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Medical transformer for multimodal 
survival prediction in intensive 
care: integration of imaging 
and non‑imaging data
Firas Khader 1*, Jakob Nikolas Kather 2,3,4,5, Gustav Müller‑Franzes 1, Tianci Wang 1, 
Tianyu Han 6, Soroosh Tayebi Arasteh 1, Karim Hamesch 2, Keno Bressem 7, 
Christoph Haarburger 8, Johannes Stegmaier 9, Christiane Kuhl 1, Sven Nebelung 1,10 & 
Daniel Truhn 1,10

When clinicians assess the prognosis of patients in intensive care, they take imaging and non-imaging 
data into account. In contrast, many traditional machine learning models rely on only one of these 
modalities, limiting their potential in medical applications. This work proposes and evaluates a 
transformer-based neural network as a novel AI architecture that integrates multimodal patient 
data, i.e., imaging data (chest radiographs) and non-imaging data (clinical data). We evaluate the 
performance of our model in a retrospective study with 6,125 patients in intensive care. We show 
that the combined model (area under the receiver operating characteristic curve [AUROC] of 0.863) 
is superior to the radiographs-only model (AUROC = 0.811, p < 0.001) and the clinical data-only model 
(AUROC = 0.785, p < 0.001) when tasked with predicting in-hospital survival per patient. Furthermore, 
we demonstrate that our proposed model is robust in cases where not all (clinical) data points are 
available.

By definition, patients in intensive care are seriously and critically ill. In caring for those patients, intensive care 
provides a cornerstone of contemporary clinical medicine. Consequently, major hospitals usually operate at 
least one intensive care unit (ICU) to admit and treat those patients. Substantial financial resources that amount 
to about 1% of the gross domestic product in the United States are utilized annually to care for those patients1. 
These resources are used to improve patient monitoring and treatment. During the ICU stay, increasing amounts 
of clinical data are collected during patient diagnosis, treatment, and monitoring. Nowadays, most of these 
data are stored digitally and can be harvested from Electronic Health Records (EHR) systems and from picture 
archiving and communication systems (PACS) to be used in translational research2. Even with the advent of 
ever more powerful machine learning models, this plethora of data has not been used to the full extent. Machine 
learning models have predominantly used clinical data, i.e., EHR data3–6 or imaging data alone7–10. This approach 
contrasts with how physicians incorporate clinical data and patient information. Experts interpret imaging 
studies in clinical contexts to help distinguish between different disease states. Ideally, chest radiographs from 
the ICU should be interpreted with complete clinical data available to assess the patient’s state optimally, yet this 
may not always be the case. Combining expert knowledge from different specialties requires time-consuming 
consultations and may be challenging to realize on a 24/7 basis11. Accordingly, machine learning models that 
integrate non-imaging and imaging data are needed. Recent advances have seen the rise of transformer models 
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that constitute the state-of-the-art technique in natural language processing and are applied to image processing 
with competitive performance as convolutional neural networks (CNNs)12,13.

Previous methods for predicting the survival of patients in intensive care have predominantly utilized 
combinations of CNNs and recurrent neural networks (RNNs)14,15. On the one hand, integrating non-imaging 
data into CNNs is challenging. It requires novel methods such as rescaling the feature maps16 or devising 
alternative means for presenting the non-imaging data in matrix form17. The latter approach means that the data 
are concatenated to the input image prior to feeding them into the neural network17. On the other hand, RNNs 
suffer from vanishing or exploding gradients, which limits the possible time horizon of extracted laboratory 
data18. Combining CNNs and RNNs necessitates a laborious multi-step approach. Modality-specific feature 
extractors are trained initially, followed by a fusion step combining the features for the final prediction14. In 
contrast, the transformer neural network is an input-agnostic method with a dedicated attention mechanism. 
A set of tokens is the only input, which may be easily created from various non-imaging and imaging data12,13. 
This approach enables end-to-end training and an intuitive combination of variable data sources. Imaging data-
related tokens can now attend to non-imaging data-related tokens and vice versa. Furthermore, unlike RNNs, 
transformer neural networks do not rely on a long chain of sequential processing steps but on parallel processing, 
therefore mitigating the problem of vanishing and exploding gradients13.

