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Introduction

In most areas of medicine, there has been rapid and contin-
ued improvement in clinical tools and biomarkers to quan-
tify body function and dysfunction. Blood, urine, and saliva 
samples provide a wealth of information on the function of 
many organs, and imaging techniques provide detailed 
information on their structure. In contrast, there has been 
relatively limited improvement in assessment of brain func-
tion. Some indirect measures have been developed to look 
at patterns of activity in the brain (or muscle) such as elec-
troencephalography (electromyography), positron emission 
tomography, and functional magnetic resonance imaging. 
However, techniques to assess perception, cognition, and 
motor impairments have changed very little over the years. 
For example, assessment of motor impairments continues 
to be largely based on visual and physical inspection by a 
clinician. These approaches have been honed over the years 
to focus on key problems for a given patient group, and 
commonly use criteria-based, ordinal scales to quantify 
impairments. Such techniques have minimal cost (beyond 
the clinician’s time) and exploit the impressive capability of 

our visual system to identify atypical performance such as 
slight asymmetry of gait, indicative of a stroke.
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Abstract
While many areas of medicine have benefited from the development of objective assessment tools and biomarkers, there 
have been comparatively few improvements in techniques used to assess brain function and dysfunction. Brain functions 
such as perception, cognition, and motor control are commonly measured using criteria-based, ordinal scales which can 
be coarse, have floor/ceiling effects, and often lack the precision to detect change. There is growing recognition that 
kinematic and kinetic-based measures are needed to quantify impairments following neurological injury such as stroke, 
in particular for clinical research and clinical trials. This paper will first consider the challenges with using criteria-based 
ordinal scales to quantify impairment and recovery. We then describe how kinematic-based measures can overcome many 
of these challenges and highlight a statistical approach to quantify kinematic measures of behavior based on performance 
of neurologically healthy individuals. We illustrate this approach with a visually-guided reaching task to highlight measures 
of impairment for individuals following stroke. Finally, there has been considerable controversy about the calculation of 
motor recovery following stroke. Here, we highlight how our statistical-based approach can provide an effective estimate 
of impairment and recovery.
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While criteria-based, ordinal scales may be useful in the 
clinic for making treatment decisions, their use is more pro-
blematic when used for clinical research and clinical trials 
(e.g., the modified Rankin Scale or Fugl-Meyer (FM) 
Assessment). The challenge is that our visual system may 
have evolved to identify atypical behavior, but we are only 
able to crudely quantify severity of atypical behavior from 
visual inspection,1 limiting the levels of impairment that can 
be reliably defined. Thus, there is a clear need for approaches 
to assess objectively, reliably and with high precision, neu-
rological impairments and changes in impairments due to 
stroke and other neurological injuries/diseases.

There is growing recognition that kinematic and kinetic-
based measures can provide excellent quantification of 
impairments after stroke.2-6 A primary challenge remains 
how to appropriately characterize these impairments com-
pared to healthy control performance. Age, sex, and hand-
edness can often impact kinematic performance. Many 
studies manage these effects by using age and sex-matched 
controls, permitting statistical comparison for differences 
between patient cohorts and healthy controls (group 
effects).7-10 However, comparisons to a healthy mean do not 
allow one to identify if an individual with stroke is impaired 
(outside the range of performance expected for healthy 
individuals). Another approach is to compare individual 
patients to a distribution of healthy individuals. Cortes et al 
(2017)11 compared reaching performance of individual par-
ticipants with stroke to 12 healthy individuals of a similar 
age distribution making reaches with their dominant hand. 
They calculated the Mahalanobis distance to measure the 
distance of each individual patient’s reaching performance 
from the distribution of healthy reaches in order to quantify 
impairment. This is a step in the right direction. However, 
using a very small number of age-matched individuals to 
estimate the performance of a healthy population is prob-
lematic as there can be substantial deviation between the 
estimated and actual distributions. This approach also does 
not account for the impact of age, sex, or handedness on 
performance.

In this article, we introduce a statistical approach for 
quantifying impairment based on measures of neurologi-
cally healthy individuals. We first review some of the 
challenges with using criteria-based ordinal scales for 
quantifying impairments and recovery in order to highlight 
how kinematic-based measures can overcome at least some 
of these challenges. We then describe our approach that 
develops a statistical model of healthy performance using a 
large number of healthy controls and then use this model to 
transform performance of individuals with stroke into stan-
dardized units. We illustrate our approach using a visually-
guided reaching task. However, it is important to recognize 
that our approach can be used with any spatial or temporal 
features of motor performance, collected with wearable 
sensors, markered or markerless motion capture, or even as 
simple as the time to walk 10 m. Finally, there has been 

considerable controversy and debate on how to quantify 
motor recovery following stroke.12-18 Here we highlight 
how we can use our statistical-based approach to provide a 
simple and effective estimate of recovery for a cohort of 
individuals.

