Skip to main content
. 2023 Jul 1;24:273. doi: 10.1186/s12859-023-05398-7

Table 5.

A comparison of our approach with previous deep learning methodologies for bacterial classification

Approach Number of images Augmentation Data split Loss Accuracy Precision Recall FScore MCC
Proposed model 1 660 7:2:1 0.2674 99.91 98.98 98.48 98.38 98.52
Proposed model 2 660 7:2:1 0.0431 99.82 97.98 96.97 96.77 97.04
ResNet-50 [14] 660 7:2:1 0.0155 99.72 95.45 94.34
MobileNetV2 [17] 660 7:2:1 3.0262 95.04 18.18 11.64
VGG16 [21] 660 7:2:1 3.5460 94.58 10.61 5.82