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Abstract
Anthocyanin is a vital indicator for both fruit nutritional and commercial value. Anthocyanin accumulation is a surprisingly 
complicated process mediated by multiple networks associated with genetic, developmental, hormonal, and environmental 
factors. Transcriptional regulation along with epigenetic regulation constitutes the dominant molecular framework for antho-
cyanin biosynthesis. Here, we focus on current knowledge on regulatory mechanisms of anthocyanin accumulation, with em-
phasis on the latest progress in transcriptional and epigenetic regulation and the crosstalk between various signaling pathways. 
We present an emerging picture of how various internal and external stimuli control anthocyanin biosynthesis. Additionally, we 
discuss the synergistic or antagonistic effect of developmental, hormonal and environmental cues on anthocyanin accumula-
tion in fruit.
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Introduction
Fruit consumption as part of the daily diet has many health 
benefits and may extend “health-span”. While color plays a 
crucial role in fruit appearance and acceptability, there is 
also a growing awareness of the nutritional value of highly col-
ored fruit. Anthocyanins are the most prevalent water-soluble 
fruit pigments. They endow fruit with a variety of colors, ran-
ging from red to purple and blue, which serve to attract seed 
dispersers and to protect against various biotic and abiotic 
stresses (Landi et al. 2015). In addition to their pigmentation, 
anthocyanins have the ability to act as free radical scavengers, 
thereby protecting living organisms from oxidative damage 
(Bendokas et al. 2020). Fruit and their processed by-products 
are important contributors to anthocyanin intake in our daily 
life. Currently, fruit-based anthocyanins have been widely used 
as a dietary supplement in the food and pharmaceutical 

industry (Albuquerque et al. 2021). Therefore, the develop-
ment of anthocyanin-enriched fruit is becoming an important 
goal in fruit breeding programs.

Efforts to enhance anthocyanin contents require a thor-
ough understanding of how anthocyanins are synthesized 
during fruit development and the factors affecting their syn-
thesis and degradation. Anthocyanins are the glycosylated 
forms of anthocyanidins sharing the C6-C3-C6 general skel-
etal backbone in which the two phenolic C6 rings are linked 
by a heterocyclic ring. Anthocyanins can be distinguished by 
their hydroxylation and methoxylation degree and pattern. 
To date, more than 20 naturally occurring anthocyanidins 
have been identified, and the most common types of antho-
cyanidins in fruit are cyanidin, delphinidin, peonidin, pelargo-
nidin, petunidin, and malvidin (Jaakola 2013). Anthocyanins 
belong to the group of flavonoids synthesized via the phenyl-
propanoid pathway (Hichri et al. 2011). Anthocyanin 
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accumulation is controlled by the highly conserved 
myeloblastosis-basic helix-loop-helix-WD40 repeat protein 
[MYB-bHLH-WDR, (MBW)] complex at the transcription le-
vel (Xu et al. 2015; Allan and Espley 2018).

In fruit, the molecular mechanism of anthocyanin biosyn-
thesis has been intensely studied. Numerous anthocyanin ac-
tivators and repressors have been identified to regulate the 
homeostasis and temporal–spatial pattern of anthocyanin 
pigmentation. Genetic studies have demonstrated aberrant 
anthocyanin pigmentation in a variety of plant species due 
to loss-of-function mutations in anthocyanin biosynthetic 
genes, such as F3H encoding flavonoid 3-hydroxylase 
(Maloney et al. 2014) and DFR encoding dihydroflavonol 4-re-
ductase (Wang et al. 2022a), and in anthocyanin transporter 
genes such as GST encoding glutathione S-transferase (Lu 
et al. 2021). However, natural genetic variations in anthocya-
nin regulators particularly anthocyanin-activating MYB tran-
scription factors (TFs) are major contributors to fruit color 
variation (Castillejo et al. 2020; Jiu et al. 2021). Alternative 
splicing in an R2R3-MYB TF SlAN2like is responsible for 
anthocyanin-free phenotype in cultivated tomato (Solanum 
lycopersicum) (Colanero et al. 2019). Allelic variations in an 
MYB TF Ruby that are caused by single-nucleotide muta-
tions, DNA fragment deletions, and insertions of transpos-
able elements contribute to the diversity of anthocyanin 
pigmentation in Citrus species (Butelli et al. 2012, 2017; 
Huang et al. 2018). Likewise, in apple (Malus × domestica), 
the natural variation in fruit anthocyanin pigmentation can 
be attributed to the difference in activity of MdMYB1 and 
MdMYB110 due to the insertions of transposable elements 
(Chagné et al. 2013; Zhang et al. 2019) and minisatellite 
(Espley et al. 2009).

Apart from genetic factors, a myriad of developmental, 
hormonal, and environmental signals have been reported 
to affect anthocyanin accumulation. However, the molecular 
basis behind the crosstalk of multiple signaling pathways in 

anthocyanin regulation is less understood. Additionally, fresh 
insights have been gained into anthocyanin vacuolar trans-
port and degradation (Fang et al. 2015; Zhao 2015; Zipor 
et al. 2015; Kallam et al. 2017). In this review, we focus on 
the regulatory mechanism of various internal and external 
stimuli on anthocyanin accumulation, as well as networks as-
sociated with the orchestration of transcriptional and epi-
genetic regulation.

Developmental cues
In most fruit, anthocyanin pigmentation occurs at the onset 
of ripening and is thus used as a ready-to-eat indicator. A vast 
array of efforts have been conducted to uncover the mech-
anism underlying developmental-induced anthocyanin accu-
mulation over the past decades. These results show that 
anthocyanin accumulation is organized in a multifaceted 
hierarchical manner associated with transcriptional and epi-
genetic regulation.

