meanwhile, 

the low-level features extracted from earlier layers which contain local information are fed 

to an attentional module to distill more useful information. The refined low-level features are 

then concatenated with high-level features extracted by ASPP and fed to the final classifier 

layer, which outputs probabilities PA, l, PC, l and PS, l which are then binarized into ZA, l, ZC, l

and ZS, l respectively. The final segmentation outcome can be fused from the three views 

via majority voting [18,14]. Multi-scale processing [8,1] is used in both the training stage 

and the inference stage to further enhance the segmentation accuracy, especially for small 

targets. As illustrated in Fig. 2, different rescaled version of the original image are fed to the 

network during training. During the testing stage, to produce the final segmentation mask, 

the output from different scales are fused by taking at each position the average response. 

If the average probability is larger than a certain threshold ρ it is regarded as foreground 

otherwise it is regarded as background.

2.2 Encoder Backbone Architecture

Atrous Convolution has been widely applied in computer vision problems, which can 

efficiently allow for larger receptive field via controlling atrous rates. Given an input feature 

map x, atrous convolution is applied over x as follows:
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y i =
k

x i + r ⋅ k w k , (1)

where i and w denote the spatial location and the convolution filter, respectively. r stands for 

the atrous rate.

Atrous Spatial Pyramid Pooling (ASPP) is originated from Spatial Pyramid Pooling [7]. The 

main difference is that ASPP uses atrous convolution which allows for larger field-of-view 

during training and thus can efficiently integrate global contextual information. As a strong 

contextual aggregation module [1], ASPP is applied (see Fig. 2(a)) so that the contextual 

information from artery and bone can be better exploited. In our experiment, we set the 

atrous rates to be {12,24,36}, respectively.

2.3 Attentional Module

We adapt the non-local block [13] as the attentional module in our framework. Specifically, 

it first computes an attention map y of an input feature map x by taking a weighted average 

of features in all spatial locations ℒ:

yi = 1
C x ∀j ∈ ℒ

f xi, xj ⋅ xj, (2)

where i and j are spatial indices. A pairwise function f xi, xj  is used to compute the spatial 

attention coefficients between each i and all j. And these coefficients are applied as the 

weighting of the input feature to better prune out irrelevant background features and thereby 

distinguish salient image regions. C x  is a normalization function. We use the dot product 

version in [13] by setting f xi, xj = xi
Txj and C x = N, where N is the number of pixels in x.

Following [13], the attention map y is then processed by a 1×1 convolutional layer and 

added to the input feature map x to obtain the final output z, i.e.,z = wy + x, where w is the 

weight of the convolutional layer. An illustration our our attentional module can be found in 

Fig. 2(b).

3 Experiments

3.1 Dataset and Evaluation

We have collected 65 studies were routinely acquired with 64 section or higher MDCT 

scanners in the trauma bay in either the late arterial or portal venous phase of enhancement. 

We use 45 cases for training and evaluate the segmentation performance on the rest 20 

cases. Note that [4] was studied on only 12 cases, which, to the best of our knowledge, 

was the first and only curated dataset with manual ground truth label masks. Therefore our 

dataset can be considered as a valid set for evaluation. The metric we use is DSC, which 

measures the similarity between the prediction voxel set Z and the ground-truth set Y, with 

the mathematical form of DSC Z, Y = 2 × Z ∩ Y
Z + Y .
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3.2 Implementation details

Our implementations are based on Tensorflow. We used two standard architectures, i.e., 

ResNet-50 and ResNet-101 [6] as backbone models. All our segmentation experiments 

were performed on the whole pelvic CT scan and were run on Tesla V100 GPU. For data 

pre-processing, following [11], we simply truncated the raw intensity values to be within the 

range of − 80,320 HU and then normalized each raw CT case to [0,255.0]. Random rotation 

of [0,15] is used as online data augmentation. A poly learning policy is applied with an 

initial learning rate of 0.05 with a decay power of 0.9. We follow [18,11,14] to use ImageNet 

pretrained model for initialization.

3.3 Results and Discussions

All results are summarized in Table 1, where we list thorough comparisons under different 

configuration of network architecture (i.e., ResNet50 and ResNet101 [6]) and scales (i.e., 

scales = {1.0, 1.25, 1.5, 1.75}). Note that we use larger scales (≥1.0) since our goal is to 

segment small targets. Under different settings, our method consistently outperforms others, 

indicating the effectiveness of MSAN.

