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Abstract

Mosaic variants (MVs) reflect mutagenic processes during embryonic development and 

environmental exposure, accumulate with aging, and underlying diseases such as cancer and 

autism. The detection of noncancer MVs has been computationally challenging due to the 

sparse representation of non-clonally expanded MVs. Here we present DeepMosaic, combining 

an image-based visualization module for single nucleotide MVs, and a convolutional neural 

networks-based classification module for control-independent MV detection. DeepMosaic was 

trained on 180,000 simulated or experimentally-assessed MVs and was benchmarked on 619,740 

simulated MVs, and 530 independent biologically tested MVs from 16 WGS, and 181 WES. 

DeepMosaic achieved higher accuracy compared with existing methods on biological data, with a 

sensitivity of 0.78, specificity of 0.83, and positive predictive value of 0.96 on noncancer WGS, 

as well as doubling the validation rate over prior best-practice methods on noncancer WES data 

(0.43 vs 0.18). DeepMosaic represents an accurate MV classifier for noncancer samples that can 

be implemented as an alternative or complement to existing methods.

Postzygotic mosaicism describes a phenomenon whereby cells arising from one zygote 

harbor distinguishing genomic variants1, 2. MVs can act as recorders of embryonic 

development, cellular lineage, and environmental exposure. They accumulate with aging2, 3 

and are implicated in over 200 noncancerous disorders4, 5. Collectively, MVs are estimated 

to contribute to 5-10% of the ‘missing genetic heritability’ in more than 100 human 

disorders4, 6–8.

Compared with the higher allelic fractions (AF) of 5-10% found in cancer or pre-cancerous 

mosaic conditions, AFs found in non-clonal disorders, or neutral variants used for lineage 

studies, are frequently an order of magnitude lower. Existing methods like MuTect29 and 

Strelka210, however, are based on classic statistical models, using heuristic filters that are 

often optimized for higher AF MVs seen in cancer. Similarly, because of their conceptual 

origin in cancer, most existing programs, including the recent NeuSomatic11, also require 

matched ‘noncancer’ control samples. This can be problematic when mutations are present 

across different tissues (‘tissue shared’ mosaicism), or when only one sample is available.

Recent methods that aim to overcome these limitations in noncancer MV detection, 

MosaicHunter12, and MosaicForecast13, are based on conceptually similar use of features 

extracted from raw data, rather than the sequence and alignment themselves, or replace 

heuristic filters with traditional machine-learning methods. While these are useful proxies, 

they represent a limited window into the sheer wealth of information contained in raw 

sequencing data. Furthermore, performance on whole-exome sequencing (WES) data is 

limited due to the intrinsically biased experimental nature of exome capture13, 14. To address 

these limitations, researchers often resort to visual inspection of raw sequence alignment in 
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a genome browser, a so-called ‘pileup’, to distinguish artifacts from true positive MVs15. 

This is a laborious and low-throughput process that allows spot checking, but cannot be 

implemented on a large scale for putative MV lists generated from programs like MuTect2 

or GATK Haplotypecaller using ‘ploidy’ setting of 50 16 often numbering in thousands.

Image-based representation of raw sequencing reads and the application of deep 

convolutional neural networks (CNNs) represent a potential solution for these limitations 

for non-MV detection. An example approach like DeepVariant11 was designed and 

trained for detecting only heterozygous or homozygous single nucleotide variants (SNVs) 

from direct representation of aligned reads. DeepVariant, however, cannot be used for 

noncancer MV detection. Here, we introduce DeepMosaic, comprised of two modules: 

a visualization module for image-based representation of SNVs separating reference and 

alternative supporting reads, as input for a convolutional neural network (CNN)-based 

classification module for MV detection. Nine different biological and computationally 

simulated datasets were used to train and benchmark DeepMosaic. Finally, large-scale deep 

amplicon sequencing (Methods) provided an orthogonal experimentally validated set of 

DeepMosaic-detected variants and allowed for direct comparison with other state-of-the-art 

methods.

To automatically generate a useful visual representation similar to a browser snapshot, 

we developed the visualization module of DeepMosaic (DeepMosaic-VM, Fig. 1a–d). The 

input for this visualization is short-read sequencing data, processed with a GATK current 

best-practice pipeline (insertion/deletion, or INDEL, realignment, followed by base quality 

score recalibration). DeepMosaic-VM exports this data into an ‘RGB’ image, representing a 

pileup at each genomic position (Method). In contrast to a regular browser snapshot used in 

DeepVariant, DeepMosaic encodes sequences as different intensities within one channel and 

uses other channels for base quality and strand orientation. DeepMosaic further separates 

the pileups into ‘ref’ reads and ‘alt’ reads based on the reference genome information 

(Fig. 1a–d). This improved pileup visualization allows the assessment of mosaicism at a 

glance for humans, and converts the biological variant detection problem into an edge- and 

shape-detection problem, which is more suitable for image-based classification by CNN 

models.

The classification module of DeepMosaic (DeepMosaic-CM) is based on CNN transfer 

learning for MVs. We trained 10 different CNN models with more than 180,000 image-

based representations from both true-positive and true-negative biological variants derived 

from several previously published high-quality public datasets with orthogonal experimental 

validations by amplicon sequencing or droplet digital PCR techniques17–19. To subsidize 

the requirement for CNN training, we included ~50% computationally simulated reads 

with spiked-in MVs (employing Illumina HiSeq error models) across a range of AFs and 

depths (Fig. 1e, Methods, and Supplementary Fig. 1a–b). This training dataset (BioData1 

and SimData1) was aimed to train a model with optimal performance on noncancer MV 

detection. To ensure performance in ‘real-world’ settings, we matched the distribution 

of AFs in the training set with experimentally determined AFs (Supplementary Fig. 1c). 

In addition, a range of expected technical artifacts, including false-positive variants with 

multiple alternative alleles, false-positive variants located near homopolymers >5 bp or 
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on the edge of di-nucleotide repeats, and variants that are detected as alignment artifacts 

after the validation experiments17, 18, were manually curated and labeled as negative in the 

training set to represent expected pitfalls that often result in false positive noncancer MVs 

for other programs (Supplementary Fig. 1d).

To further expand training across a range of different read depths, the biological training 

data were also up- and down-sampled to obtain data at read depths ranging from 30x 

to 500x (Supplementary Fig. 1e), covering the range of the most commonly used WGS 

and WES read depths in current clinical and scientific settings. In addition to the output 

from DeepMosaic-VM, we further incorporated population genomic and sequence features 

(e.g. population allele frequency from population study, genomic complexity from field-

acceptable database, the ratio of read depth by experimental design), which are not easily 

represented in an image, as input for the classifier (Fig. 1f). Depth ratios were calculated 

from the expected depth and used to exclude false-positive detections from potential copy 

number variations (CNVs) or aneuploidies. gnomAD population allelic frequencies were 

used to exclude common variants20. Segmental duplication and repeat masker regions were 

used to exclude 24% of the genome consisting of low-complexity regions.