The Problem: Criteria-Based Scales

While there are many different criteria-based, ordinal scales 
to quantify sensory, motor, and cognitive impairments for 
different neurological injuries/diseases, we will focus atten-
tion on the properties of the arm motor component of the 
Fugl-Meyer Assessment19 (FM), as this scale is commonly 
used to quantify upper limb motor impairments and recov-
ery following stroke. Measures included in this scale are 
based on the pattern of recovery described by Twitchell20 
with 33 individual items related to arm function. For exam-
ple, volitional movements within synergies. The examiner 
instructs the individual to move their hand from the con-
tralateral knee to the ipsilateral ear. Performance on each 
task is quantified using a 3-point scoring system: “cannot 
perform” (0), “partially perform” (1), and “fully perform” 
(2).19 While FM uses a rather coarse rating system, there is 
excellent test–retest and inter-rater reliability scores for FM 
for those trained in the implementation of this scale.21-25

Nonetheless, this three-point scoring system creates 
many clear problems when trying to quantify impairment. 
Most obvious is a large rounding error when using just 
three values or bins to define performance. Specifically, 
there is a considerable range in performance that can be 
defined as “partially perform” the task. Further, the bottom 
and top bin give us floor and ceiling effects, respectively. 
Floor effects reflect that two subjects “cannot perform” the 
task, but one individual is clearly more impaired than the 
other (i.e., one cannot move their arm at all, whereas 
another is able to initiate some movement but not enough 
to attain “partially perform”). Ceiling effects are the oppo-
site, where two individuals pass the criteria for “fully per-
form,” but one individual looks fluid and graceful, whereas 
the other is just a bit slower and uncoordinated. This 
coarseness also creates rounding error for measuring 
recovery as subjects may display substantial improvements 
in performance after therapy, but nevertheless, land in the 
same bin because they could not attain the next criteria. 
Again, this leads to excellent test–retest and inter-rater reli-
ability at the expense of coarseness.

Another problem with criteria-based scales is converting 
these ordinal labels of motor performance into interval 
units. In other words, the transition from “cannot perform” 
to “partially perform” (0 to 1) is construed as numerically 
equivalent to “partially perform” to “fully perform” (1 to 2). 
The validity of this assumption hinges on the placement of 
the criteria in performance, or hurdles. If performance is 
viewed as a 100 m race, the scoring system numerically 
places the lower bounds of “partially” and “fully” at 33.3 
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and 66.7 m along the track. However, these criteria may bet-
ter represent 20 and 75 m, respectively. This again is diffi-
cult to assess with criteria-based scales which are selected 
more because it is easier for raters to identify if a criteria 
was met than based on some equal space along some mea-
sure of performance.

FM sums together performance on 33 items, with some 
tasks being fairly easy and others harder. There has been 
some work using Rasch analysis to hierarchically catego-
rize the items in order to determine the specific types of 
behaviors that patients can and can’t perform at certain lev-
els.26 Overall, the inclusion of many items in the clinical 
tool may help smooth out the coarseness and asymmetries 
in the criteria inherent in each item, and also reduce floor 
and ceiling effects. However, previous work has shown that 
20% or more of individuals with stroke will be impacted by 
floor or ceiling effects in commonly used clinical measures 
of motor impairment, including FM.27

Figure 1 A highlights the upper extremity FM scores 
extracted from several studies,13,28-32 and initially published 
in Hawe and colleagues.14 “Stroke Initial” denotes assess-
ment completed within 2 weeks of stroke, whereas “Stroke 
Final” denotes assessment completed ~3–6 months follow-
ing stroke. FM scores for Stroke Initial are fairly broadly 
distributed, however, there is a preponderance of individu-
als at the bottom of the range with fewer individuals receiv-
ing a score in the middle and higher range. The reverse 
problem is observed for Stroke Final where there is a pre-
ponderance of individuals near the very top of the scale. 
Approximately 70 (19%) of 373 participants received the 
maximum possible score of 66 meaning they could fully 
perform all 33 items of the scale and almost half received 
scores >60. However, it is likely that many of the individu-
als scoring 66 display atypical behaviors by visual inspec-
tion (see 37). In effect, criteria-based scales like FM have a 
substantive ceiling effect, ranging from the abilities neces-
sary to ‘fully perform’ the FM tasks up to and through the 
range of motor skills of neurologically healthy individuals 
(Figure 1B). As also noted in Figure 1B, two individuals 
may have different levels of motor skill pre-stroke. The 
impact of stroke may initially lead to similar levels impair-
ment for these two individuals. In the cases depicted in 
Figure 1B, a score of 66 may represent a performance closer 
to the pre-stroke motor skill for Subject 2, but Subject 1 was 
a highly skilled individual pre-stroke and 66 is a long way 
from their pre-stroke “normal.”

