Table 3. Characteristics of deep learning systems for CVD risk predictions (I).
SN | Studies | Country | TP | TI | FH | RF | BMI | Eth | #TD | HT | SM | MC | MRI | ECG | CUSIP | IST | Tech. | Organ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Azzorpardi et al. (78) | England | 15 | × | × | CUSIP | × | √ | PD | √ | √ | √ | × | × | √ | Image | Segm. | Carotid Artery |
2 | Biswas et al. (79) | USA | 203 | 396 | √ | OBBM, LBBM, cIMT | √ | √ | ID | √ | √ | √ | × | × | √ | Image | Segm. | Carotid Artery |
3 | Biswas et al. (80) | USA | 203 | × | × | cIMT, PA | √ | √ | ID | √ | √ | × | × | × | √ | Image | Segm. | Carotid Artery |
4 | Biswas et al. (81) | USA | 204 | × | × | OBBM, LBBM, cIMT, TPA | √ | √ | ID | √ | √ | √ | × | × | √ | Image | Segm. | Carotid Artery |
5 | Jain et al. (98) | USA | 50 | 300 | √ | OBBM, LBBM, CUSIP | √ | √ | ID | √ | √ | √ | × | × | √ | Image | Segm. | Carotid Artery |
6 | Jain et al. (99) | USA | 99 | 970 | × | OBBM, LBBM, CUSIP | × | √ | ID | √ | √ | √ | × | × | √ | Image | Segm. | Carotid Artery |
7 | Jamthikar et al. (13) | USA | 120 | × | √ | OBBM, LBBM, CUSIP, RA | √ | √ | PD | √ | √ | × | × | × | √ | Image | Segm. | Carotid Artery |
8 | Lakadir et al. (82) | Spain | 56 | × | √ | OBBM, LBBM, cIMT | √ | × | ID | √ | √ | × | × | × | √ | Image | Segm. | Carotid Plaque |
9 | Meshram et al. (83) | Columbia | 101 | × | √ | OBBM, LBBM, Plaque | √ | × | ID | √ | √ | × | × | × | √ | Image | Segm. | Carotid Plaque |
10 | Wu et al. (84) | China | 1,057 | × | √ | OBBM, LBBM, MRI | √ | × | ID | √ | √ | × | √ | × | × | Image | Segm. | Carotid |
11 | Zhou et al. (85) | China | 600 | 5,000 | × | OBBM, LBBM, TPA | × | √ | ID | × | × | √ | × | × | √ | Image | Segm. | Carotid Plaque |
12 | Zhou et al. (86) | China | 77,497 | × | × | OBBM, LBBM, TPA | × | √ | ID | √ | √ | √ | × | × | √ | Image | Segm. | Carotid Plaque |
13 | Ganitidis et al. (87) | Greece | 84 | × | × | OBBM, LBBM, TPA | × | √ | ID | √ | √ | × | × | × | √ | Image | Segm. | Carotid |
14 | Mohannadi et al. (100) | Qutar | NA | 100 | × | OBBM, cIMT | × | × | ID | × | × | × | × | × | √ | Image | Segm. | Carotid |
15 | Latha et al. (101) | Malaysia | NA | 361 | √ | OBBM, LBBM, cIMT | √ | × | ID | √ | √ | × | × | × | √ | Image | Segm. | Carotid |
16 | Otgonbaatar et al. (102) | Korea | 43 | × | × | OBBM, Brain CT | × | × | ID | √ | √ | × | × | × | √ | Image | Segm. | Brain |
17 | Jain et al. (103) | USA | 190 | 379 | √ | OBBM, LBBM, CT | √ | √ | ID | √ | √ | × | × | × | √ | Image | Segm. | Carotid |
18 | Ziegler et al. (88) | Sweden | NA | 482 | √ | OBBM, LBBM, MRI | √ | × | ID | √ | √ | × | √ | × | × | Image | Segm. | Carotid |
19 | Bortsova et al. (89) | The Netherlands | 2,319 | × | √ | OBBM, LBBM, volume | √ | √ | ID | √ | √ | × | × | × | √ | Image | Segm. | Carotid |
20 | Zhu et al. (104) | China | NA | × | × | OBBM, LBBM, cIMT | × | × | ID | × | × | × | √ | × | × | Image | Segm. | Carotid |
21 | Park et al. (105) | Korea | NA | 316 | × | US Imaging parameter | × | √ | ID | × | × | × | × | × | √ | Image | Segm. | Carotid |
22 | Jain et al. (90) | USA | NA | 433 | √ | cIMT, LD | × | × | ID | × | × | × | × | × | √ | Image | Segm. | Carotid |
23 | Savaş et al. (91) | Turkey | 153 | 501 | × | OBBM, IMT | × | × | ID | √ | × | × | × | × | √ | Image | Segm. | Carotid |
24 | Washim et al. (92) | USA | NA | 20 | × | cIMT | × | × | ID | × | × | × | × | × | √ | Image | Segm. | Carotid Artery |
25 | Sudha et al. (93) | India | 110 | 220 | × | cIMT | × | × | ID | √ | × | √ | × | × | √ | Image | Segm. | Carotid |
26 | Groves et al. (106) | Canada | 160 | 360 | × | OBBM, LBBM, TPA | × | × | ID | √ | × | √ | × | × | √ | Image | Segm. | Carotid |
27 | Saba et al. (94) | Italy | 75 | × | × | cIMT | × | × | ID | × | × | × | × | × | √ | Image | Segm. | Carotid |
28 | Tsakanikas et al. (107) | Greece | 30 | × | √ | cIMT | × | × | ID | × | × | × | √ | × | × | Image | Segm. | Carotid |
29 | Koktzoglou et al. (95) | Illinois | 12 | × | × | cIMT | × | × | ID | × | × | × | × | × | √ | Image | Segm. | Carotid |
30 | Flores et al. (108) | USA | NA | × | × | cIMT | × | × | ID | × | × | × | × | × | √ | Image | Segm. | Carotid |
31 | Luo et al. (96) | Indianapolis | 5700 | × | × | cIMT | × | × | ID | × | × | × | × | × | √ | Image | Segm. | Carotid |
32 | Xiao et al. (97) | China | NA | × | × | RF Signals | × | × | ID | × | × | × | × | × | × | RFsignal | Segm. | Carotid |
CVD, cardiovascular disease; SN, serial number; TP, total patients; TI, total image; FH, family history; RF, risk factor; BMI, body mass index; Eth, ethnicity; #TD, #type of data; HT, hypertension; SM, smoking; MC, multicentre; MRI, magnetic resonance imaging; ECG, electrocardiogram; CUSIP, carotid ultrasound imaging phenotype; IST, input single type; Tech., technique; CUSIP, carotid ultrasound image phenotypes; OBBM, office-based biomarkers; LBBM, laboratory-based biomarkers; cIMT, carotid intima-media thickness; PA, power analysis; TPA, total plaque area; RA, rheumatoid arteries; CT, computed tomography; US, ultrasound; MRI, magnetic resonance imaging; LD, lumen diameter; RF, random forest.