Ten different CNN architectures were trained on the 180,000 variants described above. The 

CNN models included Inception-v3 21, which was re-trained and used by DeepVariant; Deep 

Residual Network22 (Resnet) which was re-trained and used in the control-dependent caller 

NeuSomatic; Densenet23, and 7 different builds of EfficientNet24, to optimize performance 

on rapid image classification (details were documented in Methods, network structure and 

dimension of convolutional layers are provided in Supplementary Fig. 2a). Each model 

was trained with 5 to 15 epochs to optimize the hyper-parameters until training accuracies 

plateaued (>0.90).

To compare the performance of post-training models and to contrast models trained with 

distinct datasets, we employed an independent gold-standard validation dataset of ~400 

MVs from one gold-standard brain sample generated by the Brain Somatic Mosaicism 

Network16 (BioData2, Methods) and another amplicon-validated dataset from 18 samples 

from a publicly available dataset we recently published19 (BioData3, Methods). On these, 

EfficientNet-b4 showed the highest accuracy, Matthews’s correlation coefficient, and true 

positive rate when trained for 6 epochs (Supplementary Fig. 2b). We thus selected this as the 

default model of DeepMosaic-CM (Fig. 1f). Additional EfficientNet-b4 models trained on 

the 1:1 mixture of biological data and simulated data showed similar performance compared 

with biological data only training set but much higher specificity compared with models 

trained only on simulated data (Supplementary Fig. 2c).

To uncover the information prioritized by the selected default model, we used a gradient 

visualization technique with guided backpropagation25 to highlight the pixels guiding 

classification decisions (Supplementary Fig. 3). The results suggested that the algorithm not 

only recognized the edges for reference and alternative alleles, but also integrated additional 

available information, such as insertion/deletions, overall base qualities, alignment artifacts, 

and other features, which may not be extracted by digested feature-based methods.
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We evaluated the performance of DeepMosaic using 20,265 variants from the training data 

that were hidden from model training and selection. The receiver operating characteristic 

(ROC) curve and precision-recall curves on the hidden validation dataset showed >0.99 

area under the curve for a range of coverages (30x ~500x, Supplementary Fig. 4a and 4b) 

across a range of AFs (Supplementary Fig. 4c and 4d), demonstrating good sensitivity and 

specificity.

Next, we benchmarked DeepMosaic’s performance relative to other detection software, 

using data generated from two distinct sequencing error models to test for its utility 

on general sequencing data. We compared the performance of DeepMosaic with the 

widely used MuTect2 (paired mode) and Strelka2 (somatic mode) followed by heuristic 

filters, MosaicHunter (single mode), and MosaicForecast (Methods). We generated two 

additional computationally simulated datasets of 439,200 and 180,540 positions based on 

the error model of a different Illumina sequencer with similar methods as the training set 

(NovaSeq, SimData2, Methods) or a similar ratio of true positive and true negative labels 

as real biological data19 by replacing reads from the ‘Genome in a Bottle’ sample HG002 

(NA24345, SimData3, Methods)26, 27, with AF ranges from 1% to 25%, and depth ranges 

from 50x to 500x. MuTect2 paired mode and Strelka2 somatic mode used simulated mutated 

samples as “tumor” and simulated reference or original HG002 samples as “normal” for 

their paired modes. DeepMosaic showed equal or better performance than all other methods 

tested, especially for low AF variants (Fig. 2 and Supplementary Fig. 5), noticeably, even for 

low read depth data (50x); and it performed better than methods that use the additional 

information from paired samples. Overall DeepMosaic showed a 1.5-3 fold increased 

detection sensitivity for AFs under 3% compared with other methods, with comparable 

specificity (Fig 2). This is likely because our models integrate additional genomic sequence 

and quality information from the original BAM file and are capable of distinguishing MVs 

from false-positive variants resulting from different sequencing errors.

To exclude limitations resulting from benchmarking with simulated data and demonstrate 

that models trained on PCR-amplified libraries are also useful for PCR-free sequencing 

libraries, we extended benchmarking to biological data. We performed the same comparison 

on the previously published 200x WGS dataset with 16 samples (blood and sperm) from 8 

healthy individuals7, 28 (BioData4). Paired methods compared two samples from the same 

individual, and control-independent samples used a published dataset of a panel of normals7. 

Variants detected by MuTect2 (paired mode), Strelka2 (somatic mode), and MosaicHunter 

(single mode) were subjected to a series of published heuristic filters7, 28. As we had access 

to the biological samples, we also performed orthogonal validation, using deep amplicon 

sequencing of 239 MVs with a representative AF distribution compared to the complete 

candidate variant list (Methods, Fig. 3a and 3b, Supplementary Table 1).

As expected from the test of the computationally generated data, DeepMosaic showed 

a high sensitivity (0.78), specificity (0.83), accuracy (0.79), and overall validation rate 

(96.3%, 158/164) among all 5 methods (Fig. 3c), demonstrating that DeepMosaic, trained 

on PCR-amplified biological data and simulated data, can accurately classify PCR-free 

biological data. Of the 819 WGS MVs detectable by DeepMosaic, 21.0% (172/819, 33/34 

experimentally validated as positive) were overlooked by MosaicForecast, 30.1% (247/819, 
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96/98 validated) by MosaicHunter, 26.7% (219/819, 90/94 validated) by Strelka2 (somatic 

mode) with heuristic filters, and 42.9% (351/819, 81/85 validated) by MuTect2 (paired 

mode) with heuristic filters28. DeepMosaic also accurately detected variants with relatively 

low AF and outperformed other methods across most of the AF bins (Fig. 3d). We 

additionally tested the performance of NeuSomatic on the same dataset, and it showed 

higher specificity (0.92) but much lower sensitivity (0.33) on the orthogonally validated 

dataset (Supplementary Fig. 6). 49.9% DeepMosaic variants (409/819, 99/105 validated) 

were missed by NeuSomatic, indicating that neural networks trained on cancer data might 

underperform on a noncancer biological dataset.

In current practice, researchers often combine multiple programs in one variant detection 

pipeline to detect different categories of MVs7, 28, 29. We thus further compared DeepMosaic 

with different WGS pipelines used in recent publications, using data from 200x WGS of 

the 16 samples28: 1] With the MosaicForecast pipeline13, which uses MuTect2 single mode 

(each sample compared with the publicly available panel of normal) as input; 2] With what 

we recently published as the M2S2MH pipeline 28, combining MuTect2 paired mode (i.e. 

compared between different samples from the same individual), Strelka2 somatic mode and 

MosaicHunter single mode followed by a series of heuristic filters (Supplementary Fig. 7a). 

Of the 819 MVs identified by DeepMosaic, 79.0% (647/819, 125/130 validated) overlapped 

with MosaicForecast and 68.4% (560/819, 87/91 validated) overlapped with M2S2MH. 