To our best knowledge, transformer neural networks have not yet been used for survival predictions of 
patients in intensive care. The accurate prognosis is clinically relevant for these patients because (i) physicians 
may be better supported to decide if and how a patient may benefit from intensive care, and (ii) families may be 
better informed about the goals and potential advantages and disadvantages of intensive care.

This work presents the multimodal Medical Transformer (MeTra) that can process non-imaging and imaging 
data. Our architecture can learn from imaging data, non-imaging data, or a combination of both. We test our 
model on bedside chest radiographs, likely the most frequently ordered imaging study worldwide, accounting 
for approximately 20–25% of all diagnostic imaging activities in healthcare19,20. The accompanying non-imaging 
data (synonymous with clinical data and clinical parameters [CP]) to these radiographs represents the situation 
physicians encounter in the clinical routine. It comprises clinical tests (i.e., Glasgow Coma Scale), physiological 
parameters (i.e., heart rate, respiratory rate), blood serum parameters (i.e., glucose concentration, oxygen 
saturation), and information on body constitution (i.e., height and weight).

The overarching objective of this study was to apply and systematically evaluate the multimodal MeTra 
network architecture to integrate non-imaging and imaging data in the survival prediction of patients in intensive 
care, i.e., in the medical domain. We hypothesized that (i) the MeTra model would predict the survival of 
patients in intensive care more accurately when trained with imaging data, i.e., bedside chest radiographs, and 
non-imaging data, i.e., clinical data, than when trained with each data category alone. We also hypothesized that 
(ii) the MeTra model’s predictive performance would be robust and maintained when missing pertinent data.

Results
Characteristics of the dataset.  Within the MIMIC-IV dataset21, 6125 patients had chest radiographs and 
clinical parameters, resulting in 6,798 bedside chest radiographs with corresponding clinical parameters (see 
Fig. 1). At the time of recording, patient age ranged from 18 to 91 years with a mean of 64 years ± 16 [standard 
deviation]. To preserve anonymity, all patients older than 89 years had been assigned the age of 91 years by the 
dataset providers. Of all patients, 55% (n = 3382) were male and 45% (n = 2743) were female. A total of n = 1,002 
patients died in the hospital. A detailed description of the data is given in Table 1.

Results of MeTra model training on unimodal data only.  Table 2 and Fig. 2 summarize the MeTra 
model’s performance when trained on single data categories. When trained on 15 clinical parameters only, MeTra 
was characterized by an AUROC (area under the receiver operating characteristic curve) value of 0.785 [95% CI 
[confidence interval] 0.751, 0.819], a sensitivity of 0.703 [0.640, 0.766], a specificity of 0.731 [0.706, 0.756], and 
a positive predictive value of 0.320 [0.278, 0.363]. When trained on the chest radiographs only, MeTra reached 
an AUROC value of 0.811 [0.779, 0.841], a sensitivity of 0.713 [0.650, 0.773], a specificity of 0.767 [0.743, 0.791], 
and a positive predictive value of 0.355 [0.310, 0.401]. In all metrics, training on chest radiographs only tended 
towards better performance than training on clinical parameters only. Nevertheless, statistical significance 
was only found for specificity (p = 0.02), while the other statistical measures were not significantly different 
(AUROC, p = 0.14; sensitivity, p = 0.41; positive predictive value, p = 0.14). Exemplary images for correct and 
incorrect model predictions are given in Fig. 3. By trend, the combined model could correctly predict survival 
even when the unimodal models were contradictory in their predictions, e.g., when the radiograph was largely 
inconspicuous. Variable pulmonary opacifications and pleural effusions were noted in false negative and false 
positive predictions. Additional results can be found in Supplementary Fig. S1.

MeTra can be trained on multimodal data.  When trained on both chest radiographs and clinical 
parameters, MeTra reached an AUROC value of 0.863 [0.835, 0.889], which was superior to both unimodal 
training settings (p < 0.001). Similarly, specificity (0.861 [0.841, 0.880], p < 0.001) and positive predictive 
value (0.486 [0.432, 0.541], p < 0.001) were significantly higher after multimodal training than after unimodal 
training (Fig.  2). Sensitivity was higher, too, yet not statistically significant (0.732 [0.670, 0.792], vs. 
unimodal(chest radiographs only) = 0.33, vs. unimodal(clinical parameters only) = 0.26).

