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Medical internal radiation dosimetry constitutes a fundamental aspect
of diagnosis, treatment, optimization, and safety in nuclear medicine.
The MIRD committee of the Society of Nuclear Medicine and Medical
Imaging developed a new computational tool to support organ-level
and suborgan tissue dosimetry (MIRDcalc, version 1). Based on a stan-
dard Excel spreadsheet platform, MIRDcalc provides enhanced capa-
bilities to facilitate radiopharmaceutical internal dosimetry. This new
computational tool implements the well-established MIRD schema
for internal dosimetry. The spreadsheet incorporates a significantly
enhanced database comprising details for 333 radionuclides, 12 phan-
tom reference models (International Commission on Radiological Pro-
tection), 81 source regions, and 48 target regions, along with the ability
to interpolate between models for patient-specific dosimetry. The soft-
ware also includes sphere models of various composition for tumor
dosimetry. MIRDcalc offers several noteworthy features for organ-level
dosimetry, including modeling of blood source regions and dynamic
source regions defined by user input, integration of tumor tissues, error
propagation, quality control checks, batch processing, and report-
preparation capabilities. MIRDcalc implements an immediate, easy-to-
use single-screen interface. The MIRDcalc software is available for free
download (www.mirdsoft.org) and has been approved by the Society
of Nuclear Medicine and Molecular Imaging.
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Methods for radiopharmaceutical dosimetry, that is, estima-
tion of absorbed radiation dose, have evolved gradually since the
1950s. Accurate dose assessment requires an accounting of both the
spatial and temporal pharmacokinetics of an administered radio-
pharmaceutical. This characterization defines the biodistribution of
a radiopharmaceutical which is used to estimate absorbed dose to
the patient. Measurement-based data may be obtained from clinical
quantitative imaging (/). The MIRD schema and supporting soft-
ware represent the standard method for calculating absorbed
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radiation doses resulting from given biodistributions of adminis-
tered radiopharmaceuticals (2).

Medical internal radionuclide dosimetry comes with unique chal-
lenges; clinicians rely on supporting software and user expertise to
make dose calculations timely and practical. Existing software tools
vary significantly in design and function and are typically based on
different models and assumptions. These tools vary in complexity,
ranging from simple lookup tables (3) to computationally intensive
Monte Carlo—based radiation transport models (4).

Dosimetry can be performed at different scales, including at the
whole-body, organ, suborgan, voxel, and cellular levels. Organ-level
dosimetry may stand out in one respect because it provides a bal-
ance of relatively personalized dosimetry that can be derived with
practical methods based on quantitative PET and SPECT imaging.
Calculating absorbed dose to specific organs and tissues allows one
to contextualize the dosimetry against known, commonly accepted
organ-specific dosimetric thresholds for tissue reactions (3).

Organ-level dosimetry software has been used in the field for
many years. For example, the OLINDA/EXM software (6) based
on MIRDOSE (developed in the mid-1980s), demonstrated to the
nuclear medicine community the utility of software tools for im-
plementing a standardized dosimetry schema. Other organ-level
dosimetry software tools include IDAC-Dose 2.1, which is freely
available and is used internally within International Commission on
Radiological Protection (ICRP) task group 36 on radiopharmaceuti-
cals (7). A companion article is provided which compares dose cal-
culations using the different available software (8). Other software
tools extend dosimetric analysis beyond the organ level, including
voxel Monte Carlo, kernel convolution, cellular-level, and microdo-
simetric (9—12) applications. Across the variety of tools, no solution
is demonstrably superior across all use cases (/3). A contemporary
summary of dosimetry software options can be found in chapter 6
of MIRD primer 2022 (14).

The dose calculations provided in MIRDcalc software are based
on the well-established MIRD schema and other methods needed
for calculating absorbed radiation doses (2). Thus, MIRDcalc was
inspired by MIRDOSE and OLINDA/EXM, with attention to their
generalizable suitability and practical application. MIRDcalc uses
the organ-level dosimetry paradigm as the starting point from which
to innovate, exemplified with new features that include error propa-
gation and dynamic source regions. MIRDcalc itself is not a com-
plete package for absorbed dose calculation workflows. It is a
robust tool to support the computational aspect of a dosimetry
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protocol, given an input of time-integrated activity coefficients
(TIACs:) of the radiopharmaceutical in organs and tissues and speci-
fication of a pertinent anatomic model.