In contrast, 21.0% (172/819, 33/34 validated) were undetected by MosaicForecast, and 

33.0% (271/819, 71/73 validated) were overlooked by M2S2MH. These variants, uniquely 

detected by DeepMosaic, all showed validation rates> 95% (Supplementary Fig. 7b–d), 

demonstrating the accurate detection of a considerable number of variants undetectable by 

widely used methods.

To test the performance of DeepMosaic on data widely curated clinically, we compared 

detection sensitivity for genome samples with standard WGS read depth, by down-sampling 

blood-derived data from a 70-year-old healthy individual, in whose blood we observed 

the highest number of mosaic variants (due to clonal hematopoiesis28). As all programs 

had high validation on this sample at 200x, the recovery rate was used to distinguish the 

ability of different programs to detect clonal hematopoiesis variants. DeepMosaic showed 

a similar recovery in the down-sampled data (Supplementary Fig. 8) as M2S2MH and 

slightly outperformed MosaicForecast at 100x and 150x. We found that the performance 

of DeepMosaic was not substantially influenced by the read depth according to the down-

sampling benchmark on biological data.

To understand whether different WGS pipelines had unique strengths or weaknesses, we 

separated all the detected variants into 7 groups (G1-G7) based on sharing between 

different pipelines (Supplementary Fig. 8a). DeepMosaic specific variants showed similar 

base substitution features compared with other methods (Supplementary Fig. 8b). Similar 

to the computationally derived data, we found that DeepMosaic recovered additional low 

AF MVs with high accuracy (validation rate 95%, Supplementary Fig. 8c). Finally, we 

summarized the genomic features of variants detected by DeepMosaic and other pipelines. 

All caller groups reported similar ratios of intergenic and intronic variants (Supplementary 

Fig. 9a). Analysis of other genomic features showed DeepMosaic-specific variants (G1) 
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expressed consistency with other groups (Supplementary Fig. 9b), reflecting that the low-

fraction variants detectable only by DeepMosaic did not represent technical artifacts. Further 

detailed SBS signature analyses with a larger number of variants will shed light on genetic 

mechanisms detected by DeepMosaic and other callers at different AF.

Compared to WGS, the selection of exonic regions in WES is prone to introducing capture 

bias and other artifacts, which can impact MV detection, often exhibiting relatively low 

detection rates and high false-positive rates14. Furthermore, methods like MosaicForecast 

do not explicitly support WES13. As the image representation of WES—unlike the 

classical feature extraction methods—is expected to be similar to WGS, we postulated that 

DeepMosaic, even as currently trained on genome data, could perform satisfactorily on WES 

data as well. Thus, we benchmarked DeepMosaic on our recent noncancer WES dataset. 

Of 181 samples from 101 individuals who underwent 300x WES (BioData5, Methods, 

Supplementary Fig. 10a and 10b), candidate MVs were detected by DeepMosaic and 

the BSMN best-practice pipeline16. Experimental validation on 291 of the 585 candidate 

variants showed a higher validation rate for DeepMosaic (43.1%) compared with the best-

practice pipeline (17.6%, Fig. 3e and Supplementary Table 2). DeepMosaic also consistently 

demonstrated high specificity (0.86) and accuracy (0.78), with compromised sensitivity 

(0.43) likely due to differences in the nature of exonic and genomic sequencing. Thus, 

DeepMosaic has the ability to complement and potentially improve upon existing pipelines 

on large-scale existing noncancer WES data.

Compared to noncancer MVs, the clonal expansion of cancer-related MVs will result in a 

much higher portion of cancer MVs in the genome, and different mutation features for tools 

to recognize. NeuSomatic was trained on cancer samples and demonstrated lower sensitivity 

on noncancer MVs (Supplementary Fig. 6). We expect similar performance for DeepMosaic 

for cancer samples, and thus systematically estimated the performance of DeepMosaic, 

with its current models, on cancer WES data. We re-processed 2430 WES samples from 

the TCGA-MC3 data collection (BioData6 and Methods), employed DeepMosaic, and 

compared the result with 5 other callers (MuSE30, MuTect9, SomaticSniper31, VarScan2 
32, and Radia33) provided in the original publications34. Benchmarked by the gold-standard 

dataset34, DeepMosaic demonstrated high specificity (0.97) and accuracy (0.77), similar 

to noncancer WES and WGS. Due to the different nature of somatic mutations described 

above, however, the sensitivity was lower (0.08, Supplementary Table 3 and Supplementary 

Table 4). We found that some variants defined as technical artifacts in the DeepMosaic 

training set, for example, 24% of variants with allelic fractions higher than 0.5 (674175 of 

2814168 total variants), variants with multiple alternative alleles, and/or with copy number 

alternations or aneuploidies, were defined as true positive in tumor samples. As such, we do 

not recommend the use of DeepMosaic for cancer in its current form, unless further training 

sets are used to optimize the detection of these mutation types.

While the cancer WES datasets were not suitable for DeepMosaic, they were suitable for the 

estimation of computational resources. We further estimated the computational resources for 

DeepMosaic based on 1215 WES and 48 WGS datasets, DeepMosaic consumed an average 

of 1403.8 (range 9.1-50168.9) seconds on one WES sample and 22718.2 (range 6565.8 – 

60800.0) seconds for a 300x genome, an average of 1.3Gb (range 0.9Gb – 1.8Gb) maximum 
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memory for an exome and an average of 1.2Gb (range 1.1Gb – 1.3Gb) for a genome, which 

could be accelerated by more CPU nodes or using GPU nodes (Supplementary Table 5, 

Supplementary Fig. 10c and 10d).

DeepMosaic detects noncancer mosaic SNVs from short-read sequencing data and does 

not require a matched control sample. Compared with NeuSomatic which compresses all 

the bases in a genomic position into 10 features35, DeepMosaic-VM provides a complete 

representation of information present in the BAM file and showed higher sensitivity on 

noncancer MVs. Compared with other re-coding methods like DeepVariant11, DeepMosaic-

CM can distinguish between MVs and other genotypes. DeepMosaic-VM can be applied 

as an independent variant visualization tool for users’ convenience. To further improve 

accuracy, DeepMosaic integrates four genomic features and population information absent in 

the raw BAM files.

Both biological and simulated data showed that DeepMosaic has the potential to identify 

MVs at relatively high sensitivity and accuracy for WGS at depths as low as 50x. For 

the past 10-15 years, hundreds of thousands of WGS datasets from clinical, commercial, 

or research labs have been generated at relatively low depth, but most have not been 

subjected to unbiased mosaicism detection due to the lack of sufficiently sensitive methods. 

DeepMosaic could enable a genome-level unbiased MV detection that requires only 

conventional sequencing data. For instance, clonal hematopoiesis without a known driver 

mutation is reported36 but can be difficult to detect because of technical limitations induced 

by noise and lower supporting read counts37.