Transcriptional regulation
The MBW complex plays an essential role in the regulation of 
anthocyanin accumulation at the transcriptional level, with 
MYB TF as the core regulator and others as “reinforcement” 
members (Liu et al. 2015; Xu et al. 2015; Sun et al. 2020). 
However, loss-of-function mutants often point to the 
bHLH partner; for example, bHLH3 has been found to play 
an important role in anthocyanin accumulation in mulberry 
(Morus alba) fruit as the disruption of its expression is asso-
ciated with pale colored fruit (Li et al. 2020a). The finding of 
MYB10 putative orthologs promoting fruit coloration in vari-
ous rosaceous fruit species implies a conserved network of 
anthocyanin-activating MYBs in the regulation of anthocya-
nin accumulation (Lin-Wang et al. 2010; Albert et al. 2014; 
Medina-Puche et al. 2014). In particular fruit species, multiple 
MYB members, such as VmMYBA1, VmMYBPA1.1, and 
VmMYBPA2.2 in bilberry (Vaccinium myrtillus), co-regulate 
anthocyanin pigmentation (Karppinen et al. 2021), whereas 
in other species, a single MYB activator such as FaMYB63 
in strawberry (Fragaria × ananassa) simultaneously mediates 
the accumulation of anthocyanins and other secondary me-
tabolites like eugenol (Wang et al. 2022b). This indicates 
functional redundancy and diversification of anthocyanin- 
related MYBs after duplication (Huang et al. 2018). 
Additionally, redirection of metabolic flux towards 
proanthocyanidins (PAs) biosynthesis has a negative impact 
on anthocyanin accumulation (Han et al. 2012). However, in 
bilberry (Vaccinium myrtillus), the PAs-related MYB activator 
VmMYBPA1.1 that is upregulated by anthocyanin-activating 
VmMYBA1 during later ripening stages acts as a positive 
regulator of anthocyanin accumulation (Lafferty et al. 2022).

Reports detailing TFs, such as NAC, WRKY, and RELATED 
TO ABI3/VP1 (RAV), have demonstrated that these function 
as both positive and negative regulators of anthocyanin accu-
mulation during the process of fruit ripening (Amato et al. 
2019; Zhang et al. 2020; Martín-Pizarro et al. 2021) (Fig. 1). 

ADVANCES BOX

• The activator–repressor system is essential for 
anthocyanin homeostasis and temporal–spatial 
distribution in fruit.

• A series of studies have demonstrated the crucial 
role of epigenetic regulation in anthocyanin 
biosynthesis in fruit.

• The crucial roles of developmental, hormonal, 
and environmental cues and their crosstalk in 
fruit anthocyanin accumulation have been 
uncovered.

• Different hormones frequently interact with each 
other to synergistically or antagonistically regu-
late anthocyanin biosynthesis in fruit.

• Anthocyanin vacuolar transport and degradation 
are crucial for anthocyanin accumulation in fruit.
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In red-fleshed peach (Prunus persica), a NAC TF termed 
BLOOD interacts with a positive ripening regulator 
PpNAC1 to activate the transcription of PpMYB10.1, which 
provides a connection between fruit development and 
anthocyanin accumulation (Zhou et al. 2015; Lü et al. 
2018). Similarly, a link between the putative ripening-related 
MADS-box TF VmTDR4 and anthocyanin-related VmMYB1/ 
2 is reported in bilberry (Jaakola et al. 2010). In red-skinned 
pear (Pyrus communis), PyWRKY26 forms a heterodimer 
with PybHLH3 to activate transcription of PyMYB114 (Li 
et al. 2020b), which subsequently interacts with ethylene re-
sponse factor PyERF3 to induce the expression of anthocya-
nin structural genes (Yao et al. 2017).

In addition to anthocyanin-activating MYBs, a great num-
ber of anthocyanin-repressing MYBs have been identified 
that regulate the homeostasis and temporal–spatial pattern 
of anthocyanin pigmentation (LaFountain and Yuan 2021). 
MYB repressors can be divided into two types, R3-MYB 
and R2R3-MYB, which contain one and two repeats, respect-
ively, in the DNA-binding domain. The studied MYB repres-
sors have the conserved motif of (D/E)Lx2(R/K)x3Lx6Lx3R for 

interaction with bHLH in the R3-MYB domain, which enables 
them to act as passive repressors by competing with MYB ac-
tivators for binding to bHLHs. Apart from this passive repres-
sion function, MYB repressors can have active repression 
function due to repression motifs in the C-terminal, such 
as C1 (lsrGIDPxT/NHR), C2 (pdLNLD/EL), and TLLLFR 
(Cavallini et al. 2015; Ma and Constabel 2019; Zhou et al. 
2019). The C1 and C2 motifs are conserved in studied 
R2R3-MYB repressors, but the TLLLFR motif is only present 
in some MYB repressors. The C2 motif, also known as 
ethylene-responsive element binding factor–associated 
amphiphilic repression (EAR), confers an active repressive 
function of MYB repressors as it is essential for interaction 
with co-repressors such as NIGHT LIGHT-INDUCIBLE AND 
CLOCKREGULATED1/2 (LNK1/2) and TOPLESS (TPL) 
(Zhou et al. 2017; Plant et al. 2021). However, the mechan-
isms of C1- and TLLLFR-mediated repression are still un-
known. Interestingly, transcription of MYB repressors could 
be activated by MYB activators, which instigates a fine- 
tuning negative feedback loop to balance anthocyanin accu-
mulation (Zhou et al. 2019; Yan et al. 2020) (Fig. 1). A 