MeTra can deal with missing data.  The MeTra model can deal with missing data. However, like a physician 
with less data, MeTra’s predictions become less accurate when the number of available clinical parameters is 
reduced. For AUROC and the positive predictive values, a close-to-linear decrease is demonstrated as a function 
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of reduced parameter availability (Fig.  4). Intentionally, we included the clinical parameters Glasgow Coma 
Scale (total) and capillary refill rate even though their content was empty for all the test samples. The upheld 
performance demonstrates robustness to the fact that labels might be missing a priori.

Figure 1.   Visualization of the data extraction pipeline. For training, we only make use of those patients who 
were admitted to the Intensive Care Unit (n = 53,150) and who had clinical data (clinical parameters—CP) with 
matching chest radiographs available (n = 6,125). The data is split into the training (n = 4,396 patients), validation 
(n = 472 patients), and test sets (n = 1,257 patients).

Table 1.   Characteristics of the dataset. Data in parentheses are percentages. Note that the number 
(percentage) of deaths during the hospital stay for a given set is relative to the number of patients in each set.

Parameter All patients Training set Validation set Test set

No. of paired chest radiographs and clinical parameters 6798 4885 540 1373

No. of patients 6125 4396 472 1257

No. of male patients 3382 (55%) 2414 (55%) 264 (56%) 704 (56%)

Age (years) (range) 18—91 18—91 19—91 18—91

Mean age ± SD [Median] (years) 64 ± 16 [65] 64 ± 16 [65] 64 ± 16 [65] 64 ± 16 [65]

No. of deaths during hospital stay 1002 (16%) 717 (16%) 76 (16%) 209 (17%)
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Discussion
In this work, we developed and evaluated the medical transformer architecture MeTra to integrate imaging 
and non-imaging data for survival predictions in patients in critical care. While MeTra can predict the survival 
of critically ill patients when trained on clinical data or imaging data exclusively, the model can combine both 
data sources for improved model predictions. We also demonstrate that MeTra can deal with missing data 
and that there is a smooth transition between high diagnostic accuracy when all data is available to reduced 
diagnostic accuracy when data are missing. Consequently, MeTra may be considered a blueprint for how to 
utilize multimodal medical data in AI models.

Other groups have worked on survival prediction without transformer architectures and only achieved 
comparable performance when training on considerably more data and using extensive hyperparameter tuning 
(Table 3). The present study is the first to investigate the performance of a fully transformer-based architecture 
in the survival prediction of patients in intensive care and proves its viability when handling imaging and non-
imaging data. However, alternative transformer-based approaches have been introduced to the medical domain. 
Zheng et al. used the attention mechanism of transformers in combination with a graph-based method to model 
patient relations and utilize modality-specific data22. Our study distinguishes itself by eliminating the need for 
more complex fusion mechanisms. Song et al. used transformers to combine optical coherence tomography 
images and visual field exams to diagnose glaucoma23. The data had to be presented in matrix view, which 
allowed the authors to tailor their architecture to the available format. The authors also resorted to a CNN for 
feature extraction prior to employing the transformer for modality fusion. This approach seems unsuitable for 
our clinical question that aims to combine non-imaging data, such as laboratory values (typically not available 
in matrix view), with imaging data. Moreover, using an additional CNN does not align with our objective of 
implementing a purely transformer-based model. Nguyen et al. introduced the CLIMAT (Clinically-Inspired 
Multi-Agent Transformers) model as a fully-transformer-based model for predicting the progression of knee 
osteoarthritis using imaging and non-imaging data24. The authors used three distinct transformer modules to (i) 
extract features from imaging data, (ii) extract features from non-imaging data, and (iii) combine the extracted 
features to provide a set of output predictions, where each corresponds to the disease severity at a specific point in 
time. While conceptionally, the authors followed a similar approach in using transformer blocks exclusively, the 
different clinical question necessitates architectural distinctions. In the CLIMAT model, multiple class tokens are 
added to the last transformer module to extract predictions for multiple time steps. Furthermore, a compressed 
representation of the non-imaging features is used and concatenated to each output token of the imaging-specific 
transformer module before the tokens are fed to the final transformer module. In contrast, we intentionally did 
not compile the non-imaging data before the multimodal data fusion to ensure that all information is visible to 
the model. Moreover, to make sure that each imaging token attends to all non-imaging tokens and vice versa, 
we feed the joint set of features as tokens through the last transformer module.