By using a training set comprising representative technical artifacts such as homopolymers 

and truncated reads, DeepMosaic acquired the power to distinguish biologically true 

positive from false positive MVs. These might have otherwise been filtered out by rule-

based methods like MosaicHunter12 or MosaicForecast13. We demonstrated that training 

the models on a mixture of ~1:1 simulated and biological data did not adversely affect 

performance on an independent biological evaluation set. We also demonstrated that 

DeepMosaic worked well for various Illumina short-read sequencing platforms applying 

different library preparation strategies (PCR-amplified and PCR-free).

Although the EfficientNet-b4 model performed best, we provide all pre-trained CNN 

models (Densenet, EfficientNet, Inception-v3, and Resnet) on GitHub. DeepMosaic users 

can prepare their own data with labeled genotypes for training, generate data-specific, 

personalized models, test other potential factors influencing detection sensitivity such as the 

ratio of positive: negative labels, and increase the detection specificity on specialized data 

sets. For instance, homopolymers and tandem repeats are increasingly recognized in disease 

and development, but, because of the limited training data, are currently not detected with 

DeepMosaic; however, users could retrain with such specialized datasets. Likewise, although 

detecting MVs from WES can be challenging, DeepMosaic outperformed the existing best-

practice pipeline. We propose that further training on large-scale experimentally-validated 

WES data could further improve performance.
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While we propose DeepMosaic as a tool for MV detection in WGS and WES, it is not 

designed to detect mosaic INDELs and mosaic repetitive variants, regions known to be 

fraught with errors, nor is DeepMosaic, in its current form, suitable for cancer samples. 

In practice, MosaicForecast can detect mosaic INDEL variants with reasonable accuracy, 

while M2S2MH has good performance for tissue-specific variants due to the inclusion 

of additional information from the “normal” comparison sample. And methods such as 

MuTect2 paired mode showed a higher sensitivity for cancer samples. Thus, different 

methods complement one another and should be selected for the purpose.

Despite the features from image representation and a neural network-based variant classifier, 

DeepMosaic can reproducibly identify the majority (~70%) of WGS MVs detectable 

by conventional methods. This unique architecture results in higher sensitivity, and the 

detection of variants with relatively lower AF, both in simulated and experimentally 

derived, and orthogonally validated data. DeepMosaic shows a drop of sensitivity at higher 

AF, likely due to the inclusion of depth ratio, which helps to avoid false-positive calls 

from CNV. DeepMosaic showed consistently high accuracy in noncancer WGS and WES 

data (Supplementary Table 4) and thus is suitable for high-specificity variant detection. 

Nevertheless, the higher accuracy at lower AFs should make it a good complement to other 

methods.

Population allele frequencies used in this study also rely on a matched ancestry background 

to avoid population stratification. Annotations such as gene names, variant functional 

annotations, gnomAD allelic frequency, homopolymer, and dinucleotide repeat annotation, 

as well as segmental duplication and UCSC repeat masker regions are provided in the final 

output to facilitate customization, as described at the GitHub homepage of DeepMosaic 

(https://github.com/Virginiaxu/DeepMosaic). Finally, apart from MuTect2 single mode, 

DeepMosaic can also process WGS and WES variant lists generated by multiple methods 

such as the GATK HaplotypeCaller with “ploidy” 50 or 10016. Thus, DeepMosaic can be 

used directly as is or can be customized to the needs of the end-users, providing an adaptable 

MV detection workflow.

Methods

Visualization of MVs

Visualization of mosaic variants was based on Python (v3.7.81) packages Pysam (v0.11.2.2, 

https://github.com/pysam-developers/pysam) and NumPy (v1.16.2, https://numpy.org/), The 

input for this visualization is short-read sequencing data in the format of a BAM file, 

processed with a GATK (v3.8.1) best-practice pipeline (with insertion/deletion, or INDEL, 

realignment, followed by base quality score recalibration). Inspired by DeepVariant11, 

DeepMosaic-VM exports this data into an ‘RGB’ image, representing a pileup at each 

genomic position, as well as generating a NumPy object for the classification module. 

In contrast to presenting scattered reads by DeepVariant, DeepMosaic encodes separated 

sequences piling up into ‘ref’ reads and ‘alt’ reads based on the reference genome 

information. This improves pileup visualization and allows the assessment of mosaicism 

at a glance for humans, and converted the biological variant detection problem into an 

edge- and shape-detection problem, which is more suitable for image-based classification 
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by convolutional neural network models (https://github.com/Virginiaxu/DeepMosaic/blob/

master/deepmosaic/featureExtraction.py).

Curation of training and benchmark data

SimData1: For the initial training procedure, 10,000 variants were randomly generated on 

chromosome 22 to get the list of alternative bases. Pysim38 was then used to simulate paired-

end sequencing reads with random errors generated from the Illumina HiSeq sequencer error 

model. Alternative reads were generated by replacing the genomic bases with the alternative 

bases in the list, with the same error model. Alternative and reference reads were randomly 

mixed to generate an alternative AF of 0, 1, 2, 3, 4, 5, 10, 15, 20, 25, and 50%. The 

data were randomly sampled for a targeted depth of 30, 50, 100, 120, 150, 200, 250, 300, 

400, and 500x. FASTQ files were aligned to the GRCh37d5 human reference genome with 

BWA (v0.7.17) mem command. Aligned data were processed by GATK (v3.8.1) and Picard 

(v2.18.27) for marking duplicates, sorting, INDEL realignment, base quality recalibration, 

and germline variant calling. The up- and down-sampling expanded this dataset into a pool 

of 990,000 different variants. Depth ratios were calculated as defined. To avoid the situation 

that randomly generated mutations fall on a common SNP position in the genome, which 

would bias the training and benchmarking, gnomAD allele frequencies were randomly 

assigned from 0 to 0.001 for simulated mosaic positive and from 0 to 1 for simulated 

negative variants, which were established as homozygous or heterozygous.

SimData2: To compare the performance of DeepMosaic and other software to detect 

mosaicism on simulated data, we randomly generated another simulation dataset, with the 

following modifications: 1] only 7610 variants on the non-repetitive region of chromosome 

22 were considered true positive genomic positions; 2] random errors were generated from 

the Illumina NovaSeq sequencer error model. 3] Data was randomly down-sampled and 

up-sampled for a targeted depth of 50, 100, 200, 300, 400, and 500x. A total of 439,200 

different variants were generated. FASTQ files were aligned and processed with BWA 

(v0.7.17), SAMtools (v1.9), and Picard (v2.18.27). The data were subjected to DeepMosaic 

as well as MuTect2 (GATK v4.0.4, both paired mode and single mode), Strelka2 (v2.9.2), 

MosaicHunter (v1.0.0), and MosaicForecast (v8-13-2019) with different models trained for 

different read depth (250x model for depth≥300x).