The Solution: Kinematic-Based 
Assessment and Statistical Models of 
Healthy Performance

Human motor performance spans a spectrum, as empha-
sized and embraced at the Olympics. Even for a simple task 
like reaching, some individuals will move faster, straighter, 

and require minimal corrective movements compared to 
others. Thus, there is a distribution that characterizes 
healthy performance, with some better, and some worse.

For situations like stroke, it is not possible to know what 
was an individual’s pre-stroke perfomance, and thus, it is 
not possible to measure an individual’s true impairment 
from pre-stroke baseline. However, pre-stroke performance 
for a group of individuals should be equivalent to the per-
formance of a group of healthy individuals (assuming no 
pre-existing neurological issues). Thus, expected mean and 
range of performance of individuals pre-stroke can be esti-
mated by assessing the performance of a very large sample 
of healthy individuals.

Demographic factors can also impact performance. For 
example, reaction times increase with age33 so what is atyp-
ical for a 40-year-old may be typical for an 80-year-old. 
Thus, factors such as age, sex, and handedness, need to be 
considered when estimating performance, just like growth 
charts estimate height and weight based on age and sex.

Thus, the key to our approach is to characterize the per-
formance of a large cohort of neurologically healthy indi-
viduals. We develop mathematical models to capture 
healthy performance and then use these models to quantify 
performance of individuals with stroke providing quantita-
tive measures of impairments relative to healthy perfor-
mance. Reasonable estimates of the mean of a distribution 
may only require 30 to 50 individuals, but it requires many 
hundreds of individuals to estimate the shape of a distribu-
tion with reasonable precision (i.e., mean, variance and 
skew). Further, the model requires a good sample of all 
ages, both sexes, or any other factor that may impact perfor-
mance. This requires hundreds of healthy individuals to be 
assessed. The benefit is that impairments can be defined for 
each individual. That is, if the patient is a 69-year-old, right-
handed female, then we can assess their performance based 
on what is expected for a 69-year-old right-handed female. 
Once a normative model is established, there is no need to 
collect age- and sex-matched individuals for each study, as 
these factors are already considered in the model.

Here, we highlight our approach to quantify performance 
using a visually-guided reaching task, an upper limb task 
commonly assessed due to its importance for many daily 
activities.34-38 For didactic purposes we use the Kinarm 
robotic platform, for which the basic paradigm has been 
described previously39-43 and used to assess large cohorts of 
individuals, both neurologically health and those following 
stroke. Briefly, the Bimanual Kinarm Exoskeleton lab con-
sists of 2 robotic exoskeletons that support the upper arms 
and forearm/hands to allow free movement of both arms in 
the horizontal plane. Participants are seated in a height-
adjusted chair that provides truncal support, if required. The 
robot’s shoulder and elbow joints are aligned with the sub-
ject’s joints, and the robot and virtual reality systems are 
then calibrated for each participant. A virtual reality system 
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projects visual targets in the horizontal workspace along 
with a visual representation of the location of the index 
fingertips. Details of the Visually-Guided Reaching (VGR) 

task are described elsewhere.39 In general, the VGR task 
required participants to keep their hand at a visual spatial 
goal in the center of the workspace. When another spatial 

Figure 1. (A) Aggregate data for Fugl-Meyer scores for participants with stroke.14 Black trace represents initial scores and grey trace 
represents final scores. (B) Schematic reflecting how the range of possible Fugl-Meyer scores falls below the range of abilities typically 
observed in healthy individuals. Gaussian distribution denotes variation of skills for healthy individuals. Vertical grey lines denote two 
individuals’ (S1 and S2) abilities are different pre-stroke, but are similar initially after stroke. (C) Exemplar subject performance on the 
visually guided reaching (VGR) task. Top traces are hand paths for the most affected arm (or the non-dominant arm for the healthy 
control participant). The black traces are the trials that correspond to the hand speed shown below in the bottom traces. Participant 
on the left is a control participant (male, 70 years, right handed) who had no impairments on the task (Z-Task Score = −0.69). The 
middle participant (male, 71 years old, right affected) was assessed 2 days post-stroke and showed mild impairments on the task  
(Z-Task Score = 2.82). Participant on the right (male, 69 years, right affected) was assessed 28 days post-stroke and showed more 
severe impairments on the task (Z-Task Score = 7.12).
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goal was presented, participants were asked to quickly and 
accurately reach to and then maintain their hand at this sec-
ond spatial goal.

