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Abstract
L-Ascorbic acid (AsA) is more commonly known as vitamin C and is an indispensable compound for human health. As a major 
antioxidant, AsA not only maintains redox balance and resists biological and abiotic stress but also regulates plant growth, 
induces flowering, and delays senescence through complex signal transduction networks. However, AsA content varies greatly 
in horticultural crops, especially in fruit crops. The AsA content of the highest species is approximately 1,800 times higher than 
that of the lowest species. There have been significant advancements in the understanding of AsA accumulation in the past 20 
years. The most noteworthy accomplishment was the identification of the critical rate-limiting genes for the 2 major AsA syn-
thesis pathways (L-galactose pathway and D-galacturonic acid pathway) in fruit crops. The rate-limiting genes of the former are 
GMP, GME, GGP, and GPP, and the rate-limiting gene of the latter is GalUR. Moreover, APX, MDHAR, and DHAR are also re-
garded as key genes in degradation and regeneration pathways. Interestingly, some of these key genes are sensitive to envir-
onmental factors, such as GGP being induced by light. The efficiency of enhancing AsA content is high by editing upstream 
open reading frames (uORF) of the key genes and constructing multi-gene expression vectors. In summary, the AsA metab-
olism has been well understood in fruit crops, but the transport mechanism of AsA and the synergistic improvement of 
AsA and other traits is less known, which will be the focus of AsA research in fruit crops.
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Introduction
L-Ascorbic acid (AsA), namely vitamin C, has important func-
tions and antioxidant effects in organisms. It is an indispens-
able nutrient for human health. However, primates have lost 
the ability to synthesize AsA due to the mutation of the en-
zyme in the last step of AsA synthesis. Therefore, AsA must 
be part of the diet from AsA-rich vegetables and fruits. For 
plants, AsA not only plays important roles as an antioxidant 
and quenching free radical, in particular during photosynthesis 
and photoprotection (Smirnoff 2011), but also is involved in 
cell growth and division and plant hormone biosynthesis 
(Lisko et al. 2014). Significant progress has been made in our 

understanding of AsA metabolism in plants. Many of the ma-
jor advances in AsA research have been achieved by studying 
AsA-enriched fruit crops. Although AsA can be detected in all 
plants, AsA levels show wide variation in fruit crops, and with-
in the same plant there are also significant differences between 
tissues and organs (Davey et al. 2000). Therefore, various and 
multifaceted regulatory mechanisms are expected to exist in 
fruit crops that control AsA metabolism (Liu et al. 2022a).

Wide variation of AsA levels in fruit crops
The AsA content of different species of fruit varies greatly, 
and the AsA content of the same fruit will also have 
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significant differences under different growth conditions or 
maturities (Valente et al. 2011). The AsA content of the 
main horticultural crops is listed in Fig. 1A and 
Supplemental Table S1; all the data were collected from re-
lated studies and reports. In fruit, the highest AsA content 
is the Kakadu plum and the lowest is pomegranate, with 
the former approximately 1,800 times that of the latter 
(Miller et al. 1993; Valente et al. 2011). The content of AsA 
in kiwifruit also varies greatly, the highest being in Actinidia 
eriantha, which can reach 2,127 mg/100 g  fresh weight 
(FW) (Liao et al. 2021a). In vegetables, the highest AsA con-
tent is in sweet pepper and the lowest is in eggplant, which 
can be 159 mg/100 and 4 mg/100 g, respectively (Ye 2011). In 
flowers, the highest is in jasmine with 210.63 mg/100 g, and 
the lowest is in tulip with 1.58 mg/100 g (Wang 2003; Xing 
2004).

The AsA content also shows different accumulation pat-
terns among fruit crops. Generally, fruit crops can be classi-
fied into 3 types according to the periods of AsA peak 
accumulation appears during fruit growth and development. 
The first type is AsA peak accumulation at the young fruit 
period, such as kiwifruit (Liao et al. 2021b) and apple (Li 
2009) (Fig. 1B). The second type is AsA peak accumulation 
at the fruit expansion period, such as jujube (Chen 2015) 
(Fig. 1C). The third type is fruit AsA peak accumulation at 
the maturity period, such as chestnut rose (Huang 2013), 
strawberry (Luo et al. 2019), and tomato (Ioannidi et al. 
2009) (Fig. 1D).