SimData3: We further generated another simulation dataset in a way that was 

fundamentally different from the training data with a positive: negative ratio similar to 

real data19 to compare the performance of DeepMosaic and other software for the detection 

of mosaic variants. We selected 30,090 genomic positions with reference homozygous 

genotype from a different genomic region (the entire Chromosome 1) of the whole-genome 

deep sequences from the ‘Genome In a Bottle’ sample HG002 (NA24345)27. The genomic 

positions from the 30,090 positions were genotyped as homozygous and fulfilled additional 

criteria 1] zero alternative bases in the raw sequencing data; 2] no detectable insertions/

deletions in the position of interest; 3] have a genomic distance of at least 1000 bases 

between each other. On this clear background, 15,471 of them were labeled as “true 

negative“ with reference homozygous genotype, and 6868 were labeled as “true positive” 

mosaic variants with expected alternative AF 0.01, 0.02, 0.03, 0.04, 0.05, 0.10, 0.15, 0.20, 
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and 0.25 (on average 763 variants for each genotype); 7751 were labeled as “true negative” 

heterozygous variants with alternative AF 0.50; the latest version of a different software 

BAMSurgeon (updated 24 Dec 2020) was used to generate this simulation dataset and 

retain the sequencing errors from the original biological samples. The original bam file was 

first up-sampled, and alternative reads were replaced to generate the expected AF, mapped 

back to the genome, and merged back to the bam file, according to the software manual26. 

Bam files with and without simulated data were downsampled to 500x, 400x, 300x, 200x, 

100x, and 50x. The data were subjected to DeepMosaic as well as MuTect2 (GATK 

v4.0.4, both paired mode, and single mode), Strelka2 (v2.9.2), MosaicHunter (v1.0.0), and 

MosaicForecast (v8-13-2019) with different models trained for different read depth (250x 

model for depth≥300x), the performance of the 180,540 points were evaluated.

BioData1: Variant information and raw sequencing read from 80-120x PCR-amplified 

PE-150 WGS data of 29 samples from 6 normal individuals were extracted from published 

data17, 18 on SRA (SRP028833, SRP100797, and SRP136305). 921 variants identified 

from WGS of samples from different organs of the donors and validated by orthogonal 

experiments were selected and labeled as mosaic positive. 492 genomic positions from the 

control samples validated with 0% AF were selected and labeled as negative. 162 variants 

with known sequencing artifacts were first filtered by MosaicHunter, manually selected, and 

labeled as negative. The 1575 genomic positions were also down-sampled and up-sampled 

for a targeted depth of 30, 50, 100, 150, 200, 250, 300, 400, and 500x, to expand this 

dataset into a pool of 14,175 different conditions. Depth ratios were calculated accordingly, 

and gnomAD allele frequencies, segmental duplication, and repeat masker information were 

annotated.

Categories of technical artifacts include a) variants with multiple alternative alleles, as 

from our experiences, the chance of a noncancer MV occurring twice at the same genomic 

position at the early embryonic development stage is rare; b) alignment artifacts, evidenced 

by short truncated or hard-clipped reads mapping to a certain genomic region, resulting in 

small truncated mapped reads piled up; c) ultra low mapping quality and base reads; d) 

ultra high allelic fraction variants because they are not expected in postzygotic noncancer 

situations.

The entire BioData1 and random subsampling from SimData1 were combined to generate 

a training and validation dataset with approximately 200,000 variants from the 1,000,000 

training variants. 180,000 variants were selected for model training, 45% from SimData1 

and 55% from resampling of BioData1. This dataset was used for the model training 

and evaluation of the sensitivity and specificity of the selected model, and their features 

including AF distribution and biological appearances were very similar to published 

biological data (Supplementary Fig. 1).

BioData2: To estimate the performance of the pre-trained models and select the model with 

the best performance for DeepMosaic-CM, we introduced an independent gold-standard 

dataset. Variants were computationally detected from replicated sequencing experiments 

generated from 6 distinct sequencing centers and validated in 5 different centers, known 

as the common reference tissue project from the Brain Somatic Mosaicism Network16. 
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400 variants underwent multiple levels of computational validation including haplotype 

phasing, CNV exclusion, population shared exclusion, as well as experimental validation 

such as whole-genome single-cell sequencing, Chromium Linked-read sequencing (10X 

Genomics), PCR amplicon sequencing, and droplet digital PCR. After validation, 43 true 

positive MVs and 357 false positive variants were determined as gold-standard evaluation 

sets for low-fraction single nucleotide MVs from the 250x WGS data16. We extracted deep 

whole-genome sequences for those variants, labeled them accordingly, and used them as 

gold standard validation set for model selection (Supplementary Fig. 2).

BioData3: To evaluate the performance of DeepMosaic-CM trained on a different portion 

of biological variants, we included another large-scale validation experiment we recently 

generated. Variant information and raw sequencing read of 300x PCR-free PE150-only 

WGS of 18 samples from 9 different brain regions, cerebellum, heart, liver, and both kidneys 

of one individual was extracted from the capstone project of the Brain Somatic Mosaicism 

Network19. 1400 genomic positions with variants identified from the WGS sample and 

reference homozygous/heterozygous controls validated by orthogonal experiments were 

selected and labeled as positive and negative according to the experimental validation result. 

The 1400 genomic positions were also down- and up-sampled for a targeted depth of 30, 

50, 100, 150, 200, 250, 300, 400, and 500x. Depth ratios were calculated accordingly, and 

gnomAD allele frequencies, segmental duplication, and repeat masker information were 

annotated.

BioData4: This additional WGS dataset was used to compare the performance of 

DeepMosaic and other mosaic variant callers on biological samples. 16 WGS samples 

from the blood and sperm of 8 individuals were sequenced at 200x28 (PRJNA588332). 

WGS was performed using an Illumina TrueSeq PCR-free kit with 350bp insertion size and 

sequenced on an Illumina HiSeq sequencer. Reads were aligned to the GRCh37d5 genome 

with BWA (v0.7.15) mem and duplicates were removed with sambamba (v0.6.6) and base 

quality recalibrated by GATK (v3.5.0). Processed BAM files were subjected to DeepMosaic 

as well as MuTect2 (GATK v4.0.4, both paired mode and single mode), Strelka2 (v2.9.2), 

MosaicHunter (v1.0.0), and MosaicForecast (v8-13-2019) with 200x models trained for 

the specific depth. Data from one of the individuals (F02) was down-sampled to 150x, 

100x, 50x, and 30x with the SAMtools (v1.9) view command for the further benchmark of 

DeepMosaic.