The MIRDcalc software project was undertaken to meet the
needs of the community for validated, open-source, flexible, and
freely accessible dosimetry tools. MIRDcalc is immediately avail-
able to physicists, biomedical researchers, and health-care collea-
gues worldwide, reducing the time required for, and variability of,
dosimetry-related computations. The MIRDcalc project also pro-
vides a framework for further development and community coop-
eration and collaboration.

MIRDCALC SOFTWARE

Organ-Level Dosimetry

The MIRD schema for absorbed dose calculation was originally
formulated in the 1960s (2,15) as the computational basis for per-
forming dosimetry with models of representative organ geometry,
presented in the form of stylized anthropomorphic digital phan-
toms. The main equations and standardized nomenclature are
described in MIRD pamphlet 21 (16) and MIRD primer 2022 (/I).

The MIRD framework allows for the logical separation of tasks
in the process of calculating absorbed dose. Computationally
intensive processing can be performed a priori to establish refer-
ence individual- and radiopharmaceutical-specific dose calculation
models, which may later be used with subject-specific biodistribu-
tions to provide individualized absorbed dose estimates.

The parameters that characterize the dosimetry model are called
S values, which quantitatively relate the mean absorbed dose rate
to a target organ (or region) per unit of activity in a given source
organ (or region). When a user inputs a time-integrated activity
distribution, S values stored within the software, based on an
anthropomorphic model, are used to quickly estimate radiation
doses using the standard MIRD equations (given in the companion
article (8)). MIRDcalc provides the models, S values, and interface
for performing the absorbed dose calculations.

Absorbed dose estimates calculated in this manner have a limi-
tation because they are usually based on anatomic models of refer-
ence individuals (phantoms) of specified sex and age. Models may
be extrapolated to represent specific patients. Reference S values
account for all dosimetrically relevant anatomy, including regions
with complex microstructure (such as bone marrow). MIRDcalc
uses a well-established methodology for scaling reference S values
for patient-mass—specific absorbed dose calculations (/7). MIRD-
calc also offers a unique feature to support global scaling of all
regions between reference phantoms, on the basis of total-body
mass.

Development of Radionuclide S Values

The radionuclide S values within the MIRDcalc program were
developed according the MIRD schema. The S-value components
for the photon, electron/positron, a-particle, and a-recoil compo-
nents of the radionuclide decay scheme were computed as ...

S(VT — Vs) = EEi Y, (I)(VT —rs, Ei), Eq. 1
where ®(rr < rs, E;) is the specific absorbed fraction (SAF) for
radiation particle / emitted in source region rg and irradiating tar-
get region rr, whereas E; and Y; are, respectively, the energies and
yields of radiation emitted during radionuclide decay as taken
from the MIRD monograph on radionuclide data and decay
schemes (/8).

1118

The full energy spectrum for both -particles and positrons was
used in lieu of considering only their mean energies. The (3-particle
component of the S value was computed as

Ey
S(rr «— rs)B = JP(E) E ®(rp —rs, E) dE,
0

Eq. 2

where E is the energy of emission, ranging from zero to endpoint
energy Eo, and P(E) and ®(rp — rs, E) are, respectively, the
energy-dependent yield and SAF.

All S values were computed using a Python script with SAF
interpolation through particle energies using piecewise cubic Her-
mite interpolation polynomials. For a-recoils, the SAF values
were interpolated at a 2-MeV a-particle, an approach previously
adopted by the ICRP (/9). S values for members of a-emitter
decay chains were computed and reported independently for the
parent radionuclide and all individual progeny.

For the ICRP reference adult phantoms within MIRDcalc, ICRP
publication 133 (/9) was used as the source of all SAF values in the
computation of S values. These 2 phantoms—reference adult male
and reference adult female—are fully described in ICRP publica-
tion 110 (20). For the pediatric reference phantoms, as described in
ICRP publication 143 (21), SAF values for photons and electrons
were taken primarily from the work presented by Schwarz et al.
(22,23) with subsequent adjustments for source region blood con-
tent when r7 = rg. SAF values that were not fully covered in the 2
articles by Schwarz et al., including SAFs for a-particles, SAFs for
localized regions in the respiratory and alimentary tracts, and SAFs
for intraskeletal sources and targets, were taken from transport stud-
ies conducted by ICRP task group 96, which are fully described in a
forthcoming ICRP publication (24).