Tissue and subcellular distribution of AsA
Different plant tissues have different AsA levels, with photo-
synthetic and storage tissues generally having higher AsA 
content, and younger tissue having higher AsA content 
than aged tissue. In Actinidia chinensis cv. “Jinyan” and apple 
cv. “Gala,” mature leaves were found to have higher AsA con-
tent than young leaves, and the pericarp had higher AsA con-
tent than the pulp (Li et al. 2008; Liao et al. 2022). In addition, 
AsA content in different tissues are cultivar specific among 
different cultivars of the same species. For example, in A. chi-
nensis cv. “Hongyang,” the pulp has higher AsA content than 
the pericarp (Liao et al. 2022). There is a developing consen-
sus that AsA synthesis can occur within the phloem 
(Hancock et al. 2003). There were reports on AsA biosyn-
thesis in sink organs (e.g. fruit), including tomato, kiwifruit, 
chestnut rose, and apple, with higher AsA levels found in 
the vascular tissues (Li et al. 2008; Huang 2013). Studies on 
apple and chestnut rose fruit suggest that the accumulation 
of AsA in fruit may utilize AsA synthesized in other tissues, 
transported in the long-distance transport tissue in the 
form of oxidized DHA, which together with in situ synthesis 
leads to the accumulation of AsA (Li et al. 2008; Huang 2013) 
(Fig. 2). However, this research cannot fully answer the ques-
tion of whether AsA accumulation in sink organs occurs as a 
result of biosynthesis in situ or import from the leaves. Some 
studies have demonstrated that in long-distance AsA 

transport from source to sink in model plants, AsA was trans-
ported to root tips, shoots, and floral organs but not to ma-
ture leaves (Franceschi and Tarlyn 2002; Tedone et al. 2004) 
(Fig. 2).

AsA content also differs among organelles. Usually, the 
cytoplasm and peroxisomes contain higher levels of AsA, ap-
proximately 20 to 40 mM and 10 to 23 mM, respectively 
(Zechmann et al. 2011). This is followed by the nucleus 
and chloroplast, approximately 6 to 30 mM and 10 to 
20 mM, respectively, with mitochondria having approxi-
mately 9 to 12 mM. The lowest levels are in the vacuole, 
with approximately 2 to 4 mM (Bartoli et al. 2000). 
Amyloplasts are essentially free of AsA. In addition, the 
AsA content in chloroplasts was significantly increased under 
photo-oxidative stress (Zechmann et al. 2011). Due to the 
last enzymatic step of the main AsA synthesis pathway being 
located in the mitochondria, much of the synthesized AsA is 
derived within the mitochondria. However, the concentra-
tion of AsA in the mitochondria is lower than that in the 
cytoplasm, which indicates that AsA leaves the mitochondria 
via transporters after being synthesized (Horemans et al. 
2000) (Fig. 2). It has been found that transmembrane trans-
port of AsA occurs in the chloroplast, vacuole, and plasma 
membrane, and the transport of AsA on the chloroplast 
and plasma membrane is an active transport process 
mediated by a protein carrier (Horemans et al. 2000; Szarka 
et al. 2004, 2007). The transmembrane transport of AsA 
into or out of the mitochondria and peroxisomes is unclear, 
with the possibility that AsA diffuses from mitochondria to 
the cytoplasm. It is worth mentioning that the apoplast lacks 
NADPH, GSH, and the corresponding reaction enzymes, re-
sulting in a lack of AsA recycling in the apoplast 
(Horemans et al. 2008). Therefore, the transporters of AsA 
and DHA must be present between symplastically isolated 
cells and tissues. Except for Cytb, which was shown to indir-
ectly cause the transfer of AsA, other putative transporters 
have not been validated at the molecular level (Rivas et al. 
2008; Kosti et al. 2012).