BioData5: We included an additional WES dataset that was used to compare the 

performance of DeepMosaic and other mosaic variant calling pipelines on WES data. 181 

WES samples from the brain and blood/saliva of 101 individuals were sequenced at ~300x 

(NDA). gDNA was extracted from pulverized brain and white blood cells/buccal epithelial 

samples using Qiagen Miniprep and Maxiprep kits according to the protocols provided by 

the manufacturer. Genomic DNA samples were prepared for whole-exome sequencing using 

the Agilent SureSelect XT Human All Exon v.5 kits and sequenced on an Illumina HiSeq 

2500 sequencer at a targeted depth of ~300x. Reads were aligned to the GRCh37d5 genome 

with BWA(v0.7.17) mem and duplicates were removed and base quality recalibrated by 

GATK (v4.0.4) according to the established best-practice pipeline16. Processed BAM files 
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were subjected to the DeepMosaic pipeline followed by MuTect2 (GATK v4.0.4) single 

mode as well as GATK (v4.0.4) Haplotypecaller (“polidy” 50) and previously established 

filters16.

BioData6: We assessed the performance of DeepMosaic on a large-scale tumor dataset. 

We downloaded and analyzed 2430 WES samples from 1215 individuals from six 

different cancer types from the TCGA-MC3 collection34. 468 were patients with Skin 

Cutaneous Melanoma (SKCM), 406 with Bladder Urothelial Carcinoma (BLCA), 157 with 

Glioblastoma Multiforme (GBM), 112 with Breast invasive carcinoma (BRCA), 50 with 

Lung Squamous Cell Carcinoma (LUSC), and 23 with Colon Adenocarcinoma (COAD). 

Performance was compared with call sets provided in their respective original publications. 

Data were downloaded from the GDC portal (https://portal.gdc.cancer.gov/, sample IDs 

provided with variants in Supplementary Table 3). Fastq files were generated using Picard 

SAMTOFASTQ and aligned to GRCh37d5 genome with BWA (v0.7.17) mem. Duplicates 

were removed, reads near INDEL regions were realigned, and base quality scores were 

recalibrated with GATK v3.8.1 and Picard v2.20.7. Processed BAM files were subjected 

to the DeepMosaic pipeline followed by MuTect2 (GATK v4.0.4) single mode, then the 

final call set was compared with the TCGA-MC3 call set detected by MuSE30, MuTect9, 

SomaticSniper31, VarScan2 32, and Radia33 using the publicly released gold standard 

(https://gdc.cancer.gov/about-data/publications/mc3-2017) from the same dataset34. Part of 

the computing resources and CPU consumption also were estimated from this dataset with 

Linux command time.

Neural network building and model training

For the 10 neural network architectures, Inception-v3, Resnet, and Densenet were imported 

from PyTorch’s (v1.4.0) built-in library, while the 7 different builds of EfficientNet were 

imported from the efficientnet_pytorch (v0.6.1) Python (v3.7.1) package. The final fully 

connected layer of each model was replaced to be fed into 3 output units representing 

intermediate results instead of the default 1,000 output units for the 1,000 ImageNet classes 

to substantially reduce the total images required to extract basic features such as edges, 

and stripes from raw images. A transfer-learning method was adopted for model training. 

Each model’s initial pre-trained weights provided by Pytorch and efficientnet_pytorch 

packages were trained on the ImageNet dataset. Before model training, we randomly divided 

the entire training dataset (including down-sampling and up-sampling of SimData1 and 

BioData1) into 80% “training” and 20% “evaluation” sets and fixed the split during model 

training while shuffling the order within the training set and evaluation set for each training 

epoch to form mini-batches for gradient descent. Each network architecture was trained 

using a batch size of 20 with a stochastic gradient descent (SGD) optimizer with a learning 

rate of 0.01, and momentum of 0.9. The training was terminated until the training losses 

plateaued and evaluation accuracy reached 90% for each model architecture. The training 

was conducted on NVIDIA Kepler K80 GPU Nodes on San Diego Supercomputer Centre’s 

Comet computational clusters. Codes, scripts, and functions used for training, together 

with the guidance and annotations were provided on the DeepMosaic GitHub page (https://

github.com/Virginiaxu/DeepMosaic/tree/master/deepmosaic/trainModel.py).
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Network selection

To select the “best-performing” neural network architecture among the trained Inception-v3, 

Resnet, Densenet, and 7 different builds of EfficientNet, the gold standard evaluation dataset 

(BioData2) were used to test each model’s performance on biological (non-simulated) 

MVs determined by the dataset. ACC (Accuracy), MCC (Matthews correlation coefficient 

(MCC)), and true positive rates were calculated for each model, and in the end, EfficientNet-

b4 at epoch 6 with the highest Accuracy, MCC, and True positive rate among all model 

architectures was selected as our DeepMosaic model. The performance of the DeepMosaic 

model (EfficientNet-b4 architecture) was further evaluated.

Independent model training and evaluation for DeepMosaic-CM

To evaluate the performance of DeepMosaic-CM when trained on a different portion of 

biological variants, 15 epochs were trained for the EfficientNet-b4 architecture on 5 different 

training sets consisting of 122, 424 genomic positions. EfficientNet was imported from 

the efficientnet_pytorch (v0.6.1) Python (v3.7.1) package. The 5 different training sets 

were generated based on SimData1, BioData1, SimData2, and BioData3. 1] BioData only: 

40,808 variants from the entire BioData1 and BioData3 were pooled. The overall positive: 

negative ratio was 26.8%:73.2%. 2] SimData only for SimData1: 40,808 variants were 

selected from SimData1 with the matched number of positive and negative labels as BioData 

only. 3] SimData only for SimData2: 40,808 variants that were agreed by both MuTect2 

and Strelka2 as “positive” or agreed by both methods as “negative” were selected from 

SimData2 with the matched number of positive and negative labels compared to BioData 

only. 4] BioData+SimData for SimData1: 40,808 variants half from BioData and half from 

SimData only for SimData1 were selected with the matched number of positive and negative 

labels compared to BioData only. 5] BioData+SimData for SimData2: 40,808 variants half 

from BioData and half from SimData only for SimData2 were selected with the matched 

number of positive and negative labels compared to BioData only. Each network architecture 

was trained using a batch size of 4 with a stochastic gradient descent (SGD) optimizer with 

a learning rate of 0.01, and momentum of 0.9. Fifteen different epochs were trained on 

each of the 5 training sets described above, and the model after each epoch is saved for 

performance evaluation. The training was conducted on NVIDIA GTX 980 GPU Nodes in 

San Diego Supercomputer Center’s Triton Shared Computing Cluster (TSCC). The training 

performance of the models was further evaluated on BioData2, which has not been used for 

any of the training procedures. The above models were also trained using codes described in 

https://github.com/Virginiaxu/DeepMosaic/tree/master/deepmosaic/trainModel.py.

Usage of DeepMosaic

Detailed instructions for users, as well as the demo input and output, are provided on GitHub 

(https://github.com/Virginiaxu/DeepMosaic).