Beyond, our work is clinically and scientifically relevant in several aspects:
First, our clinical experience teaches us that any predictive model used clinically must deal with missing 

data. Not all patients are treated and diagnosed equally, and the diagnostic toolset—from imaging to laboratory 
studies to clinical tests—is not consistently applied to all patients. The resultant data inconsistency and scarcity 
are problems for conventional machine learning models since the number of patients with “complete” datasets 
for training is inherently limited. MeTra solves this problem as it can both be trained on incomplete data and 
can also deal with missing data during inference.

Table 2.   Overview of the clinical parameters used in conjunction with the chest radiographs. The column 
“Missing (%)” denotes the percentage of samples in the dataset that did not have any entry for this item.

Variable Type Missing (%) Mean (± std) Impute value

Capillary refill rate Categorical 100 – –

Diastolic blood pressure Continuous 0.04 59.04 (8.87) mmHg 59.0 mmHg

Fraction inspired oxygen Continuous 26 0.45 (0.07) FiO2 0.21 FiO2

Glasgow coma scale—eye opening Categorical 0 3.51 (0.66) 4

Glasgow coma scale—motor response Categorical 0 5.13 (1.52) 6

Glasgow coma scale—verbal response Categorical 0 4.35 (1.16) 5

Glasgow coma scale—total Categorical 100 – –

Glucose Continuous 0.02 128.98 (28.72) mg/dL 128.0 mg/dL

Heart rate Continuous 0 85.15 (12.96) bpm 86 bpm

Body height Continuous 97.7 169.77 (9.00) cm 170.0 cm

Mean blood pressure Continuous 0 74.15 (8.99) mmHg 77.0 mmHg

Oxygen saturation Continuous 0 97.69 (1.98) % 98.0%

Respiratory rate Continuous 0 18.95 (3.73) breaths per minute 19 breaths per minute

Systolic blood pressure Continuous 0.04 113.87 (14.21) mmHg 118.0 mmHg

Temperature Continuous 2.28 36.90 (0.32) °C 36.6 °C

Body weight Continuous 9.13 79.73 (15.05) kg 81.0 kg

pH Continuous 13.86 7.37 (0.06) 7.4
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Second, medical diagnosis is based on data from various sources: Medical doctors assess radiographs in 
conjunction with laboratory values, clinical tests, and history findings, among others. Developing machine 
learning models that rival human expertise will eventually require including data from all these sources. MeTra 
suggests one possible path forward by providing an architecture encompassing data from any source. Flexible 
data integration into the model is a beneficial feature of the transformer architecture that contrasts with other 
state-of-the-art network architectures such as CNNs. CNNs are specifically designed to work well on images and 
-even though possible- including non-imaging data remains challenging25,26.

Third, an improved survival prediction in intensive care can help assess illness severity and direct intensive 
care where needed to save lives and improve outcomes3. As detailed above, MeTra achieves state-of-the-art 

Figure 2.   Detailed performance metrics of the Medical Transformer (MeTra). MeTra was trained on the 
clinical parameters only (CP), on the chest radiographs only (CXR), and the combined multimodal data 
(CP + CXR). Receiver operating characteristic (ROC) curves (a) and areas under the ROC curves (b). To 
determine discrimination thresholds, the operating point was determined by maximizing Youden’s criterion 
(sensitivity + specificity), resulting in specific values for the positive predictive value (c), sensitivity (d), and 
specificity (e). The combined model performed superior to the uni-modal models for every metric.
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performance in this task. It may support physicians in clinical decision-making once clinical applicability beyond 
this proof-of-concept study has been demonstrated. We make the trained model open-source to facilitate future 
translational research efforts. For full transparency and comparability, we used the identical training test splits 
as others14, and this information is published with the MeTra model itself.

Previous research has utilized ensembles of conventional machine learning algorithms3, CNNs in conjunction 
with attention mechanisms27, or recurrent neural networks14 to predict patient survival. By comparison, the 
transformer architecture employed in MeTra has several advantages: It employs the same backbone architecture 
as the Vision Transformer12 and upholds its advantages in incorporating global information at shallow layers 
while being more robust to adversarial attacks than CNNs28.