Platform

The platform of our software is Microsoft Excel, with additional
interface features supported with Visual Basic coding, and is com-
piled as an executable application for Microsoft Windows operat-
ing systems. Advances in Excel over the last decade, including the
PowerPivot tools, have made this project possible. The PowerPi-
vot tools allow seamless integration of large reference datasets,
such as the reference individual-specific S values, into MIRDcalc.
The Excel platform has several advantages over traditional com-
piled code: the software is familiar, accessible, and easy to install;
the platform is highly developed for broad use across industries
and supports easy integration of complex computational and visual
functions; the tools can be built to fit on an intuitive, user-friendly
single-screen interface (Fig. 1); the interface responds instantly to
user interaction; the software includes visual graphics that check
data integrity, conditional formatting, and selective cell protection;
inputs and outputs are inherently formatted for easy access and
integration; and the calculations are easy to access for educational
purposes and for quality control with transparency. The only part
of the code that will not be available to users is the Visual Basic
patches, but this portion of the code provides support only for exe-
cutable protection and input and output functionality.

User Manual

MIRDcalc comes with a comprehensive user manual in search-
able portable document file format, available within the software
and online (https://mirdsoft.org/mirdcalc). The manual covers all
relevant elements of software use, including the topics presented
in this article. The manual also provides background theory to
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FIGURE 1. Screenshot of MIRDcalc software.

help users understand basic concepts of radiopharmaceutical inter-
nal dosimetry.

Classic Use

Analogous to other software, MIRDcalc allows users to select a
radionuclide and reference patient model and enter the TIACs that
characterize the radiopharmaceutical biodistribution in a subject.
Given this input information, an organ-level dosimetry report is
generated on-screen and may be copied to the clipboard or ex-
ported. An example classic absorbed dose calculation is provided
in Supplement A (supplemental materials are available at http:/
jnm.snmjournals.org) (25-30).

Software Validation

MIRDcalc version 1.0 was beta tested and validated by bench-
marking against published references (8). The results of MIRDcalc
were compared with reference values in ICRP publication 128 (3)
using biokinetic data for 71 radiopharmaceuticals. Absorbed dose
coefficients estimated with MIRDcalc were systematically com-
pared against dose coefficients derived using other software; the
absorbed dose coefficients are the dose quantity per organ or tissue
that, when multiplied by administered activity, provide the organ
or tissue dose estimates. The dosimetry computed with MIRDcalc
agreed closely with results from another dosimetry software
implementing the ICRP publication 133 reference adult SAFs,
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IDAC-Dose 2 (19), and showed partial agreement with dose coef-
ficients derived using stylized or hybrid phantoms with reference
masses derived from ICRP publication 89 (37) in OLINDA/EXM
version 2.0 (32).

A comparison of different organ-level dosimetry software calcu-
lations, derived using a standard '®F-FDG biodistribution pub-
lished in ICRP publication 128, calculated for an adult male
anthropomorphic model, is presented in Fig 2. The figure illus-
trates general concordance between organ-absorbed doses and the
effective dose calculations across different software platforms. It
also demonstrates a certain degree of variability in dose calcula-
tions in reported relevant organs, largely within 20%. Systematic
differences are also seen in the bladder wall dose, and an analysis
of this issue is presented in the Design Considerations section
below.

Innovative Features

Single-Screen Interface. MIRDcalc provides full absorbed dose
calculation tools on a single-screen interface, facilitating usability,
inspection, and interpretation of results (Fig. 1).

Free Distribution. MIRDcalc is freely downloadable from the
MIRDsoft.org website, together with other dosimetry-related tools
developed within the MIRDsoft initiative.

Quality Control Graphics: Real-Time Dose Calculations.
MIRDcalc provides useful quality control and safety check metrics
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FIGURE 2. Comparison of different organ-level dosimetry software cal-
culations for typical '®F-FDG case, calculated for adult male anthropomor-
phic model. (A) Absorbed dose calculations for various organs. (B)
Effective dose presented by different software.

and graphics to protect against user error. These include checks on
activity accounted for and ability to account for activity excreted
and eliminated. MIRDcalc also displays a unique isotope/input
organ identification code.