We have assessed 321 neurologically healthy individuals 
and 112 individuals with stroke. The associated demographic 
information is provided in Table 1. Each participant with 
stroke was assessed at four times points: Stroke Initial for 
our data set was collected on average 1–2 weeks post-stroke 
(0.25–0.5 months, range: 1–28 days). Subsequent time 
points were collected at ~6 weeks (1.5 months, 4–9 weeks), 
~12 weeks (3 months, 10–20 weeks), and ~26 weeks after 
stroke (Stroke Final, 6 months, 21–38 weeks after stroke). 
Participants were recruited from the stroke unit at Foothills 
Medical Centre and the inpatient stroke rehabilitation unit 
at Dr. Vernon Fanning Care Centre in Calgary, Alberta, 
Canada. Healthy participants were recruited from the com-
munity in the cities of Kingston, Ontario, Canada, and 
Calgary, Alberta, Canada. All participants provided informed 
consent prior to participation in the study. This study was 
approved by the Queen’s University Health Sciences and 
Affiliated Teaching Hospitals Research Ethics Board 
(#ANAT042-05), and the University of Calgary’s Conjoint 
Health Research Ethics Board (#22123).

Figure 1C highlights performance of one healthy control 
and two individuals with stroke, one with mild and one with 
more severe impairments. The healthy individual displays 
relatively straight reaches, and consistent reaction times 
and hand speeds. The individuals with stroke show varying 
amounts of directional errors, more corrective responses 
and slower reaction times, and peak hand speeds.

Task Parameters

While one could just identify whether or not a reaching 
movement attained a goal, kinematic-based measures 
allow us to assess the quality of that movement. This qual-
ity of performance can be captured using various spatial 
and temporal features of movement, such as reaction time, 
movement time, initial direction angle, number of correc-
tions, etc.34-36,39 Individuals may have impairments that 

specifically impact one aspect of performance. For exam-
ple, increases in reaction time are commonly observed in 
those with spatial neglect.44 Similarly, impairments may be 
more pronounced in the initial phase of the reach, or in  
the final phase of the reach depending on which hemi-
sphere is damaged.45 For example, uncoordinated motion 
(limb ataxia) is commonly observed in those with cerebel-
lar lesions.46 Thus, it is important to track several measures 
of performance, defined here as task parameters, to capture 
the unique patterns of impairments that may be present for 
an individual. In VGR we collect fourteen different param-
eters within the domains of postural control of the arm, 
reaction time, initial movement, corrective response, total 
movement metrics, and target success. For a full descrip-
tion of each parameter please see Supplementary Material.

Figure 2 illustrates the basic steps in our process to quan-
tify impairment. Over the years we have developed and 
refined our approach to develop best practices for this type 
of quantification, but there are other methods (see discus-
sion). Our crucial first step is to develop a model of neuro-
logically healthy performance that transforms values in raw 
units of time or distance into a standard, normal distribution, 
while also removing the influence of demographic factors 
on performance. Box-Cox equations are a common tech-
nique to transform distributions from an asymmetrically 
skewed distribution to one that is normal.47 Linear regres-
sion models can then be used to adjust performance for fac-
tors such as age, sex, or handedness. These regressions can 
be weighted appropriately to account for heteroskedasticity 
in the original distribution. The normal distribution is useful 
as statistical tests commonly assume data are normally dis-
tributed. The standard normal distribution provides a simple 
approach to quantify performance with a mean and median 
both equal to zero and the standard deviation of the distribu-
tion equal to 1. Thus, performance of 68% of individuals is 
between 1 and −1, 95% between 1.96 and −1.96, and 99% 
between 2.58 and −2.58. Measures of healthy performance 
transformed to a standard normal distribution create a com-
mon language where differences and measures are scaled in 
units of standard deviation (Z-units). One can do the same 

Table 1. Participant Demographics

Healthy Controls (N = 321) Participants with stroke (N = 112)

Age: mean (range) 48 (18–84) 61 (21–84) years
Sex 156 M/165 F 79 M/33 F
Handedness 300 RH/18 LH/3 mix 105 RH/6 LH/1 mix
Affected arm – 61 Left/51 Right
Type of Stroke – 93 ischemic/19 hemorrhagic
Lesion Location* [# of subjects] – [C/SC/C+SC/Cb/Br/Cb+Br/Sp/Uk]

[24/42/26/2/12/1/1/4]

*C = Cortical, SC = Subcortical, C + SC = Cortical + Subcortical, Br = Brainstem, Cb = Cerebellum,
Cb+Br = Cerebellar + Brainstem, Sp = Spinal, Uk = Unknown.
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for each spatial and temporal measure permitting direct 
comparisons across task parameters. For example, an indi-
vidual with a reaction time of 300 ms may convert to −1.64 
in Z-units (5th percentile), whereas movement time of 850 
ms converts to 0 in Z-units (50th percentile).

Critically, the same model that is used to transform neu-
rologically healthy performance into standard Z-units is 
then used to convert task parameters for each subject with 
stroke into Z-units (Figure 2, Step 2). With measures of per-
formance now in Z-units, impairment can be defined as per-
formance beyond some percentage of the healthy population, 
commonly the 95th percentile which is 1.64 Z-units. If poor 
performance could reflect either a large negative or positive 
value, then the line for impairment should be defined as 
±1.96 Z-units (<2.5 and >97.5 percentiles). Correction for 
factors such as age means that two individuals with the 
same reaction time in milliseconds (star and filled circle in 
left panel of Figure 2, Step 2) receive different Z-scores 
when transformed by the model (right panel).