Recognized pathways and genes contributing 
AsA accumulation in fruit crops
The metabolic pathway of AsA in plants is more complicated 
than in animals. At present, AsA metabolic pathways are 
mainly divided into biosynthetic, degradation, and cyclic 
regeneration pathways (Fig. 3), and it is recognized that 
there are 4 major biosynthetic pathways: L-galactose, 
D-galacturonic acid, inositol, and L-gulose. These pathways 
have been well studied in fruits, such as strawberry and kiwi-
fruit (Foyer et al. 2020; Liao et al. 2021c; Liu et al. 2022a).

L-galactose pathway
The L-galactose pathway was the first discovered and is re-
cognized as the main synthetic pathway in fruit crops, includ-
ing apple (Li 2009), kiwifruit (Wei et al. 2021; Liao et al. 
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2021d), and jujube (Lu et al. 2022). The key enzymes involved 
in the L-galactose pathway have been largely characterized. 
Among these, there are 4 recognized key rate-limiting en-
zyme genes in this pathway: GMP, GME, GGP, and GPP.

GMP (EC 2.7.7.22, GDP-D-mannose pyrophosphorylase) is 
considered to be the first rate-limiting enzyme of the 
L-galactose pathway. There was a high correlation between 
GMP expression and AsA content; AsA content of the plant 
decreases, and the plant dies rapidly after silencing GMP (Zou 
et al. 2006; Badejo et al. 2008; Lin et al. 2021). The GMP gene 
promoter of acerola (Malpighia glabra) had higher activity 
than the cauliflower mosaic virus 35S and Arabidopsis GMP 
promoters (Badejo et al. 2008). GMP gene family members 
also had tissue expression specificity; for example, SlGMP3 
and AeGMP2 were confirmed to be involved in AsA synthesis 
in leaves of tomato (Zhang et al. 2013) and kiwifruit (Liao 
et al. 2021a), respectively.

GME (EC 5.1.3.18, GDP-D-mannose-3′,5′-epimerase) not 
only catalyzes GDP-mannose to GDP-L-galactose but also 
to GDP-L-gulose, considered key evidence for the existence 
of the L-gulose pathway. In kiwifruit (Bulley et al. 2009) 
and blueberry (Liu et al. 2015), there was a significant correl-
ation between GME expression level and AsA content during 

fruit development. A quantitative trait locus (QTL) study of 
tomato found that GME and AsA contents were closely re-
lated (Zou et al. 2006; Stevens et al. 2007). After inhibition 
of the GME genes, AsA content of the plant was significantly 
reduced, reactive oxygen species accumulated, and leaves 
were bleached (Gilbert et al. 2009). Conversely, overexpres-
sion of the GME gene can significantly increase AsA content 
and enhance plant resistance to stress (Imai et al. 2012; Ma 
et al. 2014). However, some studies have suggested that 
GME does not limit AsA content. For example, there was 
no significant correlation between the expression of the 
GME gene and AsA in tomato (Ioannidi et al. 2009), and over-
expression of GME of kiwifruit in Arabidopsis did not signifi-
cantly change the AsA level (Bulley et al. 2009).

GGP (EC 2.7.7.69, GDP-L-galactose phosphorylase) is con-
sidered to be the core gene that regulates AsA (Alegre 
et al. 2020; Anisimova et al. 2021). The expression of GGP dur-
ing fruit development in kiwifruit with differing AsA levels 
was consistent with the changes in the accumulation rate 
of AsA (Bulley et al. 2009). Recent research on high AsA 
(A. eriantha) and low AsA (Actinidia rufa) of kiwifruit found 
that AceGGP3 was highly expressed and positively correlated 
with high AsA content in the fruit. Furthermore, GGP3 