Our work has limitations: first, the survival prediction and validation data originate from a single center due 
to the unique availability of imaging and non-imaging data alongside survival data. Consequently, no external 
validation was performed, and the model’s generalizability remains to be confirmed using multimodal datasets 

Figure 3.   Exemplary chest radiographs and associated patient survival predictions. The upper row shows 
chest radiographs of four patients dismissed from the ICU alive. The lower row shows chest radiographs of four 
patients who died in intensive care. Predictions of the model were correct or incorrect depending on 
whether all data, i.e., imaging and non-imaging data (“CP + CXR”) was provided, or whether only the imaging 
data (“Only CXR”) or only the clinical parameters (“Only CP”) were provided. Please refer to Fig. 2 for an 
explanation of the abbreviations.

Figure 4.   Performance of MeTra in terms of the AUROC values (a) and the positive predictive values (b) as a 
function of the number of clinical parameters available to the model. The x-axis denotes the number of clinical 
parameters fed into the model alongside the chest radiograph. For each number of clinical parameters, the 
experiment was repeated 100 times with randomly chosen subsets of variables to prevent bias due to the choice 
of variables.
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from other institutions and through other researchers. However, we hope our work stimulates collective efforts 
to assemble comparable large-scale databases. Perspectively, collective work on transformer models may be 
accelerated further by decentralized peer-to-peer collaborations, for example, using a swarm learning approach29. 
Second, we only included relatively basic physiologic measures used for patient monitoring, while more complex 
measures of hemodynamics, oxygen metabolism, and microcirculation were not considered. Third, because the 
number of deaths in the ICU was unbalanced, the resultant class imbalance is an issue that needs consideration. 
Future work may address the class imbalance during training, for example, by including a weight factor into the 
loss function (accounting for the class imbalance) or by oversampling the underrepresented class30. Additionally, 
a hybrid approach of transformer layers and a CNN backbone may be used to further improve the performance31. 
A more comprehensive analysis of hyperparameter choices could also be performed, e.g., the choice of vision 
dropout. Future studies should investigate the association between specific vision dropout settings and model 
performance. Fourth, the clinical dataset had missing data, and any imputation may introduce bias, increase 
the variability of the model’s performance, and affect the results. On scientific grounds, we intentionally used 
the same (inconsistent) impute values as other groups to compare our MeTra model to their models. A more 
systematic approach would benefit and result in more robust models. On clinical grounds, a thorough analysis 
of the model’s performance regarding missing and spurious data is required before deployment and use in 
the clinic. Specifically, excluding clinical parameter values by zero-tokens may lead to distribution shifts and 
impaired prediction performance. While we account for the distribution shifts through dropout layers in the 
model architecture of MeTra, future work should explore alternative methods to exclude zero-masked tokens 
from the input (for example, as introduced by He et al.32). Adopting their approach would involve masking out 
missing clinical events at specific time points that are fed into the model individually. However, the computational 
burden caused by the quadratic scaling and associated memory requirements should be considered. Fifth, when 
interpreting our results in the context of the pertinent literature, it is essential to realize that the referenced 
results of other groups’ models only indicate the range of potential outcomes. A more thorough comparison 
would require strict standardization of all aspects, i.e., the models would have to be trained on the same data, 
and the data processing pipeline would have to be identical with a fixed random seed for augmentations. Sixth, 
another limitation relates to the variable time difference between imaging and non-imaging data. The non-
imaging (clinical) data were collected during the first 48 h after a patient had been admitted to the ICU. In 
contrast, the last chest radiograph acquired during a patient’s ICU stay was included as the (paired) imaging 
data14. In the patient subpopulation of the MIMIC dataset that was included in our study (for whom clinical 

Table 3.   Comparison of MeTra to current state-of-the-art methods for survival prediction in patients in 
intensive care in terms of area under the receiver operating characteristic curve (AUROC) and the area under 
the precision recall curve (AUPRC). Means [95% confidence intervals].