Fully Accessible Calculations (Open Source). Dose calcula-
tions are performed within an accessible spreadsheet that permits a
user to review all math operations. Users may edit and change
values in designated input cells, whereas the other portions of the

interface are locked to prevent code corruption.

Comprehensive Case Documentation. Subject dose calculations
may be saved in a comma-separated-value file format to document
output results, as well as input parameters and phantom S values.

Uncertainty Propagation. MIRDcalc propagates estimated un-
certainty values of radiopharmaceutical biodistribution parameters
and organ masses to calculate an associated uncertainty for calcu-
lated absorbed doses. Users may optionally enter custom uncertain-
ties for TIACs or organ masses. Users may also select a global
S-value uncertainty (coefficient of variation), which is propagated
to all calculations that are derived from the S values; this feature
may ideally be used to insert a global uncertainty that provides a
general accounting of the expected mismatch between anthropo-
morphic reference models and any given patient geometry. The
uncertainties entered are propagated through all TIAC-to-dose cal-
culations using the Joint Committee for Guides in Metrology Guide
to the Expression of Uncertainty in Measurement (33) generalized
schema for propagating uncertainties. To propagate the error of
parameters when these are added or subtracted (f(4,B) =aA*bB)
or multiplied or divided (f(4,B)=A4Bor f(4,B)=A/B) in the
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dosimetry calculations, Equations 3 and 4 are used (assuming only
2 variables are combined in the operation), respectively.

oy = \/azcrﬁ + b20% + 2abo 4, Eq.3

04\2 | (OB\? . O4p

orriam (%) + () +25).
where A and B are real variables, with SDs o4 and op, respec-
tively; o 45 is covariance. Both Equations 3 and 4 include a covari-
ance term at the end. In the context of dosimetry, this term is
complex and derived from many physical and biologic variables.
To provide a generally applicable and implementable tool, MIRD-
calc assumes that the covariance of all variables in the dosimetry
calculations is zero, with justification from Guide to the Expres-
sion of Uncertainty in Measurement clause F.1.2.1.c (33). Thus,
the propagation of error equations implemented in all but one situ-
ation in MIRDcalc are shown in Equations 5 and 6.

Eq. 4

oy =1/ a*c? + b3, Eq. 5
T4\ 2 or\ 2
oy =f(4,B) X ( (f) + (f) ) Eq. 6

Zero covariance, however, is not assumed in uncertainty calcula-
tion for effective dose, which includes male and female dose aver-
aging. In this instance, the covariance between male and female
doses is set to be 1, as the two are highly correlated. For users inter-
ested in performing more complex error propagation calculations,
MIRDcalc outputs all data required for in-house calculations in the
standard MIRDcalc output files.

Incorporating uncertainty propagation into dosimetry calcula-
tions remains a relatively new concept for the field of internal
dosimetry (34). The community has yet to reach consensus and
develop standards for how to properly use this information. MIRD-
calc includes this feature to promote the development of a standard
for error integration in the field. However, all uncertainty estimates
presented by MIRDcalc are based on the above-mentioned covari-
ance assumptions and are entirely dependent on uncertainty values
provided by the user. Reported uncertainty values of the outputs are
therefore only as accurate as the user’s data and assumptions.

Mass Accounting with New Source and Target Regions.
MIRDcalc accounts for the complete subject using published
values for reference man and woman (79,20) and pediatric phan-
toms (21). Two additional source regions were added: heart con-
tents and major blood vessels. A detailed accounting of tissue
masses can be found in Supplement B to this article.

Users are also given access to new suborgan combination target
regions, which aggregate dose to subregions defined in ICRP pub-
lication 133: colon, extrathoracic region, lung, lymphatic nodes,
and whole-body target. A description of these regions can be
found in the original reference from the ICRP (/9) and the MIRD-
calc user manual.

Dynamic Source Regions. MIRDcalc introduces 3 dynamic source
regions: rest of body, rest of blood, and rest of parenchyma. This
option allows users to assign TIAC values across entire body tissues.

TIACs entered into the “rest-of” regions are distributed among
unaccounted-for organs and tissues, weighted by mass. Unaccounted-
for source regions are defined as the nonoverlapping source regions
for which the user has not explicitly assigned a coefficient. The rest-
of regions are dynamic; as the user assigns TIACs to static source
organs, the total mass of the rest-of regions adjusts accordingly.
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This strategy is modeled after the additive approach described by the
ICRP for handling other tissues as presented in ICRP publication 133,
Equation 2.10 (19). MIRDcalc distributes the dynamic TIAC into
nonassigned organs rather than updating SAFs.