Figure 3A highlights distributions of reaction time with 
the affected arm for individuals 0.5 months (mean 11 days, 
range 1-28 days) after stroke (Stroke Initial) and 6 months 
(mean 26 weeks, range 21-38 weeks) after stroke (Stroke 
Final). The distribution of reaction times for Stroke Initial  
is shifted rightward and spread more broadly compared to 
the control distribution. Approximately 40% of individuals 
with stroke are identified as having impaired reaction times 
(i.e., Z > 1.64). The distribution of reaction times for Stroke 
Final is much less shifted compared to control and only 
17% are identified as impaired.

Figure 3B displays the distributions for movement time 
during reaching. For Stroke Initial the distribution is shifted 
with an observable bimodal distribution in the scores 
(Hartigan’s Dip statistic = 0.05; 95% likelihood of bimo-
dality)48 and 70% of individuals were identified as impaired. 
For Stroke Final, the distribution is shifted back towards  
the control distribution and is largely unimodal (Dip sta-
tistic = 0.023, 1% likelihood of bimodality), with a few 

Figure 2. Conversion of kinematic measures into standardized units. A) Calculations for task parameters. Step 1 creates a model 
that converts raw parameter scores to a standard normal distribution for a kinematic measure for a large healthy population. The 
distribution of values for a measure of performance (shown here is reaction time) is transformed to a standard normal distribution 
using Box-Cox equations and the effects of age, sex, and handedness are taken into account using weighted linear regression. Step 2 
illustrates the calculations for the same task parameter for participants with stroke. For each participant, the outcome measure  
(i.e. reaction time) is transformed using the individual’s demographic information and the coefficients from the healthy performance 
model (from Step 1) to generate a task parameter value in Z-units. Vertical dashed line in right panel indicates 95th percentile 
performance for healthy controls (1.64 Z-units).
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individuals that continue to have large values, and only 29% 
are impaired. The distributions for reaction and movement 
time clearly highlight that stroke leads to a greater impair-
ment in the latter compared to the former at both time 
points, although this varies across individuals.

It is important to note that while the use of standardized 
units permits comparisons across parameters, some caution 
is necessary. In particular, comparison across parameters 
(or tasks) may be problematic when values are far from 
healthy performance. Near the healthy range, it is reason-
able to assume that a reaction time of 2 in Z-units is better 

than a movement time of 3, but a difference of 1 may not be 
meaningful when the two values are 9 and 10, respectively. 
Each parameter has limits on the range of potential values 
dictated by the distribution of performance for healthy 
individuals (mean, variance, and skew) as well as limits of 
possible values that can be attained. Reaction time and 
movement time are both limited by the maximal time for a 
given trial, whereas initial direction angle ranges from 0 to 
180°. Floor effects can still remain in tasks such as reaching 
for individuals that cannot move the arm to the central tar-
get to initiate a trial. This is partially minimized by having 

Figure 3. Histograms and probability distribution curves for (A) reaction time (B) movement time (C) Z-Task Scores (affected arm) 
and D) Z-Task Scores (less affected arm) for participants with stroke (N = 112) who completed the Visually Guided Reaching (VGR) 
task. Black traces are theoretical probability distribution curves for the healthy control subjects (mean/median = 0 and standard 
deviation = 1). Red curves and histograms represent data collected at the initial time point after stroke (Stroke Initial: ~0.5 months 
post-stroke). Blue curves and histograms represent the data collected at the final time point (Stroke Final: ~6 months post-stroke). 
Distribution curves calculated using a probability density estimate using a normal kernel function.
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the robotic exoskeleton provide weight support so that some 
individuals with substantial weakness can move the limb to 
some degree.

Task Scores

The use of many different spatial and temporal parameters 
provides considerable richness to understand how stroke 
impacts performance, and potentially, specify targets for a 
rehabilitation plan. However, many measures of perfor-
mance can also lead to information overload and difficulties 
in assessing overall impairment in a given task. Thus, there 
is also a need for a more general measure of performance. 
Our tentative strategy is to aggregate task parameters to 
generate a single Task Score (see Supplemental Figure 1). 
Distributions that characterize performance in a task param-
eter are either one-sided or two-sided. One-sided distribu-
tions either have poor performance indicated by larger 
values (e.g., reaction time) or smaller values (e.g., hand 
speed). In contrast, two-sided distributions have poor per-
formance indicated by both larger and smaller than normal 
scores (e.g., arm performance asymmetries in bimanual 
tasks).40 In order to aggregate different task parameters 
equally, one-sided task parameters are transformed such 
that best performance is 0 and poor performance is a large 
positive value. For two-sided parameters, (where poor per-
formance could be either a large positive or a large nega-
tive) the absolute value is used. The end result is that all 
parameters are now aligned such that 0 is best performance 
and higher values reflect poorer performance. We chose to 
aggregate the values using root-sum-squares (RSS) and 
then to transform to standard normal space using Box-Cox 
equations. This model, developed from the performance of 
healthy controls, is then used to transform the aggregate 
measures for each individual with stroke, again into Z-units 
(termed Z-Task Score).

