Table 3.
Model | Methods | Validation-loss | Validation-accuracy | Test-accuracy |
---|---|---|---|---|
Proposed model I (MobileNetV2+InceptionV3) |
FT on ADS-ALUF | 0.0275 | 99.41 | 99.91 |
Proposed model II (GoogleNet+SqueezeNet) |
FT on ADS-ALUF | 0.0953 | 97.14 | 99.79 |
AlexNet | Trained on ODS-NPTW | 4.1254 | 13.53 | 11.98 |
PT on ODS-NPTW | 0.8999 | 75.47 | 76.43 | |
FT on ODS-PTW | 0.2375 | 93.10 | 93.10 | |
FT on ADS-ALUF | 0.1056 | 96.23 | 96.09 | |
SqueezeNet | Trained on ODS-NPTW | 3.1779 | 6.51 | 8.07 |
PT on ODS-NPTW | 0.3370 | 79.83 | 82.16 | |
FT on ODS-PTW | 0.3102 | 87.51 | 87.89 | |
FT on ADS-ALUF | 0.2614 | 94.60 | 93.62 | |
GoogleNet | Trained on ODS-NPTW | 4.1299 | 2.93 | 1.95 |
PT on ODS-NPTW | 0.3924 | 87.77 | 88.41 | |
FT on ODS-PTW | 0.5174 | 90.83 | 90.63 | |
FT on ADS-ALUF | 0.2897 | 95.64 | 93.75 | |
MobileNetV2 | Trained on ODS-NPTW | 3.1169 | 5.27 | 5.86 |
PT on ODS-NPTW | 2.1408 | 44.05 | 39.84 | |
FT on ODS-PTW | 0.2569 | 93.10 | 92.45 | |
FT on ADS-ALUF | 0.0212 | 97.85 | 97.79 | |
InceptionV3 | Trained on ODS-NPTW | 3.4025 | 1.69 | 0.91 |
PT on ODS-NPTW | 2.4302 | 56.93 | 57.03 | |
FT on ODS-PTW | 0.4128 | 96.62 | 96.74 | |
FT on ADS-ALUF | 0.0446 | 98.39 | 97.92 |
Here, ADS, ODS, PTW, NPTW, ALUF, PT, FT stands for augmented dataset, original dataset, pre-trained weights, no pre-trained weights, all layers un-frozen, parameter-tuning, fine-tuned