Figure 1. A simplified model of the transcriptional and epigenetic regulation on anthocyanin biosynthesis. The transcription of structural genes in 
anthocyanin biosynthesis pathway is regulated by the MYB-bHLH-WDR (MBW) complex. MYB repressors negatively regulate anthocyanin biosyn-
thesis through active and passive repression. Other TFs such as NAC, WRKY, and RELATED TO ABI3/VP1 (RAV) participate in the coordinated 
regulation of anthocyanin accumulation by modulating the activity of the MBW complex. The modes of epigenetic regulation in anthocyanin bio-
synthesis are categorized as follows: histone modification, DNA methylation, and noncoding RNAs. ABP, anthocyanin biosynthesis pathway; H2A.Z, 
histone H2 variant; H3K4me3, trimethylation of lysine 4 on histone H3; H3K9me2, dimethylation of lysine 9 on histone H3; HDA, histone deacetylase; 
JMJ25, H3K9 demethylase 25; SPL, SQUAMOSA PROMOTER BINDING PROTEIN-LIKE; TPL, TOPLESS co-repressor. Created by PowerPoint and 
Figdraw (https://www.figdraw.com).
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R3-MYB repressor termed RED TONGUE (RTO) is shown to 
move between cells and inhibits the function of the 
R2R3-MYB activator NECTAR GUIDE ANTHOCYANIN 
(NEGAN), resulting in spotted or striped pigmentation pat-
terns in monkeyflower (Mimulus lewisii) (Ding et al. 2020). 
It is worthy to investigate whether this activator–repressor 
system is involved in the formation of dispersed spots or 
stripes in anthocyanin pigmentation in fruit.

Epigenetic regulation
Increasing evidence indicates the involvement of epigenetic 
modifications in anthocyanin pigmentation in fruit, such as 
DNA methylation, histone modification, and noncoding 
RNAs. Hypermethylation of the promoter region in 
MdMYB10 is associated with striped patterns of anthocyanin 
pigmentation in apple fruit (Telias et al. 2011). Abnormal hy-
permethylation of the MYB10 promoter can even cause a loss 
of anthocyanins in fruit skin as reported in a yellow-skinned 
sport in apple (Wang et al. 2013) and a green-skinned sport in 
pear (El-Sharkawy et al. 2015). Methylation of the MYB10 lo-
cus has been shown to be mediated by a regulator of 
RNA-directed DNA methylation (RdDM), Argonaute 4 
(AGO4) in apple (Jiang et al. 2020). In Arabidopsis 
(Arabidopsis thaliana), trimethylation of lysine 4 in histone 
H3 (H3K4me3) is required for promotion of the transcription 
of anthocyanin biosynthetic genes, but its function is inhib-
ited by a conserved histone H2 variant H2A.Z (Cai et al. 
2019). A histone H3K9 demethylase gene PtrJMJ25 epigeneti-
cally modulates anthocyanin biosynthesis by mediating 
H3K9me2 demethylation and DNA hypomethylation in 
PtrMYB182 locus in poplar (Populus trichocarpa) (Fan et al. 
2018) (Fig. 1).

MicroRNAs (miRNAs) are small noncoding endogenous 
RNAs that play an important role in fruit anthocyanin accu-
mulation. SQUAMOSA PROMOTER BINDING PROTEIN- 
LIKE (SPL) TFs targeted by miR156 inhibit anthocyanin 
biosynthesis through destabilizing the MBW complex (Gou 
et al. 2011). During the process of fruit ripening, miR156 is ac-
tivated to silence SPL TFs, resulting in anthocyanin pigmen-
tation (Li et al. 202 °c). The miR156-SPL module involved 
in anthocyanin accumulation in fruit may be conserved 
across plant species (He et al. 2022). Moreover, miR828 and 
miR858 target anthocyanin-related MYB activators and re-
pressors, thereby participating in the regulation of anthocya-
nin accumulation in fruit. Both miR828 and miR858 promote 
anthocyanin accumulation in grape (Vitis vinifera) through 
inhibiting the anthocyanin-related repressor VvMYB114 
(Tirumalai et al. 2019). By contrast, miR858 downregulates 
anthocyanin accumulation in tomato by inhibiting the ex-
pression of SlMYB7-like (Jia et al. 2015). Similarly, miR858 
negatively regulates PAs accumulation in the peel of apple 
fruit by targeting MdMYB9/11/12 (Zhang et al. 2022). In kiwi-
fruit (Actinidia chinensis), miR828 inhibits anthocyanin accu-
mulation by targeting the noncoding TRANSACTING SiRNA 
GENE 4 (TAS4) transcript to generate a phased secondary 

siRNAs (phasiRNAs) AcTAS4-D4(−) which further silences 
AcMYB110 (Wang et al. 2022c). Anthocyanin-related 
MdMYB1 (an allele of MdMYB10) can also play a role in lig-
nin biosynthesis in apple fruit via activating miR7125 that can 
silence the lignin biosynthesis gene cinnamoyl-coenzyme A re-
ductase (MdCCR), thereby regulating the balance between 
anthocyanin and lignin metabolism (Hu et al. 2021).