Figure 3C displays Z-Task Scores for the affected arm of 
individuals with stroke. The distribution for Stroke Initial is 
shifted compared to the standard control distribution with 
85% of individuals identified as impaired. Task Scores tend 
to decrease for Stroke Final and shift towards the control 
distribution, but 49% of individuals are still identified as 
impaired. Figure 3D displays the Z-Task Scores for the less 
affected arm. The distribution for Stroke Initial is shifted 
compared to the standard control distribution and 46% of 
individuals were identified as impaired. In contrast, the dis-
tribution for Stroke Final is similar to the healthy control 
distribution and only 13% of individuals are identified as 
impaired.

Estimates of Recovery

Measures of recovery are important as they provide essen-
tial information to assess the efficacy of novel therapeutic 

interventions. Figure 4A displays hand traces of a partici-
pant with stroke assessed at four time points: 0.5, 1.5, 3, and 
6 months following stroke. Their performance improves at 
each time point which is reflected by the decreasing Task 
Scores: 10.68 reflects a severe impairment at Stroke Initial, 
4.36 and 2.36 reflect moderate impairments at 1.5 and 
3 months post-stroke, respectively. Task Score of 2.31 at 
Stroke Final, 6 months post-stroke, shows that the partici-
pant has improved but still has some mild impairments. 
Figure 4B displays measures of impairment at the four time 
points for the stroke cohort. Z-Task Score means are plotted 
against their Standard Deviations (SD). The affected arm 
displays both a very large mean (5.43) and SD (3.54) 
reflecting the broad range in performance for Stroke Initial, 
as also displayed in Figure 3C. Mean and SD values reduce 
in magnitude with time, signifying a reduction in impair-
ment and a reduction in the range of performance in the 
stroke cohort, respectively. The less affected arm also shows 
an improvement over time reaching a mean near zero and 
an SD of about 1.5 within 3 months. Individuals with stroke 
showed statistically significant improvements from initial 
measures to 1.5 months, and from 1.5 months to 3 months 
for reaching with both the affected and less affected arms. 
While there is a small reduction in the means from 3 to 
6 months, it is not statistically significant (paired t-test, 
P > .05).

As the distribution of healthy performance in Z-units 
has a mean value of zero, recovery as a population can be 
estimated simply as the difference between mean initial 
impairment and mean impairment at a given time point, 
divided by the mean initial impairment (Stroke Initial). 
Figure 4C displays recovery (mean and confidence inter-
val) and the percentage of individuals impaired at differ-
ent time points following stroke. The 95% confidence 
intervals are calculated using repeat samples with replace-
ment of individuals from the stroke cohort. These esti-
mates suggest that individuals with stroke display ~60% 
recovery in performing VGR in the affected arm at 
6 months (confidence interval 48 to 66%). We can also 
track the percentage of individuals impaired which 
decreases over time to approximately 44% at 6 months. 
The less affected arm displays almost 100% recovery at 
6 months, with a confidence interval of 80 to 112%. The 
percentage of individuals who are impaired at 6 months 
with the less affected arm approaches 10%, which is just 
above the 5% of individuals who would be expected to 
show impairments in a healthy population, based on using 
a 95% cutoff for defining impairment.

It is important to recognize that the calculation of recov-
ery is for the population and not individual participants. For 
example, in some cases individuals with stroke can attain 
Z-Task Scores below zero, denoting performance above 
average for healthy individuals. However, this does not 
mean that this individual had greater than 100% recovery. 
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As mentioned above, we do not know an individual’s pre-
stroke abilities so we cannot accurately assess impairment or 
recovery at the individual level. In situations where baseline 
tests are available, recovery can be estimated for each indi-
vidual. In contrast, the distribution functions do allow us to 
estimate the probability that someone will attain some level 
of recovery. For example, reaching performance with the 
affected arm will fall within a typical healthy range for 
~50% of individuals 5 months after stroke. Further, recovery 
distributions could be quantified for a sub-set of individuals 

with a specific level of initial impairment (i.e., Initial Task 
Score between 7 and 10).”