Figure 1. AsA content in various horticultural crops (A) and accumulation patterns (B–D). All the data and figures were collected from related 
studies (Ye 2011; Huang 2013) and reports as well as the Web of Science, China National Knowledge Infrastructure, and public websites. Panels 
B–D represent different AsA accumulation patterns. The data used to draw schematic diagram were obtained from kiwifruit (A. eriantha), 
Chinese jujube (cv “Mazao”), and chestnut rose (cv “Guinong 5”) (Huang 2013; Lu et al. 2022; Liu et al. 2022b).
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expression also was correlated to AsA concentration in the A. 
eriantha × A. rufa hybrid, and the expression of the AceGGP3 
allele derived from A. eriantha was significantly higher than 
that of the A. rufa–derived allele AcrGGP3 (Liu et al. 
2022a). When the GGP gene of kiwifruit was overexpressed 
in tobacco, the AsA content in tobacco leaves increased 
3-fold, and the AsA content in Arabidopsis was increased 
by approximately 4-fold. If GGP and GME of kiwifruit were co-
transformed into Arabidopsis, the AsA content can be in-
creased by approximately 7-fold (Bulley et al. 2009). In 
addition, the expression of GGP was also regulated by light 
(Dowdle et al. 2007) and an upstream open reading frame 
(Laing et al. 2015; Zhang et al. 2018) to regulate AsA metab-
olism. Using research on kiwifruit variation in the GGP1 pro-
moter region appears to be key to differences in GGP 
expression and AsA content in A. eriantha and A. rufa 
(Wei et al. 2021).

GPP (L-galactose-1-phosphate) was first isolated from ki-
wifruit, and GPP protein exists as a dimer in kiwifruit with 
a high AsA content (Laing et al. 2004a) but exists in mono-
mer form in apple with low content (Guo et al., 2011). 
However, when the GPP gene was suppressed, the AsA con-
tent and GPP activity could be detected, indicating that 
there were other AsA synthesis pathways or other enzymes 
with GPP-like catalytic activity (Lorence et al. 2004; Conklin 
et al. 2006; Zhang et al. 2008). In the studies of tomato 
(Ioannidi et al. 2009), apple leaves (Li et al. 2009), and AsA 
overaccumulation mutant lines of Arabidopsis (Matteo 
et al. 2003), GPP was the only gene whose expression was 
consistent with changes in AsA content. Therefore, the tran-
scriptional regulation of GPP plays an important role in regu-
lating the synthesis and accumulation of AsA (Li et al. 2013a).

The D-galacturonic acid pathway
The D-galacturonic acid pathway is regarded as the main bio-
synthetic pathway in chestnut rose (An 2004; Huang 2013), 
sweet orange (Xu et al. 2013), and grape (Cruz-Rus et al. 
2010) and is also used as a secondary biosynthetic pathway 
in kiwifruit (Li et al. 2011). Moreover, this pathway is consid-
ered to play a greater role in some tissues at certain stages of 
plant development. For example, AsA in chestnut rose leaves 
is mainly synthesized through the D-galacturonic acid path-
way (An 2004).

GalUR (EC 1.1.1.19, D-galacturonic acid reductase) was first 
cloned from strawberry, and overexpression of strawberry 
GalUR caused a 10-fold to 50-fold increase in GalUR activity 
and a 2-fold to 3-fold increase in AsA content (Agius et al. 
2003). The expression of GalUR in different tissues and devel-
opment of kiwifruit has shown that GalUR was highly corre-
lated with AsA content. However, the homology of GalUR 
among different kiwifruit species was low, of approximately 
50% to 60% (Li et al. 2011; Wu 2015). Although GalUR 
gene expression was unrelated to AsA content in chestnut 
rose, GalUR gene expression was significantly upregulated 
during the rapid increases in AsA, and the L-galactose path-
way was not active at this time (Huang 2013). Studies have 

also reported that iron deficiency stress can induce the ex-
pression of the GalUR gene in apple leaves (Tian 2007). 
However, it was shown that GalUR on kiwifruit and apples 
does not participate in the biosynthesis of AsA in leaves (Li 
2009). The functional characterization of GalUR-encoded 
protein has not yet been well characterized, and its selectivity 
and specificity for D-galacturonic acid has not been 
determined.