Method AUROC AUPRC Comments

Early14 0.827 [0.801, 0.854] 0.485 [0.417, 0.555]
Clinical parameters (CP) and imaging data are first pre-trained separately. Subsequently, the latent 
representation of both modalities is concatenated, and a final classification layer is trained to merge the 
inputs

Joint14 0.825 [0.798, 0.853] 0.506 [0.436, 0.574]
CP and imaging data are fed through separate feature extraction layers and then concatenated and fed 
through a final classification head to form the final prediction. Training is performed in an end-to-end 
setting

MMTM14,42 0.819 [0.788, 0.846] 0.474 [0.402, 0.544] A Multimodal Transfer Module14,42 (MMTM) is added after feature extraction of both modalities to merge 
the inputs

DAFT14,16 0.828 [0.799, 0.854] 0.492 [0.427, 0.572] A Dynamic Affine Feature Map Transform14,16 (DAFT) is used after feature extraction of both modalities to 
scale and shift the resulting feature maps to merge the modalities

Unified14,15 0.835 [0.808, 0.861] 0.495 [0.424, 0.567]
In every training iteration, a two-step approach is performed. First, feature extractors for the CP and 
imaging data (which do not necessarily have to be paired) are trained separately to extract meaningful 
features. Second, the previously learned feature extractors extract features for a set of paired samples, which 
are then concatenated and fed through a learnable classification head

MedFuse (PT)14 0.841 [0.813, 0.868] 0.544 [0.477, 0.609]

For CP and imaging data, separate feature extractors are learned on modality-specific labels. The final 
prediction is then formed by feeding both feature representations sequentially into a neural network of 
LSTM (Long Short-Term Memory) layers 
This AUROC cannot directly be compared to our method: The configuration of MedFuse(PT) uses 
considerably more imaging data (pre-training on 340,470 additional radiographs) and more CP (22,356 
samples) as compared to MeTra (6,798 samples for both CP and imaging data)

MedFuse (OPTIMAL)14 0.865 [0.837, 0.889] 0.594 [0.526, 0.655]

For CP and imaging data, separate feature extractors are learned on modality-specific labels. The final 
prediction is then formed by feeding both feature representations sequentially into a neural network of 
LSTM layers 
This AUROC cannot directly be compared to our method: MedFuse(OPTIMAL) uses the same additional 
imaging data as MedFuse(PT) and performs extensive selection on the CP data based on 22,356 samples

MedFuse (RI)14 0.817 [0.785, 0.846] 0.471 [0.404, 0.545]

For CP and imaging data, separate feature extractors are learned on modality-specific labels. The final 
prediction is then formed by feeding both feature representations sequentially into a neural network of 
LSTM layers
This AUROC cannot directly be compared to our method: MedFuse (RI) is not pre-trained on additional 
imaging data (as PT or OPTIMAL) but still uses more CP data (22,356 samples) as compared to MeTra 
(6,798 samples)

MeTra (CP + CXR) 0.863 [0.835, 0.889] 0.594 [0.526, 0.662]
MeTra is based on the transformer model, where data is processed as a set of tokens. The CP and imaging 
data are fed through corresponding transformer-based backbones to extract latent feature tokens merged in 
a final transformer encoder
MeTra is trained on fewer data than MedFuse OPTIMAL, PT, and RI
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parameters and chest radiographs were available), patients had an average ICU stay length of 5.4 ± 4.9 d (range 
1.1–99.6 d [n = 6125 patients]). In our clinical experience, ICU stay lengths are affected by admission diagnosis, 
patient demographics, constitution, comorbidities, complications, type of treatment, and others, which affect 
the variability of associated clinical parameters. Consequently, the substantial time difference outlined above is 
worth considering when drawing clinical conclusions. For any meaningful clinical insights, more specific clinical 
questions need to be asked, more refined patient populations need to be studied, and more fine-granular analyses 
need to be conducted. In addition, mortality may be determined by a range of conditions with limited bearings on 
the chest radiograph, which is inherently limited in differentiating pathologic processes characterized by similar 
radiographic changes, e.g., pulmonary opacifications33. In the clinic, the availability of clinical parameters aids 
in interpreting equivocal findings on chest radiographs and vice versa. Therefore, our findings of significantly 
improved survival predictions based on imaging and non-imaging data become clinically plausible, yet the real 
clinical benefit remains to be determined.

In conclusion, we developed and validated a multimodal medical transformer model that can be easily 
trained without specifically tweaking the architecture for specific input modalities and exhibits robustness to 
missing and heterogeneous data. We achieved excellent performance in the survival prediction of patients in 
critical care. We also make our model an open source for clinicians and researchers as a benchmark model on 
a well-defined dataset.

Online methods
Study design.  Following approval by the local ethical committee (Reference No. 028/19), this retrospective 
study followed local data protection regulations. All networks were trained on publicly available datasets 
described below and tested for their performance in predicting the survival of patients in intensive care.