Long noncoding RNAs (lncRNAs) also have been shown to 
play important roles in anthocyanin accumulation in fruit 
(Bai et al. 2019a) (Fig. 1). In strawberry, a lncRNA, FRUIT 
RIPENING-RELATED LONG INTERGENIC RNA (FRILAIR), 
functions as a noncanonical target mimic of miR397 to en-
hance the transcript level of LAC11a encoding a putative 
laccase-11-like protein, resulting in anthocyanin pigmenta-
tion during fruit ripening (Tang et al. 2021). In apple, the 
lncRNAs MdLNC610 and MdLNC499 participate in the regu-
lation of light-induced anthocyanin accumulation by activat-
ing ethylene synthesis or the expression of MdERF109, 
respectively (Ma et al. 2021; Yu et al. 2022).

Environmental factors
Anthocyanin biosynthesis is influenced by various environ-
mental factors. Due to their sessile nature, plants have 
evolved an efficient system to produce anthocyanins as a 
protective mechanism against environmental stressors. 
Here, we focus on the influence of light and temperature 
on anthocyanin biosynthesis.

Light
Anthocyanin accumulation is profoundly influenced by light 
conditions including quality, duration, and intensity 
(Henry-Kirk et al. 2018). Molecular mechanisms underlying 
light-controlled anthocyanin accumulation, including photo-
receptors and light signal transduction, have been intensively 
investigated. The light signaling component, ELONGATED 
HYPOCOTYL5 (HY5, a bZIP TF), acts as the master regulator 
of light-induced anthocyanin accumulation (Gangappa and 
Botto 2016). In Arabidopsis, HY5 positively regulates antho-
cyanin accumulation through activating expression of 
PRODUCTION OF ANTHOCYANIN PIGMENT 1 (PAP1) and 
anthocyanin biosynthesis pathway (ABP) genes as well as 
miR858a which targets the anthocyanin repressor MYBL2 
or via restraining the transcription of MYBL2 by epigenetic 
histone modifications (Wang et al. 2016). In rosaceous fruits, 
HY5 has shown to promote anthocyanin accumulation 
through activating expression of MYB10 homologues and 
ABP genes (Tao et al. 2018, Zhao et al. 2022). Since HY5 lacks 
the transactivation domain, it requires the B-box–containing 
proteins (BBXs) as essential partners for HY5-dependent 
regulation of anthocyanin accumulation (Bai et al. 2019b; 
Bursch et al. 2020; Li et al. 2021). Under dark conditions, 
CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1) physical-
ly interacts with nuclear-localized HY5, MYBs, and bHLHs ac-
tivators, triggering their ubiquitination and subsequent 
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proteasome-mediated degradation (Li et al. 2012; Tao et al. 
2020). Upon light exposure, COP1 is re-located into the cyto-
plasm, leading to stabilization of HY5 and other anthocyanin 
activators. Thus, COP1 functions as a repressor of anthocya-
nin accumulation in the dark by destabilizing anthocyanin- 
activating regulators, and this appears to be highly conserved 
across plant species (Wang et al. 2021a). Notably, in addition 
to COP1, an apple BTB-BACK-TAZ domain protein MdBT2 
has been reported to participate in the ubiquitination and 
degradation of MdBBX22 in the dark (An et al. 2019). 
Under light conditions, mitogen-activated protein kinase 4 
(MPK4) mediates phosphorylation of anthocyanin-activating 
MYBs to increase their stability, leading to increase in antho-
cyanin accumulation (Li et al. 2016; Yang et al. 2021a).

Despite the key role of light in anthocyanin accumulation, 
light-independent anthocyanin pigmentation does exist in 
fruit. For example, some peach cultivars produce anthocya-
nins in the flesh around the stone that is controlled by a sin-
gle locus of Cs on linkage group 3 (Dirlewanger et al. 2004). 
A similar case exists for some kiwifruit cultivars that display 
anthocyanin pigmentation in the inner pericarp (Liu et al. 
2018). The mechanism underlying anthocyanin pigmenta-
tion in the inner pericarp where light levels should be rela-
tively low remains to be determined for a number of fruit 
species.

Temperature
Temperature is an important environmental factor affecting 
anthocyanin pigmentation in plants, with high temperatures 
restraining and low temperatures eliciting anthocyanin accu-
mulation (Gouot et al. 2019). The reasons for high tempera-
ture–induced repression of anthocyanin biosynthesis may 
involve the nuclear import of COP1 (Park et al. 2017) and 
the redirection of the phenylpropanoid pathway flux from 
the anthocyanin branch to the chlorogenic acid or lignin bio-
synthesis branches (Liu et al. 2019). High temperature also in-
duces MYB repressors of anthocyanin accumulation in apple 
(Lin-Wang et al. 2011), potato (Solanum tuberosum) (Liu 
et al. 2019), and Arabidopsis (Rowan et al. 2009). Besides 
its role in impairing anthocyanin biosynthesis, high tempera-
ture promotes anthocyanin degradation in fruit due to the 
increased peroxidase activity (Movahed et al. 2016). 
Exogenous peroxidase inhibitors are able to counteract the 
negative impact of high temperature on anthocyanin accu-
mulation in fruit (Niu et al. 2017). Therefore, decreased bio-
synthesis and increased catabolism may both contribute to 
the low levels of anthocyanin in fruit when grown at elevated 
temperatures.