Orthogonal validation with deep amplicon sequencing method

Deep amplicon sequencing analysis7 was applied to 239 variants from the 1146 candidates 

detected by all 5 mosaic variant callers from the 200× WGS of 16 samples from BioData428 

as well as 291 out of 585 candidates detected by both WES pipelines from the 181 
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samples from BioData5 to experimentally confirm the validation rate of DeepMosaic as 

well as other methods. PCR products for sequencing were designed with a target length 

of 160-190 bp with primers being at least 60 bp from the base of interest. Primers were 

designed using the command-line tool Primer339 with a Python (v3.7.3) wrapper. PCR was 

performed according to standard procedures using GoTaq Colorless Master Mix (Promega, 

M7832) on sperm, blood, and an unrelated control. Amplicons were enzymatically cleaned 

with ExoI (NEB, M0293S) and SAP (NEB, M0371S) treatment. Following normalization 

with the Qubit HS Kit (ThermoFisher Scientific, Q33231), amplification products were 

processed according to the manufacturer’s protocol with AMPure XP Beads (Beckman 

Coulter, A63882) at a ratio of 1.2x. Library preparation was performed according to 

the manufacturer’s protocol using a Kapa Hyper Prep Kit (Kapa Biosystems, KK8501) 

and barcoded independently with unique dual indexes (IDT for Illumina, 20022370). The 

libraries were sequenced on a NovaSeq platform with 100 bp paired-end reads. Reads 

from deep amplicon sequencing were mapped to the GRCH37d5 reference genome by 

BWA mem and processed according to GATK (v3.8.2) best practices without removing 

PCR duplicates. Putative mosaic sites were retrieved using SAMtools (v1.9) mpileup and 

pileup filtering scripts described in previous TAS pipelines28. Variants were considered 

positively validated for mosaicism if 1] their lower 95% exact binomial CI boundary was 

above the upper 95% CI boundary of the control; 2] their AF was >0.5%. The number of 

references and alternative alleles calculated from the Amplicon validation was provided in 

Supplementary Table 1. Codes for primer design and data analyses were available on GitHub 

(https://github.com/shishenyxx/PASM).

Analysis of different categories of variants overlap with different genomic features

In order to assess the distribution of MVs and their overlap with genomic features 

across the genome, an equal number of variants (mSNVs/INDELs as in group G1-G7 

in Supplementary Fig. 6) was randomly generated with the BEDtools (v2.27.1) shuffle 

command within the region from Strelka2 without the subtracted regions (e.g. repeat 

regions). This process was repeated 10,000 times to generate distribution and their 95% 

CI. Observed and randomly subsampled variants were annotated with whole-genome histone 

modifications data for H3k27ac, H3k27me3, H3k4me1, and H3k4me3 from ENCODE v3 

downloaded from the UCSC genome browser (http://hgdownload.soe.ucsc.edu/goldenPath/

hg19/database/)—specifically for the overlap with peaks called from the H1 human 

embryonic cell line (H1), as well as peaks merged from 10 different cell lines (Mrg; 

Gm12878, H1, Hmec, Hsmm, Huvec, K562, Nha, Nhek, and Nhlf). Gene region, intronic, 

and exonic regions from NCBI RefSeqGene (http://hgdownload.soe.ucsc.edu/goldenPath/

hg19/database/refGene.txt.gz); 10 Topoisomerase 2A/2B (Top2a/b) sensitive regions from 

ChIP-seq data (Samples: GSM2635602, GSM2635603, GSM2635606, and GSM2635607); 

CpG islands: data from the UCSC genome browser (http://hgdownload.soe.ucsc.edu/

goldenPath/hg19/database/); genomic regions with annotated early and late replication 

timing40; high nucleosome occupancy tendency (>0.7 as defined in the source, all values 

were extracted and merged) from GM12878; enhancer genomic regions from the VISTA 

Enhancer Browser (https://enhancer.lbl.gov/); and DNase I hypersensitive regions and 

transcription factor binding sites from Encode v3 tracks from the UCSC genome browser 

(wgEncodeRegDnaseClusteredV3 and wgEncodeRegTfbsClusteredV3, respectively).
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Parameters and codes used for different mosaic variant callers and pipelines

Raw WGS sequencing data were aligned and processed with a GATK snakemake 

pipeline with INDEL realignment and base quality score recalibration added, previously 

deposited on GitHub (codes and parameters available at https://github.com/shishenyxx/

Adult_brain_somatic_mosaicism/tree/master/pipelines/WGS_processing_pipeline), genome 

version is described above. WGS and simulated variant calling using 

MuTect2 (paired model, GATK v4.0.4) and Strelka2 (somatic model, 

v2.9.2) were carried out on previously deposited pipeline (codes available 

on GitHub: https://github.com/shishenyxx/Adult_brain_somatic_mosaicism/tree/master/

pipelines/WGS_SNV_indel_calling_pipeline/Mutect2_PM_Strelka2). MuTect2 single mode 

（GATK v4.0.4）was carried out with a 300x panel of normal analysis, the control 

panel was collected from healthy individuals and not used in generating any of 

the training, testing, or validation data described in this manuscript codes previously 

deposited (https://github.com/shishenyxx/Adult_brain_somatic_mosaicism/tree/master/

pipelines/WGS_SNV_indel_calling_pipeline/Mutect2_single_mode). MosaicForecast 

(v8-13-2019) analysis was carried out with help from the original authors, model 

250xRFmodel_addRMSK_Refine.rds was used for >200x WGS, the other models 

(brain_MT2-PON.50x.rds, brain_MT2-PON.100x.rds, brain_MT2-PON.150x.rds, and 

brain_MT2-PON.200x.rds) were used according to different depth for the simulated 

and biological data, respectively. Codes for the MosaicForecast pipeline is publically 

available (https://github.com/shishenyxx/Adult_brain_somatic_mosaicism/tree/master/

pipelines/WGS_SNV_indel_calling_pipeline/MosaicForecast_pipeline). MosaicHunter 

(v1.0.0) single mode was ran under following the user guide (https://

github.com/zzhang526/MosaicHunter/tree/master/docs/ MosaicHunterUserGuide.pdf), 

parameters (30X_genome_b37_ctrl_cohort_2020_09_22.properties, 

50X_genome_b37_ctrl_cohort_2020_04_07.properties, 

100X_genome_b37_ctrl_cohort_2020_04_07.properties, 

150X_genome_b37_ctrl_cohort_2020_10_15.properties, 

200X_genome_b37_ctrl_cohort_2020_04_07.properties, 

300X_genome_b37_ctrl_cohort_2018_11_29.properties, 

400X_genome_b37_ctrl_cohort_2020_04_07.properties, 

500X_genome_b37_ctrl_cohort_2020_04_07.properties) and codes 

for WGS variant calling are provided on 

GitHub (https://github.com/shishenyxx/Adult_brain_somatic_mosaicism/tree/master/

pipelines/WGS_SNV_indel_calling_pipeline/MosaicHunter_single_mode_pipeline). The 

packages, parameters and performance analysis of all the above pipelines were described 

in our recent publications7, 19. DeepMosaic (v1.0.0) analyses were carried out with default 

parameters on the GitHub page (https://github.com/Virginiaxu/DeepMosaic). NeuSomatic 

was established based on the website, a singularity container was used to carry out the 

NeuSomatic analysis. Codes and parameters were available on GitHub (https://github.com/

shishenyxx/DeepMosaic/tree/master/For_publication).