Description of dataset.  The MIMIC-IV (Medical Information Mart for Intensive Care) dataset is a large 
US database of retrospectively collected data from two in-hospital database systems: a custom hospital-wide 
EHR and an ICU-specific clinical information system. The MIMIC-IV dataset contains EHR data and is linked 
to the MIMIC-chest-X ray (MIMIC-CXR) database, which provides the corresponding imaging data of the same 
patients21,34. All data is publicly available via physionet35. For full transparency and optimal comparability, we 
have used the same training test splits as other groups14, and we publish this split alongside the model. Table 1 
provides a detailed description of the dataset.

Data preprocessing.  The imaging and non-imaging data were extracted from the MIMIC database 
and preprocessed as described by Hayat et al.14 (Fig. 1). In detail, a subset of the MIMIC data was compiled, 
containing millions of clinical events corresponding to 17 clinical parameters (Table 2). Of these, the capillary 
refill rate and Glasgow Coma Scale (total) were missing for all patients and, thus, disregarded from our analysis, 
leaving 15 clinical parameters to be included in the model. The chest radiographs (obtained as anterior–posterior 
projections) from the MIMIC-CXR database were extracted and matched to the EHR data. The chest radiographs 
were first normalized to match the dataset statistics of ImageNet36 (in terms of means and standard deviations) 
and resized to a resolution of 384 × 384 to use pre-trained models (see below). Data were split into training 
(72%), validation (8%), and test (20%) data using patient-wise stratification but otherwise random allocation.

The multimodal medical transformer architecture.  Building on the transformer architecture 
proposed by Vaswani et al.13, which was subsequently extended for use in vision problems12, we designed our 
medical transformer model to provide a direct way to incorporate imaging and non-imaging data into the 
learning process. Principally, as data inside transformer models is processed in tokens, there are no restrictions 
for its application on other modalities. More precisely, MeTra takes input data from two different modalities. 
Chest radiographs xC×R ∈ R

H×W of image height H and width W were first processed by a vision backbone 
to extract high-level image features zC×R ∈ R

N×D that could be fused with the data of other modalities later. 
Here, N denotes the number of tokens and D denotes the dimensionality of the latent representation for each 
token. Any vision transformer model can be used for this task, thus allowing us to leverage models pre-trained 
on different datasets. In particular, MeTra uses a Vision Transformer (ViT)12 with a patch size of 16 that has been 
pre-trained on ImageNet without the final classification head as its backbone. Additionally, clinical parameters 
retrieved from the EHRs xCP ∈ R

K×T  are projected into the latent representation zCP ∈ R
M×D  using a linear 

layer to match the dimensionality D of the image tokens. Here, K denotes the number of EHR items and T denotes 
the number of recorded time steps for each item. We set T to 48 in all experiments, representing the values of the 
respective item for each hour within the first 48 h of patient admission to the ICU. A missing value is imputed 
by setting it to the most recent measurement value if available or by setting it to a pre-specified value (Table 2) as 
suggested by Harutyunyan et al.37. To fuse imaging and non-imaging data efficiently, the latent representations 
of both backbones are concatenated to form the latent representation zMULTI ∈ R

(N+M)×D . The self-attention 
mechanism used inside transformers to process the input sequence does not consider the order of the elements 
in the sequence. To address this issue, we define a set of N + M learnable tokens of dimension D that are added 
element-wise to the latent representation zMULTI . Subsequently, a learnable class token CLS is prepended to 
zMULTI , and the resulting multimodal representation is processed with a transformer encoder, where the multi-
head self-attention layers13 allow cross-modality information transfers. A multi-layer perceptron with a Sigmoid 
activation function is applied to the output to form the final prediction pSURVIVAL that quantifies the likelihood 
of in-hospital survival of the patient. The MeTra architecture is visualized in Fig. 5.