In contrast, low temperatures trigger the export of COP1 
from the nucleus, which stabilizes HY5 to enhance anthocya-
nin accumulation in Arabidopsis (Catalá et al. 2011). In apple, 
the small ubiquitin-like modifier (SUMO) E3 ligase SAP AND 
MIZ1 DOMAIN-CONTAINING LIGASE1 (MdSIZ1) senses 
low temperature and promotes anthocyanin accumulation 
through activating the sumoylation of MdMYB1 (Jiang et al. 
2022). Cold stress can induce DNA demethylation and 

upregulation of the ABP genes, thereby leading to an increased 
accumulation of anthocyanins in sweet orange (Citrus sinensis) 
and peach fruit (Sicilia et al. 2020; Zhu et al. 2020). Notably, 
prefoldins are found to act as a brake to ensure proper levels 
of anthocyanins with the progression of cold acclimation by 
mediating the ubiquitination and subsequent degradation of 
HY5 in Arabidopsis (Perea-Resa et al. 2017). However, low tem-
perature inhibits anthocyanin accumulation in strawberry 
fruit through stimulating MITOGEN-ACTIVATED PROTEIN 
KINASE 3 (FvMAPK3)–mediated phosphorylation of 
FvMYB10 to reduce its transcriptional activity and as well as 
enhancing the proteasome-mediated degradation of chalcone 
synthase1 (FvCHS1) (Mao et al. 2022).

In addition to the G-box motif for HY5 binding, cis-acting 
elements for cold acclimation have been found in the promo-
ters of anthocyanin-activating MYBs in fruit crops. In apple, 
the cold-induced bHLH MdbHLH3 binds to the MYC binding 
motif in the MdMYB1 promoter to activate anthocyanin ac-
cumulation under cold stress (Xie et al. 2012). Moreover, the 
insertion of a retrotransposon containing a cold acclimation 
transcription factor dehydration responsive element binding 
protein/C-repeat binding factor (DREB/CBF) binding motif 
upstream of MdMYB1 likely contributes to apple fruit color-
ation under low temperatures (Zhang et al. 2019). Likewise, 
the insertion of a retrotransposon containing a low tempera-
ture–responsive (LTR) element upstream of Ruby is respon-
sible for the fruit-specific, cold-dependent accumulation of 
anthocyanins in blood oranges (Butelli et al. 2012). 
Additionally, a LTR cis-acting element for MdbHLH3 binding 
has been identified in the promoter of MdBBX20, the inter-
acting partner of MdHY5 (Fang et al. 2019). Therefore, it ap-
pears that BBX, MYB, and bHLH TFs act as integrators of light 
and low temperature signals in the regulation of anthocyanin 
pigmentation in fruit (Huang et al. 2019).

Plant hormones
Ethylene
During fruit ripening, anthocyanin accumulation is often ac-
companied by ethylene release. The positive influence of 
ethylene on fruit coloration has been implicated in various 
fruit crops, such as grape (Wang et al. 2022d), plum 
(Prunus salicina) (Farcuh et al. 2022), and mango 
(Mangifera indica) (Chen et al. 2022a). In apple, upon ethyl-
ene treatment, the key component of ethylene signaling 
ETHYLENE-INSENSITIVE3 LIKE1 (MdEIL1) induces transcrip-
tion of MdMYB1 that further activates MdERF3, thereby 
forming a regulatory feedback loop controlling anthocyanin 
pigmentation and ethylene production (An et al. 2018a) 
(Fig. 2). Ethylene-induced anthocyanin accumulation can 
be fine-tuned by a regulatory module containing MdEIL1, 
MdMYB1, and the MdMYB17 repressor in apple (Wang 
et al. 2022e). In addition to the role in directly activating 
anthocyanin-related regulators, MdbHLH3 can indirectly 
regulate anthocyanin pigmentation through participating 
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in ethylene biosynthesis in apple (Hu et al. 2019). MdERF4 
participates in the regulation of anthocyanin pigmentation 
through forming a complex with MdTPL and histone deace-
tylase MdHDA19 to suppress ethylene production in apple 
(Hu et al. 2022) (Fig. 2). However, the epigenetic mechanism 
by which ethylene participates in the regulation of fruit col-
oration remains unclear.

Notably, the effect of ethylene on anthocyanin biosyn-
thesis differs between plant species. In Arabidopsis, ethylene 
inhibits anthocyanin accumulation through inhibiting the 
expression of the anthocyanin activator PAP1 and stimulat-
ing the expression of anthocyanin repressor MYBL2 (Jeong 
et al. 2010). In pear, PpERF105 activates the expression of 
anthocyanin repressor PpMYB140 to impede the appearance 
of red coloration (Ni et al. 2021).

Abscisic acid
Abscisic acid (ABA) has a positive role in modulating 
anthocyanin accumulation in a variety of fruits. Exogenous 
application of ABA stimulates the expression of 
anthocyanin-activating MYBs, leading to anthocyanin pig-
mentation in fruit (Lai et al. 2014; Shen et al. 2014; 

Kadomura-Ishikawa et al. 2015; Oh et al. 2018). In contrast, 
inhibition of the expression of a 9-cis-epoxycarotenoid diox-
ygenase gene FaNCED1, the key gene for ABA synthesis, re-
duces ABA levels and anthocyanin content in strawberry 
(Jia et al. 2011). As an essential hub in the ABA signaling 
pathway, abscisic acid–insensitive 5 (MdABI5, a bZIP TF) 
promotes anthocyanin accumulation through activating 
MdbHLH3 and strengthening the interaction between 
MdMYB1 and MdbHLH3 in apple (An et al. 2021a). 
Furthermore, ABA inhibits MdBT2-mediated ubiquitination 
degradation of the ABA-responsive TF MdbZIP44, which sub-
sequently cooperates with MdMYB1 to activate anthocyanin 
accumulation (An et al. 2018b) (Fig. 2). Additionally, miRNAs 
may serve as important regulators that assist ABA in regulat-
ing target genes involved in anthocyanin pigmentation in 
fruit (Li et al. 2019).