The explicit makeup of the subregions that comprise the
MIRDcalc-defined rest-of regions are presented in the MIRDcalc
user manual.

Blood Source Model. Modeling blood separate from soft tissues
and bone can be difficult but important since the biokinetics of
blood are different from the biokinetics of tissue-bound activity.
Although other dosimetry approaches assume parenchyma and
blood within each organ as a single region, MIRDcalc offers the
option to treat the different biokinetics separately. Coefficients
entered for the source regions may be associated with either the
combined blood and parenchyma in each source region (accom-
modating imaging-derived input) or parenchyma only to accom-
modate pharmacokinetic models that address tissue parenchyma
and total-body blood separately. MIRDcalc keeps track of the sep-
arate blood and parenchyma masses accounted for in the regions
of user-entered TIACs and removes them from the rest-of-body,
rest-of-blood, and rest-of-parenchyma input terms as appropriate.
These rest-of terms can then be used to distribute radionuclides
into unaccounted-for tissues.

Coefficients associated with the blood may be assigned to organ
regions (defining blood and parenchyma), blood regions (heart con-
tent and major blood vessels), rest-of-body source region (distributes
to all unaccounted-for blood and soft and hard tissues), and separate
rest-of-blood and rest-of-parenchyma source regions (which sepa-
rately distribute TIACs to the blood and parenchyma, respectively).

The blood source region models provided in MIRDcalc are
depicted in Figure 3. The choice of regions to use depends on the
user’s activity measurement methods and assumptions. For exam-
ple, if a user defines the remainder (or unaccounted-for activity)
from imaging, a background measurement derived from a back-
ground region or volume of interest measured from images may be
used for the rest of body TIAC, accounting for both remainder
blood and remainder parenchyma. Alternatively, if blood activity
measurements are available from specimens or blood pool imaging,

the input values may be entered for separate blood and parenchyma
inputs.

Integrated Spheric Tumor Dosimetry. MIRDcalc supports sim-
plistic tumor dosimetry by calculating the self-dose that a sphere
receives from uniformly incorporated activity. MIRDcalc allows
selection of sphere volume, volume uncertainty, tissue composi-
tion (bone/soft-tissue mixture), radionuclide, TIAC, and TIAC
uncertainty. These dose calculations are based on S values pro-
vided by Olguin et al. (35). MIRDcalc implementation utilizes
S-value interpolation or extrapolation of published data points for
user-specified volumes. Interpolation and extrapolation are accom-
plished via log—log interpolation between the 2 nearest sampling
points. Propagation of uncertainty in tumor dosimetry is estimated
from the inherent uncertainty of the tissue volume and coefficient
values, as described in Equation 67 of Gear et al. (34).

MIRDcalc tumor dosimetry is performed independently from
organ dosimetry. Only tumor self-dose is provided; cross-organ
contributions from all other source regions are not included in the
tumor dose calculation.

Command Line and Batch Processing. MIRDcalc supports 2
methods of running absorbed dose calculations: via the user interface
or via spool processing. The batch-processing feature allows MIRD-
calc dose calculations to run without an interface or user interaction
and supports batch processing of population data.

Organ Mass Interpolation. 1t is recognized that organ masses
from specific subjects may not match those from the standard phan-
toms, causing an error in organ dose estimation. A first-order
approximation for correcting these differences was presented in
MIRD pamphlet 11 and is implemented in MIRDcalc (36). Specifi-
cally, it was recommended that the impact of differences in nonrefer-
ence organ sizes can be accounted for through scaling the self-dose
by the ratio of the organ masses to a constant power. The value of the
power was set to —2/3 for photon self-dose scaling and —1 for elec-
tron and a-self-dose scaling. Estimations of cross-dose contributions
are unchanged when using user-modified organ masses.

The option to add associated uncertainty to the user-modified
mass is also available. This will impact only mass scaling calcula-
tions and therefore are relevant only for organs that have had their

mass changed.