We trained three variants to compare the different modalities’ influence on the models’ final performance. 
The model only using the clinical parameters as retrieved from the EHR (“clinical parameters only-model”) was 
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restricted to this source of data by setting the pixel values of the corresponding chest radiograph xC×R to zero. 
Similarly, for the corresponding model that only used the chest radiographs for predictions (“radiographs-only 
model”), the clinical parameters xCP were set to zero. Finally, the combined model was trained by resuming 
the training routine from the checkpoint of the clinical parameters only-model with the highest area under 
the receiver operating characteristic curve (AUROC) value on the validation set (which is different from the 
test set). Motivated by preliminary findings [not shown] that indicated severe disbalance in the model’s focus 
and substantial disregard of the non-imaging data when trained on imaging and non-imaging data at once, we 
modified the training strategy of the combined model as follows: The imaging information was excluded during 
initial training and only provided (alongside the non-imaging information) during the subsequent training 
steps. Consequently, the combined model uses a similar setting as the unimodal models, i.e., starting from the 
same initial random states, but applying a full dropout of the imaging information during the initial epochs of 
training. No further restrictions on the available data were made; therefore, all information present in xC×R  and 
xCP  were used. To further prevent the multimodal transformer encoder from relying exclusively on information 
originating from the vision backbone, all pixels in xC×R were randomly set to zero with probability  pVDO (chosen 
to be 30% and based on preliminary studies). We coined this procedure vision dropout.

The training was performed on an NVIDIA Quadro RTX 6000 for 200 epochs to guarantee the convergence 
of each model. As the learning objective, we minimized the binary cross-entropy loss:

where y ∈ {0, 1} represents the ground truth value for survival. 1 denotes that the patient died during the hospital 
stay, and 0 denotes that the patient was discharged alive. We used the AdamW38 optimizer with a learning rate of 
5e − 6, which was decreased over time using the cosine annealing procedure39 until a final learning rate of 1e − 7 
was reached. The entire code was written using Python v3.8, and MeTra was implemented using PyTorch v1.11.0. 
For more information regarding our training procedure, please refer to Supplementary Table S1.

Description of experiments.  In the first experiment, the model was trained only on the clinical parameters 
and subsequently evaluated with these data as exclusive input.

LBCE = y · log(pSURVIVAL)+ (1− y) · log(1− pSURVIVAL),

Figure 5.   Medical Transformer (MeTra) architecture. The chest radiograph is first processed in the vision 
backbone, where it is split into patch embeddings and subsequently fed through a transformer encoder. 
Similarly, the clinical parameter items are fed through the clinical backbone, where they are projected to an 
embedding space with a dimensionality that matches that of the image embeddings. In the next step, a learnable 
position encoding token is added to the embeddings of both modalities. Finally, the modalities are fused by 
processing the embeddings with a transformer encoder that applies multi-head self-attention to all input tokens, 
thus allowing cross-modality information transfer. A multilayer-perceptron (MLP) is applied to the output to 
form the final prediction for in-hospital survival.
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In the second experiment, the model was trained only on the imaging data and evaluated with these data only.
In the third experiment, the model was trained on all data and evaluated using all data.
The combined model (third experiment) was provided with the full imaging data set but only parts of 

the clinical parameters as input to study how missing data impact its performance. In detail, this experiment 
was repeated 100 times with 2, 4, 6, 8, 10, 12, and 14 clinical parameters set to “missing” each time. Missing 
parameters were chosen randomly within each of the 100 runs to prevent bias in choosing variables.

We evaluated the AUROC, AUPRC, sensitivity, specificity, and positive predictive value for all experiments.

Statistical analysis.  Statistical analyses were conducted using Python v3.8 with its libraries NumPy and 
SciPy. Bootstrapping was employed with 10,000 redraws for each measure to determine the statistical spread and 
calculate p-values for differences40. For calculating sensitivity and specificity, a threshold was chosen according 
to Youden’s criterion41, i.e., a threshold that maximized (sensitivity + specificity). We included all patients for 
which both radiographs and clinical parameters were available.

Data availability
All data, including imaging and non-imaging data, is publicly available from the MIMIC database21,34 on 
PhysioNet (for MIMIC-IV, see https://​physi​onet.​org/​conte​nt/​mimic​iv/1.​0/. and for MIMIC-CXR-JPG, see https://​
physi​onet.​org/​conte​nt/​mimic-​cxr-​jpg/2.​0.0/). The code to extract the chest radiographs and corresponding 
clinical parameters can be found in the GitHub repository linked in the code availability section.

Code availability
The entire code is publicly available on GitHub via https://​github.​com/​Firas​Git/​MeTra. We also provide detailed 
information on all data splits into training and testing for other groups to compare their algorithms with ours.
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