The inositol pathway and L-gulose pathway
Research on the inositol pathway and the L-gulose pathway 
has mainly occurred in model plants, and the understanding 
of these pathways in fruit crops is still relatively limited. So 
far, the gene for the L-gulose pathway in plants has not 
been identified. Although key genes on the inositol pathway 
were identified on the chestnut rose, there was no significant 
correlation between their expression and AsA (Huang 2013).

MIOX (EC 1.13.99.1, Myo-inositol oxygenase) was involved 
in not only AsA synthesis but also in cell wall formation 
(Arner et al. 2002). Studies have reported that AsA content 
increases when MIOX was overexpressed (Lorence et al. 
2004; Endres and Tenhaken 2009), but other studies show 
the opposite results (Kanter et al. 2005; Siddique et al. 
2013). Findings in chestnut rose were consistent with the lat-
ter, suggesting no significant correlation between MIOX and 
AsA content (Huang 2013). In A. eriantha, MIOX was found 
to be involved in the accumulation of AsA during fruit devel-
opment and was also closely related to A. eriantha fruit ri-
pening (Liao et al. 2021a). MIOX has also been found to 
play an important role in other metabolism (Siddique et al. 

Figure 2. Long-distance transport and metabolism of AsA in plant or-
ganelles. AsA was accumulated into phloem and transported to root 
tips, shoots, and floral organs, but generally not to mature leaves. At 
the cytological level, AsA is synthesized in mitochondria and then en-
ters the cytoplasm for transport to various organelles. In addition, AsA 
and DHA can also be transported outside the cell membrane by simple 
diffusion or transport proteins, such as the Cytb. After AsA functions in 
the chloroplast, DHA is produced and transported into the cytoplasm. 
Elements were modified from FigDraw (https://www.figdraw.com/ 
static/index.html).

https://www.figdraw.com/static/index.html
https://www.figdraw.com/static/index.html
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2009; Eckardt 2010; Pieslinger et al. 2010), suggesting the in-
ositol pathway in plants is secondary to AsA synthesis. In 
addition, SlIMP3 demonstrated high affinity with the 
L-galactose 1-phosphat and D-myoinositol 3-phosphate 
and acted as a bifunctional enzyme in the biosynthesis of 
AsA and myoinositol. Overexpression of SlIMP3 not only im-
proved AsA and myoinositol content but also increased cell 
wall thickness, improved fruit firmness, delayed fruit soften-
ing, decreased water loss, and extended shelf-life (Zheng et al. 
2022a).

Common genes that function in several synthetic 
pathways
Among the many enzymes involved in AsA synthesis, 2 en-
zymes are shared by the 4 AsA biosynthetic pathways, name-
ly GalDH and GalLDH. These 2 enzymes are also considered 
to be necessary for AsA biosynthesis and have been studied 
in several fruit crops.

Among all AsA synthesis–related enzymes, GalDH (EC 
1.1.1.117, L-galactose dehydrogenase) is the only one that 
participates in AsA synthesis but not in any other biochem-
ical reactions. Although the GalDH gene has been cloned 
from fruit crops such as kiwifruit (Laing et al. 2004b) and ap-
ple (Xiao et al. 2007), the relationship between GalDH activ-
ity and AsA accumulation has not been clearly reported. 
Overexpression of GalDH can increase the activity of 
GalDH but not AsA content (Gatzek et al. 2002), perhaps 
due to the feedback inhibition of GalDH enzyme by high 
AsA. This feedback mechanism has been confirmed in spin-
ach, where 1 mM AsA can reduce GalDH enzyme activity 
by 41% (Pallanca and Smirnoff 2000; Mieda et al. 2004). In 
addition, due to the very high conversion efficiency of 
GalDH enzyme toward L-galactose, exogenous L-galactose 
can be converted into AsA (Smirnoff and Wheeler 2000), re-
sulting in a low L-galactose content.