Jasmonate
Jasmonate (JA) is a class of lipid-derived phytohormones that 
acts as an important regulator of plant secondary metabol-
ism (Oblessuc et al. 2020). Exogenous application of JA causes 
an increase in anthocyanin accumulation in a number of 

Figure 2. The regulatory network of hormone signaling pathways in anthocyanin accumulation. Simplified models for ethylene, jasmonate (JA), 
abscisic acid (ABA), auxin, brassinosteroid (BR) and strigolactone (SL) are shown. The signaling mechanisms for these six hormones mostly contain 
a Skp1/Cullin/F-box (SCF) E3 ubiquitin ligase complex to trigger the ubiquitination and degradation of target proteins via 26S proteasome. Icons 
indicate the example system in which these genes are characterized, as follows: ethylene, apple; SL, Arabidopsis. Created by PowerPoint and Figdraw 
(https://www.figdraw.com).

https://www.figdraw.com
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fruits, but the degree of increase varies with their concentra-
tion and stereoisomeric form (Wang et al. 2021b). In 
Arabidopsis, F-box protein CORONATINE INSENSITIVE1 
(COI1) recruits jasmonate-ZIM domain proteins (JAZs) for 
ubiquitination and degradation by the SCFCOI1-26S prote-
asome pathway in response to JA signals (Thines et al. 
2007). The JA-triggered degradation of JAZ proteins abolishes 
the interactions of JAZ proteins with MYB and bHLH TFs, al-
lowing the formation of the MBW complex that subsequent-
ly activates anthocyanin accumulation (Qi et al. 2011) 
(Fig. 2). The interference of JAZ proteins with the formation 
of the MBW complex is also involved in the regulation of 
JA-induced anthocyanin accumulation in fruit (Wang et al. 
2019; Chen et al. 2022b). Moreover, an EAR motif-containing 
adaptor protein (ECAP) aids JAZ recruitment of the tran-
scriptional co-repressor, TOPLESS-RELATED 2 (TPR2), result-
ing in an enhancement of transcriptional repression activities 
(Li et al. 2020d). In apple, a telomere-binding protein 
(MdTRB1) acts as positive regulator of anthocyanin accumu-
lation via interacting with MdMYB9 to enhance the 
MdMYB9-activated transcription of the ABP genes (An 
et al. 2021b). The JA signaling repressor MdJAZ1 interferes 
with the formation of the MdTRB1-MdMYB9 complex to 
fine-tune JA-mediated anthocyanin accumulation.

Auxin
Auxin is of pivotal importance in plant growth and develop-
ment (Matthes et al. 2019). Emerging evidences reveal the in-
hibitory effect of exogenous auxin application on the 
regulation of anthocyanin accumulation in apple, grape, 
and red raspberry (Rubus idaeus) (Ji et al. 2015; Jia et al. 
2017; Moro et al. 2017). In red-fleshed apple callus, low auxin 
levels facilitate the complex formation of auxin/indole-3- 
acetic acid (Aux/IAA) repressor MdIAA121 and auxin re-
sponse factor MdARF13. Under high auxin concentrations, 
MdIAA121 is degraded to release MdARF13, which represses 
transcription of anthocyanin biosynthetic gene MdDFR via 
directly binding to auxin-responsive elements (AuxREs) in 
the promoter (Wang et al. 2018) (Fig. 2). Overall, the molecu-
lar mechanism underlying the role of auxin in fruit pigmen-
tation remains to be determined.

Brassinosteroid
Brassinosteroid (BR) is a class of steroidal hormones that af-
fect fruit quality (Ji et al. 2021). A series of important BR sig-
naling components, from the cell surface receptors 
BRASSINOSTEROID INSENSITIVE1 (BRI1) and BRI1- 
ASSOCIATED RECEPTOR KINASE 1 (BAK1) to the key 
nuclear-localized TFs BRASSINAZOLE RESISTANT1 (BZR1) 
and BRI1 EMS SUPPRESSOR1 (BES1), have been identified 
in Arabidopsis (Kim and Russinova 2020) (Fig. 2). There 
seems to be a lack of consensus opinion on the effect of 
BR on anthocyanin biosynthesis. Studies have shown that ex-
ogenous BR treatment promotes anthocyanin accumulation 
in Arabidopsis, grape, and strawberry (Peng et al. 2011; 
Vergara et al. 2020; Zahedipour-Sheshglani and Asghari 

2020). However, in the seedlings and calli of red-fleshed ap-
ple, exogenous BR treatment inhibits anthocyanin pigmenta-
tion by activating the MdBEH2.2 (a BZR1/BES1 family TF) and 
MdMYB60, both of which act as negative regulators of the 
ABP genes (Wang et al. 2021c). A recent study also reveals 
that overexpression of MdBZR1, an important component 
of the BR signaling pathway, represses anthocyanin biosyn-
thesis in “Yinv” apple fruit peel (Wang et al. 2023). 
Therefore, further studies are needed to clarify the molecular 
mechanism by which the BR signal mediates anthocyanin 
pigmentation in fruit.