Blood fraction
il blood per mL source region
0L
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models for dose calculations; these include
the ICRP phantom series (newborn, 1-y-
old, 5-y-old, 10-y-old, 15-y-old, and adult
male and female) (20,21). In addition, the
user may select a phantom model based on
weight. A representation of the MIRDcalc
phantom library is shown in Figure 4. Selec-
tion of a weight-based phantom will load a
linearly interpolated mass phantom model
from the 2 closest-by-mass phantoms in the
ICRP reference series. Reference region
masses are scaled linearly, and S values are
interpolated with log—log scaling, relative to
the user-selected phantom mass (identified

by the phantom name) and the 2 closest

FIGURE 3. MIRDcalc blood source options support different strategies for defining source region
TIACs. (A) Example phantom (ICRP 15-y-old female) shown for anatomic reference. (B) Classic ICRP
blood source region accounts for entire volume of blood in phantom and spatially overlaps with
volumes of blood-perfused source regions. (C) Rest-of-blood source region accounts for total
remaining blood after input of blood-inclusive TIACs into various organs. (D) Heart contents and
major vessel source regions do not overlap with parenchyma of any source regions.
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ICRP reference individuals.

ICRP Publication 128 Case Library.
The ICRP published reference biokinetic
data in the form of TIACs for radiophar-
maceuticals (ICRP publication 128) (3).
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6 reference female phantoms
Adult (ICRP 110)
Pediatric 15, 10, 5, 1 year old, and newborn (ICRP 143)

61 interpolated female phantoms
5-60 kg

5 y/o female 10 y/o female
(19 kg) (32 kg)

Newborn female
(3.5 kg)

1 y/o female
(10 kg)

6 reference male phantoms
Adult (ICRP 110)
Pediatric 15, 10, 5, 1 year old, and newborn (ICRP 143)

74 interpolated male phantoms
5-73 kg

&

15 y/o female
(53.1 kg)

was recently introduced in the literature
(41,42). The intent behind the concept of
risk index was to provide an alternative to
effective dose for risk assessment. However,
the validity and applicability of this quantity
is limited by its dependence on the linear
no-threshold model, a radiation dose risk
model whose applicability at low radiation
doses continues to be questioned (43,44).
It also ignores the potential benefit that a
diagnostic or therapeutic radiopharmaceuti-
cal may have.

DESIGN CONSIDERATIONS

Adult female
(60.1 kg) . . . .
The specialty of internal dosimetry is

evolving, and the number of software tools
has increased. Software packages provide
different results and should therefore be
compared and scrutinized. For the organ-
level dosimetry tools, most discrepancies
come from the differences in phantom
models; MIRDcalc uses the ICRP publica-
tion 133 reference adult series and SAFs
based on the ICRP publication 143 pediat-
ric phantoms (Fig. 3) (27) and MIRD decay
schemes (/8), whereas OLINDA/EXM ver-

male male male

5-10 kg interp. 10-19 kg interp. 20-32 kg interp.
male l

Newborn male
(3.5 kg)

1 y/o male
(10 kg)

5 y/o male
(19 kg)

10 y/o male
(32 kg)

33-56 kg interp. l

15 y/o male
(56.1 kg)

sion 2.0 uses RADAR phantoms (45,46).

In comparing the similar dosimetry soft-
ware packages, we can take note some differ-
ences. First, calculated absorbed doses to the

57-73 kg interp.
male 1

Adult male
(73.4 kg)

FIGURE 4. Visualization of MIRDcalc phantom library, including 12 ICRP reference phantoms
(publications 110 and 143), and graphical representation of MIRDcalc interpolation feature.

These reference coefficients were incorporated into MIRDcalc case
library, formatted for direct import. Processing of these files is per-
formed using the batch-processing capability and is the basis of the
comparisons reported in the companion validation article (8).

Effective Dose, Detriment-Weighted Dose, and Risk Index. In
addition to absorbed doses, MIRDcalc also calculates the detriment-
weighted dose and effective dose (19,37). Effective dose is a risk-
related weighted construct based on organ doses. It is calculated
using radiation-weighting factors and tissue-weighting factors de-
scribed in ICRP publication 103 (38). Effective dose is specific to
the ICRP reference individuals and is averaged over both male and
female phantoms.

The detriment-weighted dose is also a risk-related weighted sum
of organ-absorbed doses calculated using radiation-weighting factors
and tissue-weighting factors described in ICRP publication 103
(38). Detriment-weighted dose is calculated similarly to effective
dose but is specific to the phantom model used for dose calculations
(single sex, potentially modified organ masses) (37).