While we and others have recommended against this 
approach,12,14,15,49,50 we also estimated recovery based on 
commonly used techniques of regressing initial impairment 
versus change in impairment for comparison purposes 
(Figure 5A and B). For the affected arm, the regression 
slope is 0.55 which is similar to the 60% recovery calcu-
lated for the affected arm in Figure 4C. However, for the 
less affected arm, the slope is 0.63 which is far lower than 

Figure 4. (A) Hand traces for the VGR task plotted for an exemplar participant assessed at 0.5, 1.5, 3, and 6 months post-stroke. 
(B) Mean Z-Task Score plotted vs the Standard Deviation of Z-Task Scores. Black circle represents healthy controls, white circles 
represent the affected arm of participants with stroke and white triangles represent the less affected arm of participants with stroke. 
Error bars denote 95% confidence interval for the mean and SD estimated by measuring the mean and SD from repeat samples with 
replacement of Z-Task Scores from the original distribution and repeating this process 1000 times. (C) Left axis: the percentage of 
individuals classified as impaired based on Z-Task Score (i.e., Task Score higher than 95% of healthy controls). Right axis: % Recovery 
plotted across time points. Recovery is calculated as the mean of ((Z-Task Score initial—Z-Task Score T(i))/Z-Task Score initial)*100. 
Circles represent data collected for reaches with the most affected arm and triangles represent data collected for the less affected 
arm. Errors bars denote 95% confidence interval for recovery based on repeat samples with replacement of individuals from the 
stroke cohort.).
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the ~100% recovery in the less affected arm estimated in 
Figure 4C. These plots of recovery look different than 
observed in previous studies that plot initial impairment 
versus change in impairment based on FM because our 
Z-Task Scores do not have a ceiling effect. When we add 

an artificial ceiling to our Z-Task Score data and cap the 
possible values at 0 (Figure 5C and D) we can create a plot 
that looks more like the regression plots generated for the 
FM scale.14,17,51,52 The calculated slope for the affected arm 
is now 0.59 and for the less affected arm is 0.73. For the 

Figure 5. (A) Recovery plotted for VGR Z-Task Scores for the affected arm. Black lines are the linear regression lines represented 
by equation in the top left corner and r-values are the Pearson correlation coefficient. (B) Same as (A) but for the less affected arm. 
(C) The same data plotted for VGR Z-Task Scores for the affected arm but with an artificial ceiling added to the data of Z-Task 
Score = 0 (median of healthy performance). (D) Same as (C) but for the less affected arm.
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less affected arm regressions still predict far lower than the 
100% recovery, as predicted in Figure 4C.

Patient-Specific Impairments

As stated earlier, we cannot quantify true impairment or 
true recovery for each individual following stroke as we do 
not know their pre-stroke abilities. However, the use of neu-
rologically healthy individuals provides a basis to quantify 
patient-specific impairments.53 This is a similar concept to 
diagnostic blood tests or many other clinical tests, where 
individual samples are compared to a normalized range 
based on healthy individuals. Figure 6 displays Z-Task 
Scores for Stroke Initial and Stroke Final for each individ-
ual (A: affected arm, B: less affected arm). The horizontal 
and vertical dashed lines denote the 95th percentile perfor-
mance for healthy controls, and thus, values greater than 
this cutoff signify impairment. The solid diagonal unity line 
denotes identical performance for both initial and final 
assessments. The dashed diagonal lines denote the region of 
equivalence, where there is no significant change in perfor-
mance between the two time points (open circles). Measures 
of significant change were identified by repeat testing of 
healthy individuals to assess performance consistency.54 
Below the lower diagonal dashed line denotes significant 

improvement in the second assessment, whereas above the 
upper diagonal dashed line denotes significant degradation 
in performance (both indicated by filled circles). Not sur-
prisingly, many individuals significantly improved reaching 
performance. In some cases, some residual impairment 
remained (above horizontal dashed line), whereas in other 
cases, performance returned to within the range for healthy 
individuals (below horizontal dashed line). A few individu-
als that were already within the healthy range for the initial 
assessment statistically improved performance. Z-Task 
Scores below zero denote performance better than the aver-
age for healthy individuals.

Discussion

Our objective here is to describe how kinematic-based mea-
sures can deal with many of the key drawbacks of criteria-
based, ordinal scales. Here we propose using the natural 
distribution of performance observed in healthy individu-
als as a foundation to assess impairment and recovery. 
Standardized units create a common language for comparing 
performance. Age and other factors impact performance, 
obfuscating interpretation of performance in native units, 
but can be corrected when transforming into standardized 
units. We used a visual-guided reaching task to demonstrate 

Figure 6. VGR Z-Task Score in Z-Units plotted for individual participants with stroke for the affected (A) and less affected (B) arms 
at Stroke Initial (0.5 months post-stroke) vs Stroke Final (6 months post-stroke). Vertical and horizontal dashed lines represent the 
cutoff line for impairment compared to 95% of healthy controls. Solid black diagonal lines represent the unity line and dashed diagonal 
lines represent significant change values calculated from repeat testing in a healthy normal population. Circles are filled grey if they 
surpassed thresholds for significant change from the initial exam to the final exam.
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our approach, but the basic approach can be applied to any 
behavioural task or technology (i.e., wearable sensors, 
motion capture, force plates) where performance can be 
quantified with some level of resolution, including even 
simple measures like the 10m walk test.