Strigolactone
Strigolactone (SL), a carotenoid-derived endogenous plant 
hormone, is established to positively impact anthocyanin 
biosynthesis (Mashiguchi et al. 2021). In Arabidopsis, SL sig-
naling is transduced by the DWARF14 (D14) receptor to 
form a D14-SCFMAX2-SMXLs complex, triggering the 
ubiquitin-mediated degradation of SL signaling inhibitor 
SUPPRESSOR OF MAX2-LIKE6 (AtSMXL6) which functions 
as a repressor of the anthocyanin-related regulator (Seto 
et al. 2019; Tang and Chu 2020) (Fig. 2). Intriguingly, 
AtSMXL6 serves dual functions as a typical repressor and 
an autoregulated transcription factor to maintain the 
homeostasis of SL signal transduction via a negative feedback 
loop (Wang et al. 202 °c). Several studies have preliminarily 
explored the role of SL in fruit anthocyanin pigmentation 
(Liu et al. 2022). In grape, exogenous SL treatment promotes 
fruit coloration by inducing transcription of anthocyanin bio-
synthetic genes (Ju et al. 2022). However, the molecular basis 
of SL in regulating anthocyanin accumulation in fruit remains 
to be investigated.

Interplay among multiple hormones
Phytohormones act synergistically or antagonistically to 
regulate various processes of growth and development in 
plants. For instance, JA does not work independently but op-
erate in a complex signaling network combined with other 
phytohormone signaling pathways (Fenn and Giovannoni 
2021). In Arabidopsis, JA-activated bHLHs attenuate the 
repression of ethylene-stabilized TFs ETHYLENE- 
INSENSITIVE3 (EIN3)/EIL1 on the transcriptional activity of 
the MBW complex, resulting in crosstalk between JA and 
ethylene to regulate anthocyanin biosynthesis (Song et al. 
2022). Similarly, the ABA receptor PYRABACTIN 
RESISTANCE1-LIKE (PYL4) whose expression is regulated by 
JA impacts anthocyanin accumulation (Lackman et al. 
2011; Yu et al. 2021). The finding that the DELLA protein 
in the gibberellin (GA) signaling pathway sequesters the 
JAZ repressor of the MBW complex indicates a crosstalk be-
tween JA and GA signals in the regulation of anthocyanin ac-
cumulation (Xie et al. 2016). Moreover, BR enhances 
JA-induced anthocyanin accumulation in Arabidopsis seed-
lings, but the related mechanism remains to be determined 
(Peng et al. 2011). In addition, coordinated regulation of dis-
tinct hormones on fruit coloration has been revealed. 
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Exogenous SL has been found to affect ABA-induced antho-
cyanin biosynthesis in grape berries (Ferrero et al. 2018). 
MdERF1B, whose expression is upregulated by JA, acts as an 
integrator of ethylene and JA signals to synergistically regu-
late anthocyanin biosynthesis in apple (Wang et al. 2022f).

Crosstalk between developmental, hormonal, 
and environmental cues
The light signaling TF components are known to interact 
with TFs of hormone signaling pathways to regulate photo-
morphogenesis in Arabidopsis. A well-studied signaling hub 
is the COP1-HY5 module that serves as the interface between 

light and hormones (Fig. 3). COP1 destabilizes the JA-related 
TFs MYC2/3/4 under the shade conditions to facilitate reallo-
cation of resources from defense to growth (Chico et al. 
2014). The COP1-targeted destabilization of DELLA proteins 
that are negative elements in the GA signaling pathway is 
relevant for growth responses to shade and warm tempera-
ture (Blanco-Touriñán et al. 2020). Moreover, 
BRASSINOSTEROID-INSENSITIVE 2 (BIN2) and BZR1 in BR 
pathway interact with key components of light signaling 
pathway to mediate hypocotyl elongation, cell elongation, 
and cotyledon opening (Kim et al. 2014; Li and He 2016; Li 
et al. 2020e). In Arabidopsis, UV-B irradiation inhibits the 
transcription of BR-induced BES1 that represses flavonol- 
activating MYBs, allocating energy to flavonoid biosynthesis 

Figure 3. Schematic diagram of light–hormone and sugar–hormone interactions in anthocyanin accumulation. Anthocyanin biosynthesis is coor-
dinately regulated by developmental cues, hormones, and environmental factors. The diverse signals converge and drive synergy or attenuation 
effects on anthocyanin accumulation. Light, sugar, and hormones are key factors affecting anthocyanin biosynthesis. Light-responsive anthocyanin 
accumulation occurs mainly through the COP1-HY5 module, which also displays as an essential hub at the interface between light and hormones. 
Sugar signal regulates anthocyanin biosynthesis by activating the transcription of the MYB-bHLH-WDR (MBW) complex. The crosstalk between 
sugar and hormones signaling in anthocyanin biosynthesis is implicated. Created by PowerPoint.
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(Liang et al. 2020). Under light conditions, exogenous 
24-epibrassinolide (EBR) promotes anthocyanin accumula-
tion in grape pericarp, indicating a crosstalk between light 
and BR signals in anthocyanin regulation (Zhou et al. 2018; 
Yang et al. 2021b). However, it remains to be determined if 
induction of anthocyanin accumulation by the combined 
treatment of light and EBR is related to the inhibition of 
anthocyanin repressors. On the contrary, the integration of 
light and BR signals shows an antagonistic effect on the regu-
lation of anthocyanin accumulation in apple (Wang et al. 
2023). Additionally, ABA signal transduction is involved in 
anthocyanin accumulation in bilberry fruit under red light 
treatment (Samkumar et al. 2021). Likewise, the transcription 
of MdHY5 can be induced by ABA treatment in apple (An 
et al. 2017), and an additive effect on anthocyanin accumu-
lation in strawberry exists between light and ABA 
(Kadomura-Ishikawa et al. 2015). Thus, the ABA signal is 
essential for fine-tuning fruit coloration by interacting 
with light. As mentioned previously, lncRNAs MdLNC610 
and MdLNC499 participate in light-induced anthocyanin ac-
cumulation through activating ethylene production (Ma 
et al. 2021; Yu et al. 2022), which expands the possibility 
that noncoding RNAs integrate hormone signals to regulate 
anthocyanin pigmentation in fruit.