MIRDcalc calculates a risk index, a ratio of the estimated added
risk of cancer from specific radiation exposure relative to the esti-
mated natural risk of cancer according to a concept known as life-
time attributable risk of cancer (National Cancer Institute’s Radiation
Risk Assessment Tool (39)). The baseline natural incidence of cancer
in a population with an absence of radiation exposure was derived
from the Surveillance, Epidemiology, and End Results database (40)
as defined in the Radiation Risk Assessment Tool. The risk index
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urinary bladder were factors of 2-3 times
higher in ICRP publication 128 than in
MIRDcalc because of advances in the styl-
ized dosimetry model used to compute
absorbed fractions of energy deposited in the bladder wall from emis-
sions in the urinary bladder contents (47,48). Next, MIR Dcalc spheric
tumor B-dosimetry was modeled using the entire 3-energy spectrum,
rather than the mean -emission energy. Finally, the skeletal target
(endosteum) was redefined in ICRP publication 110, enlarged to a
thickness of 50 um from 10 pm (49). This change produced signifi-
cant differences, relative to other organs, for calculated SAFs and S
values for charged particles emitted within skeletal tissues (19,50).

The MIRDcalc software and the MIRDsoft.org webspace pro-
vide platforms for continued expansion and evolution of commu-
nity dosimetry software tools. Future improvements will include
new utilities for curve fitting, pregnant phantom/fetus dosimetry,
and suborgan dosimetry. We can also expect to see an analogous
CT dosimetry software, MIRDct, to be released shortly. These
additions will complement the already-released MIRDcell software,
which performs cellular and multicellular dosimetry and bioeffect
modeling (/1)

SUMMARY AND CONCLUSIONS

MIRDcalc represents a new software solution for medical internal
radiation dosimetry. The software was developed by the MIRD
committee of the Society of Nuclear Medicine and Molecular Imag-
ing to benefit an international user community. MIRDcalc imple-
ments the basic MIRD schema, equations, and nuclear databases
with molecular imaging data for applications to patient-specific
dosimetry and radionuclide therapy planning.
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As clinical nuclear medicine evolves with the ability to acquire
more detailed quantitative molecular imaging data on radiophar-
maceutical uptake, distribution, and biokinetics, the need has
intensified for more powerful and more accurate computational
tools for calculating radiation dose to organs, suborgan regions,
tissues, and tumors. Integration of advanced quantitative imaging
data with more flexible and detailed anatomic models, such as
those recently developed by the ICRP, necessitated development
of software that could make best use of these models. New radio-
nuclide applications also suggested the need for an expanded and
updated nuclear emissions database. Although greater complexity
may provide additional key features and capabilities, the need
remained to provide the user community with a software platform
that was readily available, simple to execute, and affordable.

The design of a next-generation computing package necessarily
focused first on addressing the technical gaps, weaknesses in, de-
ficiencies with, and elements missing from all other available software
platforms. In response to calls for improvements in personalization,
standardization, and contextualization of dosimetry calculations,
MIRDcalc increases user ability to incorporate custom organ sizes
obtained from medical imaging, to interpolate between standard mod-
els, and to customize biokinetic modeling to more accurately calculate
a full suite of organ and tissue doses. Accordingly, the MIRDcalc
developers collaborated closely with the leadership of ICRP Task
Group 96, a group which has been responsible for producing anatomi-
cally realistic reference voxel phantoms, dosimetric models, and spe-
cific absorbed fractions for use in internal dosimetry. Going forward,
MIRDcale will be revised and updated as scientific progress in
nuclear medicine physics dose modeling continues.

DISCLOSURE

The MIRDcalc software aids a user in performing dose calcula-
tions for a variety of diagnostic and therapeutic isotopes. MIRDcalc
is intended for educational and research use only. MIRDcalc has
not been approved by the U.S. Food and Drug Administration and
is not intended for clinical use or use as a medical device. MIRD-
calc and any results generated from its use are not substitutes for
medical diagnosis, advice, or treatment of specific medical condi-
tions. A physician should always be consulted for any health problem
or medical condition. This research was funded in part through the
NIH/NCI Cancer Center support grant P30 CA008748 and NIH UO1
EB028234. Lukas Carter acknowledges support from the Ruth L.
Kirschstein NRSA postdoctoral fellowship (NIH F32 EB025050).
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