GalLDH (EC 1.1.1.117, L-galactose-1,4-lactone dehydrogen-
ase) is the last enzyme in the synthesis of AsA. The GalLDH 

Figure 3. Proposed pathways for AsA metabolism. L-galactose pathway (I), D-galacturonic acid pathway (II), inositol pathway (III), L-gulose pathway 
(IV), degradation and cyclic regeneration pathway (V) of AsA metabolism, common in the synthetic pathway (VI). PME: Methylesterase; PMI: 
Mannose-6-phosphate isomerase; PMM: Phosphomannose mutase; GulDH: L-gulose-1,4-lactyl dehydrogenase; GR: Glutathione reductase.
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gene has been identified in many plants, such as kiwifruit 
(Wu 2015) and chestnut rose (An et al. 2005a). GalLDH 
was highly specific for L-galactose-1,4-lactone, and the en-
zymatic activity was inhibited by high concentrations of 
L-galactose-1,4-lactone. A large number of studies have con-
firmed that the GalLDH gene and AsA content were highly 
correlated (Pateraki et al. 2004; Liao et al. 2021a). Antisense 
suppression of GalLDH mRNA led to a significant decline in 
the GalLDH activity (Tabata et al. 2001). However, attempts 
to increase AsA via GalLDH failed, mainly because this pro-
tein was located in the inner mitochondria membrane 
(Alhagdow et al. 2007). It has been reported that this gene 
may be induced by light to regulate AsA content (Smirnoff 
and Wheeler 2000; Dowdle et al. 2007; Liao et al. 2019), per-
haps via light induction of expression (Tamaoki et al. 2003) or 
photorespiration-dependent changes directly affecting 
GalLDH enzyme activity (Millar et al. 2003; Bartoli et al. 2006).

Degradation and cyclic regeneration pathway
In plants, the degradation and cyclic regeneration pathways 
are coupled together to maintain the balance of AsA. Due to 
AsA’s role in removing reactive oxygen species, these path-
ways are integral to plant resistance to biotic and abiotic 
stresses (Chen et al. 2003; Singh et al. 2014). Plants mainly 
degrade AsA through AO (EC 1.10.3.3, ascorbate oxidase) 
and APX (EC:1.11.1.11, ascorbate peroxidase) and regenerate 
AsA through MDHAR (EC 1.6.5.4, monodehydroascorbate re-
ductase) and DHAR (EC 1.8.5.1, dehydroascorbate reductase).

AO and APX both would use AsA as an electron donor, 
and it reduces H2O2 to H2O. The inhibition of AO gene ex-
pression can increase the AsA content by 40% and improve 
the salt tolerance of the plant (Sanmartin et al. 2003; 
Yamamoto et al. 2005; Zhang et al. 2011a). Silencing of AO 
results in inhibition growth and altered AsA levels and ripen-
ing patterns in melon fruit (Chatzopoulou et al. 2020). Unlike 
AO, many studies have shown that the activity of APX en-
zyme has a strong correlation with AsA content (Singh 
et al. 2014; Chiang et al. 2015). It appears that fruit crops 
have more members of the APX gene family than herbaceous 
crops. Research has focused on the ability of APX to improve 
resistance to external stress (Wang et al. 2005) and not the 
role of APX gene in regulating AsA content. The APX gene 
that plays a key role in fruit development has been identified 
in A. eriantha (Liao et al. 2020), which also responds to light 
stress.

In plants, MDHAR is widely distributed and found in 
chloroplast, cytoplasm, mitochondria, and peroxisome 
(Lunde et al. 2006; Li et al. 2010). Studies on persimmon 
show that MDHAR was closely correlated to the metabolism 
of AsA content in the leaves and fruit (Pu 2008). 
Overexpression of the MDHAR gene not only increased the 
AsA content but also enhanced the resistance of transgenic 
lines to ozone, salt damage, and drought stress (Eltayeb 
et al. 2007; Stevens et al. 2008). However, overexpressed 
MDHAR gene from fruit crops showed that the AsA content 
of transgenic plants was significantly downregulated 

(Haroldsen et al. 2011; Gest et al. 2013). The results with 
the latter were also obtained in kiwifruit (A. eriantha); this 
study speculated that increased MDHAR enzyme activity 
promotes APX enzyme activity, which leads to the decrease 
of AsA content (He 2022).