The WES data from our FCD cohort (BioData 5) 41 and the TCGA-MC3 collection 

(BioData 6) were collected and bams are processed using a pipeline based on the 

data processing part of the BSMN common pipeline (https://github.com/shishenyxx/
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MCD_mosaic/tree/main/Pipelines/Alignment), followed by GATK haplotype caller with 

polidy 2 to call the germline variants for the indel annotations. The BSMN common 

pipeline for WES was carried out following the official release (https://github.com/bsmn/

bsmn-pipeline) from mapping to GATK (v3.8.2) haplotypercaller polidy 50 variant calling 

and the BSMN common filtering. Details for the parameters and their benchmarks are 

described in the original publication16.

Other software and versions

Bam and variant processing software also include Picard v2.18.27, BCFtools v1.10.32, 

sambamba v0.6.6, iFish, Define. Plotting and visualization software include R v3.5.1, 

ggplot2 v3.3.1, Rcpp v1.03, PyTorch v 1.6.0, pysam v0.11.2.2, Python v3.7.1 and v3.7.81, 

SciPy v1.3.1, pandas v0.24.2, matplotlib v3.1.1, numpy v1.16.2, and seaborn v0.9.0.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Data availability

WGS data used to generate the training set are available at the Sequence Read Archive 

(SRA, Accession No. SRP028833 and SRP100797, BioData1). The gold standard WGS 

data and validated capstone project data are available at the National Institute of Mental 

Health Data Archive (NIMH Data Archive ID 792 and 919: https://nda.nih.gov/study.html?

id=792, BioData2, and https://nda.nih.gov/study.html?id=919 BioData3) and the Brain 

Somatic Mosaicism Consortium Data Portal, independent benchmark brain genotyping is 

also part of the SRA accession PRJNA736951 (BioData3). Simulated data generated from 

NA24385 (HG002) are available at https://humanpangenome.org/hg002/. The independent 

sperm and blood deep WGS data are available at SRA (Accession No. PRJNA588332 and 

PRJNA660493, BioData4). Independent WES data from brain, blood, and saliva samples 

were available in NIMH Data Archive under study number 1484 (https://nda.nih.gov/

study.html?id=1484, BioData5). TCGA-MC3 data are available on the GDC portal (https://

portal.gdc.cancer.gov/, sample IDs provided with variants in Supplementary Table 3). 

Annotations downloaded from UCSC genome browser (https://genome.ucsc.edu/) and 

ANNOVAR (https://annovar.openbioinformatics.org/en/latest/).
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Fig. 1|. Image representation, model training strategies, and framework of DeepMosaic.
a, DeepMosaic-VM: Composite RGB image representation of sequenced reads separated 

into “Ref” - reads supporting the reference allele; or “Alts’’ - reads supporting alternative 

alleles; each outlined in yellow. b, Red channel of the compound image contains base 

information from the BAM file. “D” - deletion; “A” – Adenine; “C” – cytosine; “G” – 

guanine; “T” – thymine; “N” – low-quality base. Yellow box: Var: candidate position, 

centered in the image. c, Green channel: base quality information. Note that channel 

intensity was modulated in this example for better visualization. d, Blue channel: strand 

information (i.e. forward or reverse). e, Model training, model selection, and overall 

benchmark strategy for DeepMosaic-CM (Methods and Supplementary Fig. 1). Ten different 

convolutional neural network models were trained on 180,000 experimentally validated 

positive and negative biological variants from 29 WGS data from 6 individuals sequenced at 

100x17, 18 (BioData1), as well as simulated data with different AFs (SimData1) resampled 

to a different depth. Models were evaluated based upon an independent gold-standard 

biological dataset from the 250x WGS data of the Reference Tissue Project of the Brain 

Somatic Mosaicism Network16 (BioData2) as well as an independent 300x WGS dataset 

from the Brain Somatic Mosaicism Network Capstone project19 (Biodata3). DeepMosaic 
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was further benchmarked on 16 independent biological datasets from 200x WGS data28 

(BioData4), on 181 independently generated 300x noncancer WES data (BioData5), 2430 

TCGA-MC3 WES samples (BioData6), as well as 619,740 independently simulated variants 

(SimData2 and SimData3). Deep amplicon sequencing was carried out as an independent 

evaluation of variants detected by different software (Supplement Table 1). f, Application 

of DeepMosaic-CM in practice. Input images are generated from the candidate variants. 16 

convolutional layers extracted information from input images. Population genomic features 

were assembled for the final output. Images of positive and negative variants are shown as 

examples. Conv: convolutional layers; MBConv: mobile convolutional layers.
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Fig. 2|. DeepMosaic performance on simulated benchmark variants.
a, Benchmark test on 180,540 genomic positions (SimData3) generated by replacing reads 

from biological data with simulated MVs. DeepMosaic showed higher accuracy, F1 score, 

MCC (Matthews correlation coefficient), sensitivity, and comparable specificity compared 

with widely accepted methods for mosaic variant detection, specificity of all callers are close 

to 1. b, Sensitivity of DeepMosaic and other mosaic callers on SimData3 at simulated read 

depths and AFs. DeepMosaic performed equally well or better than other tested methods, 
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especially at lower read depths and lower expected AFs. Variant-stabilized square-root 

transformation was used for visualization purposes.
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Fig. 3|. DeepMosaic performance validated on biological data.
a, DeepMosaic and other mosaic variant detection methods were applied to 200x whole-

genome sequencing data from 16 samples, which were not used in the training or validation 

stage for any of the listed methods (BioData4). Raw variant lists were either obtained by 

comparing samples using a panel-of-normal7 strategy with MuTect2 single mode, between 

different samples from the same individual using MuTect2 paired mode or Strelka2 somatic 

mode or detected directly without control with MosaicHunter single mode with heuristic 

filters28. A total of 46,928 candidate variants from MuTect2 single mode were analyzed by 
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DeepMosaic and MosaicForecast. Orthogonal validation with deep amplicon sequencing 

was carried out on a total of 239 variants out of the 1146 candidates called by at 

least one method. b, Distribution of AFs of the whole candidate mosaic variant list and 

the 239 experimentally quantified variants. c, Comparison of validation results between 

different mosaic variant calling methods, ‘UpSet’ plot shows the intersection of different 

mosaic detection methods and the validation result of each category. Variants identified by 

DeepMosaic showed high sensitivity and specificity to biological data. d, Comparison of 

validation rate in different AF range percentage bins of variants. DeepMosaic showed the 

highest validation rate at a range of AFs, approximately 48 experimentally validated variants 

are shown in each AF bin. e, Comparision of experimental validation rate of DeepMosaic on 

WGS (BioData4) and WES (BioData5) outperforms other computational pipelines.
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