Efficacy of multi-scale processing.—As shown in Table 1 larger scales generally lead 

to better results. For instance, using ResNet50 as the backbone model, the performance 

under scale = 1.0 is ~10% lower than that under other larger scales. ResNet101-single-scale 

yields the best result of 54.56% under scale = 1.75, which is more than 17% better 

than using the scale of 1.0. These facts all indicate the efficacy of utilizing larger scales. 

Another observation is that the integration of more scales also leads to better segmentation 

quality than using just one scale. Using either ResNet50 or ResNet101 as the backbone, 

3-scales always yield better results than 2-scales/single-scale, which shows that the learned 

knowledge from these different scales is complementary to each other. Therefore combining 

the information from these different scales can be beneficial for handling targets with a large 

variety of sizes, such as active bleed in our study.

Efficacy of the attentional module.—Meanwhile, we also witness additional 

benefit from the attentional module. For instance, ResNet50-MSAN-3-scale observes an 

improvement of 1.17% compared with ResNet101–3-scale; ResNet101-MSAN-2-scale) 

observes an improvement of 0.72% compared with ResNet101–2-scale. A similar 

improvement can be also witnessed for ResNet-50. Three qualitative examples are shown 

in Fig. 3. where MSAN consistently outperforms other existing methods. For case 027, our 

MSAN successfully removes the outlier (indicated by the orange arrows) which is detected 

as false positives by other methods. This further justifies that the usage of attentional 

mechanisms can indeed refine the results and diminish non-trauma outliers.

Overall, our proposed MSAN observes a significant performance gain under different 

settings, which shows the generality and soundness of our approach. Additionally, we 

also compare our method with other state-of-art 3D segmentation methods including [18], 

[14] and [2]. Our method outperforms all these methods significantly (p-values for testing 

significant difference satisfy p < 0.0001), which further demonstrates the effectiveness of our 

approach. In order to further validate the generality and stability of MSAN, we directly 
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test on a newly collected additional 15 cases without any retraining. Our method obtains 

an average DSC of 50.19%, whereas prior arts report 44.15%([14]),35.14%([18]) and 

27.32%([2]). MSAN significantly outperforms these methods.

4 Conclusions

In this paper, we present Multi-Scale Attentional Network (MSAN), an end-to-end 

framework for automated segmentation of active hemorrhage from pelvic CT scans. Our 

proposed MSAN substantially improves the segmentation accuracy by more than 7% 

compared with prior arts. We note this framework can be practical in assisting radiologists 

for clinical applications, since the annotation in 3D volumes requires massive labor from 

radiologists.
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Fig. 1. Visual examples of pelvic CT scans from axial/coronal/saggital views.
Red contour denotes the boundaries of the active hemorrhage, where we can observe large 

variations of shape and textures.
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Fig. 2. 
(a) The network architecture structure of MSAN. Low-level features are refined by an 

attentional module. Meanwhile ASPP is applied at the end of the backbone model to extract 

high-level features with enriched global context. (b) Our implementation of the attentional 

module, where we use nonlocal means [13] as the main operation.
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Fig. 3. Qualitative comparison of different methods.
from left to right: original CT image, predictions of single-scale method (scale = 1.50), 

multi-scale method (scale = {1.25,1.50,1.75}), MSAN and the manual label.
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Table 1.

DSC comparison of active bleed segmentation. ResNet101-MSAN-3-scale achieves the best performance of 

59.89%, surpassing the prior art by more than 7%.

Model scale=1.0 scale=1.25 scale=1.5 scale=1.75 Avg. Dice

ResNet50-single-scale ✓ - - - 35.96%

ResNet50-single-scale - ✓ - - 48.14%

ResNet50-single-scale - - ✓ - 47.71%

ResNet50-single-scale - - - ✓ 46.29%

ResNet50-2-scale - ✓ ✓ - 52.75%

ResNet50-MSAN-2-scale - ✓ ✓ - 54.31%

ResNet50-3-scale - ✓ ✓ ✓ 54.40%

ResNet50-MSAN-3-scale - ✓ ✓ ✓ 55.61%

ResNet101-single-scale ✓ - - - 37.53%

ResNet101-single-scale - ✓ - - 46.38%

ResNet101-single-scale - - ✓ - 52.67%

ResNet101-single-scale - - - ✓ 54.56%

ResNet101-2-scale - ✓ ✓ - 54.98%

ResNet101-MSAN-2-scale - ✓ ✓ - 55.70%

ResNet101-3-scale - ✓ ✓ ✓ 58.72%

ResNet101-MSAN-3-scale - ✓ ✓ ✓ 59.89%

Zhou et al. [18] - - - - 50.15%

Yu et al. [14] - - - - 52.12%

3D-UNet [2] - - - - 40.81%
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