DHAR combines with GSH to catalyze DHA and reduce it 
into AsA. DHAR genes have been cloned from spinach, chest-
nut rose, kiwifruit, and other fruit crops (Chen et al. 2003; Niu 
et al. 2007) and have shown that DHAR had a significant posi-
tive regulatory effect on AsA content. However, DHAR was 
not been considered as the key gene for the accumulation 
of high AsA levels in chestnut rose (An et al. 2005b). 
Overexpression of DHAR in model plants has shown that 
the AsA content increased by 2 to 4 times, and the content 
of glutathione also significantly increased (Chen et al. 2003; 
Chen and Gallie 2005). In contrast, inhibition of DHAR 
gene expression led to inhibition of plant growth (Chen 
and Gallie 2006), and resistance to O3 decreased (Chen and 
Gallie 2005), resulting in obvious photoinhibition (Chen 
and Gallie 2008).

Transcriptional regulators of AsA levels and 
response to environmental factors
Although many studies on the functional genes related 
to AsA metabolism have been reported, the abundant vari-
ation in AsA content among different species in plants 
suggests there was complex interaction between genes 
and transcription factors (TFs). There were several reports 
on the regulation of AsA content by TFs in fruit crops 
(Zheng et al. 2022a) (Fig. 4). For example, MdERF98, an apple 
ethylene response factor, can directly bind to the promoter 
of MdGMP1 to activate transcription (Zhang et al. 2012; 
Ma et al. 2022). Studies in pears have shown that PbrMYB5 
can bind to the promoter of PbrDHAR2 to regulate AsA con-
tent as well as affect the cold tolerance of plants (Xing et al. 
2018). In cabbage, BcERF70 acts on the DRE (dehydration re-
sponsive element) motif in 7 target gene promoters to regu-
late AsA content (Yuan et al. 2020). In addition, a recent 
study showed that AcERF91 (Chen et al. 2021), AceMYBS1 
(Liu et al. 2022b), and AcMYBR (Liu et al. 2021) could affect 
AsA content in kiwifruit fruit by regulating the expression of 
AcGGP3.

The biosynthesis of AsA is extremely sensitive to light. 
Studies have shown that AsA content significantly decreases 
after bagging treatments in many fruits, such as kiwifruit 
(Liao et al. 2019), pear (Xing et al. 2018), and apple (Ma 
et al. 2022). The transcript abundance of genes encoding en-
zymes involved in AsA biosynthesis shows diurnal fluctua-
tions influenced by light. This presumably reflects a need 
for antioxidants to detoxify reactive oxygen species produced 
during photosynthesis. Studies in apples show that the F-box 
protein MdAMR1L1 interacts with MdGMP1 and promotes 
its degradation through the ubiquitination pathway, thereby 
inhibiting AsA synthesis (Ma et al. 2022). Light negatively 
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regulates AMR gene expression, which then regulates expres-
sion of other key genes, affecting AsA levels (Zhang et al. 
2009). CSN5B, part of the COP9 signalosome complex, pro-
motes GMP expression (Wang et al. 2013). Similar studies 
have reported that AtAMR1 can negatively regulate the 
genes in the L-galactose pathway, including GMP, GME, 
GGP, GPP, GalDH, and GalLDH (Zhang et al. 2009) (Fig. 4). 
At the same time, the GGP gene is induced not only by 
blue light but also by drought and salt stress (Wang et al. 
2022). Also light can directly affect the expression of other 
AsA metabolism-related genes, including GalLDH, MDHAR 
(Liao et al. 2019), and PMI (Majed and Karim 2017).