It is recognized that quantifying the quality of tasks like 
reaching is important when assessing impairments,36 
although it is less clear which parameters or measures of 
performance should be considered when assessing this 
quality. In the VGR task we use 14 parameters related to 
the motion and position of the hand to quantify perfor-
mance of postural stability before movement, the speed, 
and accuracy of the initial motor response as well as mea-
sures of secondary movements to attain the spatial goal (for 
simplicity, here we only presented reaction time and move-
ment time). However, over 150 different kinematic metrics 
have been used previously to characterize upper limb 
movements across studies.5 Some of this variety reflects 
differences in technologies (motion capture versus interac-
tive robotics) or behavioural task (2D or 3D movements). 
In other cases, studies focus on more detailed measures 
related to the joints to explore issues related to joint coor-
dination.55,56 While the plethora of scientific questions 
examined dictates the need for many different measures to 
be assessed, some standardization would clearly be useful 
to facilitate ease of interpretation, and for clinical trials and 
meta-analyses.

While individual metrics allow us to observe the quality 
of movement and identify potential therapeutic targets, 
there is also a need for a singular measure of performance 
to characterize overall impairment and recovery. This is 
particularly true for clinical trials, where a global measure 
of performance is desirable as an outcome measure to 
determine efficacy of treatment. How many and which 
measures of performance should be included in an overall 
performance metric is an open question. Inter-rater reli-
abilty analysis may be useful in identifying which param-
eters best separate performance of different individuals, 
and thus, would be advantageous to include in an overall 
score. Other ways to reduce the data could include princi-
pal component analysis techniques based on extracted 
parameters11,57 or raw kinematic data,58 regression models 
that weight parameters based on some criteria,59 or machine 
learning techniques.2,60

Similarly, once parameters are identified, there are many 
possible ways to aggregate different measures of perfor-
mance. We chose root-sum-squares which equally weights 
each parameter, and thus values with larger deviations from 
healthy performance are weighted more. An alternate 
approach to the Euclidean distance is the Mahalanobis dis-
tance (MD) that removes inter-correlations between param-
eters.61 However, measures of MD can have unexpected 
outcomes. For example, reaction and movement times 
tend to co-vary together both in healthy individuals and 

individuals following stroke. However, MD distance will 
increase more for an individual if movement time increases 
without a corresponding increase in reaction time. That is, 
an individual with only an impairment in movement time 
and not reaction time can be scored as more impaired as 
compared to someone that was impaired in both movement 
and reaction time. It is possible that one can receive an MD 
that is beyond the healthy range, and yet all task parameters 
are within the healthy range but the pattern of values is 
atypical. This is not to say that using the MD is not worth-
while. Where Task Scores using Euclidean distances are 
useful for describing overall impairment, Mahalanobis  
distances may be useful to identify when individuals are 
impaired in unexpected ways. Regardless of the approach, 
we suggest that transforming the data based on performance 
of a large cohort of healthy individuals should still be per-
formed to aid in the interpretation of the level of impair-
ment and the amount of recovery.

There has been considerable debate on how to assess 
recovery following stroke. A popular approach with the FM 
Scale has been to regress the amount of impairment 
observed from the first time point (66-FM Initial) versus the 
difference between the two assessments (FM Final-FM 
Initial). The resulting slope of the regression tends to  
be near 0.7 and explains a substantial amount of variance. 
This has been interpreted as evidence that most strokes 
recover 70% of function.13,29 Subsequent studies have found 
that this 70% proportional recovery rule holds for many 
other clinical scales, including lower extremity FM,52,62 
aphasia,63 hemispatial neglect,28,64 and even the Functional 
Independence Measure.14 The ubiquitous nature of these 
observations across multiple stroke impairments and scales 
has drawn criticism. Several recent studies have challenged 
this regression approach due to mathematical concerns, 
related to mathematical coupling and variance reduction 
between time points.12,14,15,49,50 It is important to recognize 
that these mathematical concerns do not mean proportional 
recovery may not exist. Simply that the use of regression 
models between initial impairment and change in impair-
ment is flawed and poor evidence, at best, to support a 70% 
proportional recovery rule.

Our approach for quantifying recovery highlights the 
clear problem with regressing the amount of initial impair-
ment versus change in impairment. For the impaired arm, 
our measures are comparable although slightly lower to that 
predicted with regression, but there are glaring differences 
when quantifying recovery of reaching with the less affected 
arm. The regression approach found recovery was 63%, 
whereas our comparison to the healthy cohort suggests vir-
tually complete recovery of function (Figure 5E). This is 
obvious when simply looking at the distribution of perfor-
mance for healthy controls and Stroke Final in Figure 3D, 
as they are almost identical. This highlights the clear bene-
fits of quantifying impairment as well as recovery based on 
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comparisons to kinematic-based measures of performance 
observed for healthy neurologically-intact individuals.
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