The crosstalk between sugar and hormone signaling is in-
volved in multiple fundamental biological processes, such as 
circadian clock (Wang et al. 2020d), inflorescence growth 
(Goetz et al. 2021), bud outgrowth (Bertheloot et al. 2020), 
and male fertility (Wu et al. 2022). As precursors for glycosyl 
derivatives, soluble sugars are crucial for anthocyanin biosyn-
thesis. A recent study shows an association between the 
amounts of UDP-glucose and UDP-galactose substrates and 
anthocyanin content (Xu et al. 2020). The crosstalk between 
sugar and hormone signaling in anthocyanin biosynthesis has 
been initially established in Arabidopsis. Sugar transporter 
SUC1 serves as an integrator for sugar, light, and ethylene sig-
nals, and its suppression by ethylene inhibits sucrose-induced 
anthocyanin accumulation under light conditions to fine-tune 
anthocyanin homeostasis (Jeong et al. 2010). Sucrose also 
blocks GA-mediated degradation of DELLA proteins, thereby 
activating PAP1 to promote anthocyanin biosynthesis (Li 
et al. 2014) (Fig. 3). In apple, exogenous glucose activates hex-
okinase MdHXK1 that phosphorylates and stabilizes MdbHLH3 
and inhibits ubiquitin E3 ligase MdPUB29 that ubiquitinates 
and degrades MdbHLH3, to promote anthocyanin accumula-
tion (Hu et al. 2016a; Hu et al. 2019) (Fig. 3). The 
glucose-induced accumulation of anthocyanins in apple is in 
contrast to a previous report where sugar-induced anthocya-
nin accumulation has been shown to be sucrose-specific in 
Arabidopsis (Solfanelli et al. 2006). The ABA-stress-ripening 
(ASR) TF integrates ABA and sugar signals to mediate fruit col-
oration in strawberry (Jia et al. 2016). A conserved energy sen-
sor SNF1-related kinase 1 (MdSnRK1.1) interacts with the JA 
signaling repressor MdJAZ18 to stimulate proteasome- 
mediated JAZ degradation, allowing MdbHLH3 to promote 
anthocyanin biosynthesis in apple (Liu et al. 2017).

Perspectives
Anthocyanin accumulation is controlled by developmental, 
environmental, and hormonal cues, and their concerted ac-
tion in fruit pigmentation is a challenge for future research. 
After synthesis in the cytosolic surface of the endoplasmic re-
ticulum (ER), anthocyanins are transported into the vacuole 
for storage. Loss-of-function mutations or upregulation of 
GST-type anthocyanin transporters can alter fruit coloration, 
suggesting that the transport of anthocyanins from the ER to 
the vacuole is a crucial step for anthocyanin pigmentation 
(Gao et al. 2020; Zhao et al. 2020). Additionally, there is evi-
dence supporting the existence of anthocyanin turnover and 
degradation in fruit (Movahed et al. 2016). Hence, anthocya-
nin homeostasis is a dynamic balance mediated by biosyn-
thesis, transport, and degradation. With the ongoing rapid 
development of new technologies, deciphering the mystery 
of anthocyanin transport and degradation in response to in-
ternal and external signals becomes more certain. This has 
the potential for enabling the improvement of anthocyanin 
content in fruit.

As a conspicuous aspect of fruit ripening, anthocyanin pig-
mentation is normally accompanied by chlorophyll break-
down. A miR156a-SPL12 module is found to coordinate 
the chlorophyll and anthocyanin accumulation during 
fruit ripening in blueberry (Vaccinium corymbosum) 
(Li et al. 2020c). However, it is not yet elucidated whether 
anthocyanin accumulation and chlorophyll degradation are 

OUTSTANDING QUESTIONS BOX

• How conserved is the activator–repressor system 
across fruit species? Does the negative feedback 
loop between MYB activators and repressors 
balance anthocyanin accumulation independ-
ently or synergistically with other repressors?

• What is the regulatory mechanism underlying 
anthocyanin transport and degradation? How do 
internal and external stimuli coordinately regu-
late transport and degradation to maintain 
anthocyanin homeostasis?

• How does epigenetic regulation integrate devel-
opmental, hormonal, and environmental signal-
ing pathways to regulate anthocyanin 
accumulation?

• Are there core regulators that simultaneously 
regulate the accumulation of anthocyanin and 
other pigments?

• How does anthocyanin biosynthesis affect the 
accumulation of metabolites associated with 
fruit taste?

• What are the exact mechanisms underpinning 
the unique spatial–temporal pigmentation pat-
terns in fruit?
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simultaneously mediated by internal and external signals. 
The co-regulation of anthocyanin and other compounds 
has recently become an active research topic (Wang et al. 
2022g). In apple, MdMYB1 acts as a positive regulator of 
both anthocyanin and malate accumulation (Hu et al. 
2016b), and overexpression of MdMYB6 in red-flesh callus re-
sults in increased hexose content and decreased anthocyanin 
accumulation (Xu et al. 2020). Thus, it would be interesting 
to investigate whether and how anthocyanin accumulation 
affects fruit taste and/or other quality traits. Despite the sub-
stantial progress in the regulatory mechanism of anthocyanin 
pigmentation in fruit over the past decades, many areas still 
need to be explored (see “Outstanding questions”). A com-
prehensive insight into the mechanism of anthocyanin accu-
mulation is essential for development of anthocyanin-rich 
and tasteful fruit through breeding and environmental 
management.
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