The regulation of AsA content by transcriptional activation 
or repression is also affected by variations in the promoter re-
gions of functional genes. One study of different kiwifruit spe-
cies showed that there was a 183-bp deletion in the GGP 
promoter of A. eriantha, resulting in different GGP expression 
and AsA content in A. eriantha (high AsA content) and A. rufa 
(low AsA content) (Wei et al. 2021). Sequence analysis of the 
deleted fragment found that there were some negatively regu-
lated cis-acting elements in the GGP promoter of A. rufa, 
which reduced the transcription level of GGP (Li et al. 2014). 
Cis-acting elements such as G-Box and ABRE motifs in the pro-
moter of the GGP gene of kiwifruit can regulate GGP expres-
sion under different light conditions (Li et al. 2013a, 2013b).

Challenges and promising ways to enhance 
AsA content in fruit crops
Enhancement of AsA content in fruit crops attracts consid-
erable attention, not only to strengthen its nutritional value 

but also to improve stress tolerance. At present, studies on 
AsA in fruit crops have turned to elaborate regulatory net-
works, and functional characterization of the key structural 
genes and TFs has been ongoing. The next primary focus is 
to use these genes and TFs for genetic improvement in crops. 
In molecular breeding, genetic engineering is one of the pre-
ferred technologies for scientists and breeders. Among the 
studies of improving the AsA content by using genetic engin-
eering technology, GGP, GME, GMP, and DHAR have a large 
number of research reports, which can respectively increase 
the AsA content of tomato fruit by 6.2 times, 1.6 times, 1.5 
times, and 1.6 times, respectively (Bulley et al. 2011; 
Haroldsen et al. 2011; Zhang et al. 2011b; Cronje et al. 2012). 
However, overexpression of these genes was also accompanied 
by some morphological fruit alterations, such as seedlessness. 
It is highly likely that the dynamic balance of reactive oxygen 
species in plants was disrupted. Using multiple expression vec-
tors to simultaneously overexpress the genes related to AsA 
synthesis, degradation and regeneration will be an alternative 
strategy to enhance the AsA content in fruit crops. The disad-
vantage of this method is the need for the acquisition of nu-
merous transgenic lines to seek the best overexpression 
combination. In addition, the key regulatory TFs that regulate 
AsA through population genetic mapping can also be used to 
construct multiple expression vectors. It must be mentioned 
that editing the uORF of key genes of AsA provides a general-
izable, efficient method for manipulating translation of mRNA 
that could be applied to enhance crop vitamin C, especially for 
GGP (Laing et al. 2015; Li et al. 2018; Zhang et al. 2018).

Using physical or chemical methods to induce the accu-
mulation of AsA content is another simple strategy in fruit 

Figure 4. Reported TFs and environmental regulatory networks for AsA accumulation. Green arrows indicate promotion of expression or AsA ac-
cumulation, red arrows indicate inhibition of expression or AsA accumulation. A) D-fructose-6P, (B) D-mannose-6P, (C) D-mannose-1P, (D) 
GDP-D-mannose, (E) GDP-L-galactose, (F) L-galactose1-P, (G) L-galactose, (H) L-galactono-1,4-lactone, (I) monodehydroascorbate, (J) dehydroas-
corbate. AMR: AsA mannose pathway regulator.
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crops. This needs to be based on the studies of effects of 
treatments on key genes related to AsA metabolism. At pre-
sent, we know that AsA content would be affected by some 
abiotic factors, including light, abscisic acid (ABA), and me-
thyl jasmonate (Liao et al. 2019; Liu et al. 2022a). This knowl-
edge will be useful for the applications of AsA enhancements 
in fruit crops.

Conclusions
The content of AsA in plants is affected by the biosynthesis, 
degradation, regeneration, and transport of AsA. There has 
been intensive study of these pathways with the key genes 
in the L-galactose pathway being identified, with a large 
number of studies confirming the function of various key 
genes. The genes related to AsA degradation and regener-
ation are less studied. The degradation and regeneration 
of AsA play important roles in both biotic and abiotic stres-
ses. Genes that encode proteins that transport AsA or tran-
scriptionally regulate AsA metabolism have recently been 
identified. The study of the regulation of AsA levels is be-
coming clear, especially in response to changes in the 
environment.
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