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In Brief
Quantification of protein
intensities is a crucial and
challenging task in mass
spectrometry–based
proteomics. With directLFQ, we
introduce an efficient algorithm
that massively decreases
execution time for large sample
numbers while maintaining high
accuracy. As it scales linearly
with the number of samples,
directLFQ unlocks high-quality
quantification for arbitrarily large
sample sizes. This is especially
important for clinical proteomics
as well as the rising field of single
cell proteomics.
Highlights
• Novel algorithmic concept for label-free quantification.

• Linear dependence of execution time on number of samples.

• Quantifies up to 100,000 samples in less than 2 h.

• Higher accuracy and robustness than state-of-the-art MaxLFQ.
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Accurate Label-Free Quantification by
directLFQ to Compare Unlimited Numbers of
Proteomes
Constantin Ammar , Julia Patricia Schessner , Sander Willems , André C. Michaelis ,
and Matthias Mann*
Recent advances in mass spectrometry–based prote-
omics enable the acquisition of increasingly large datasets
within relatively short times, which exposes bottlenecks in
the bioinformatics pipeline. Although peptide identification
is already scalable, most label-free quantification (LFQ)
algorithms scale quadratic or cubic with the sample
numbers, which may even preclude the analysis of large-
scale data. Here we introduce directLFQ, a ratio-based
approach for sample normalization and the calculation of
protein intensities. It estimates quantities via aligning
samples and ion traces by shifting them on top of each
other in logarithmic space. Importantly, directLFQ scales
linearly with the number of samples, allowing analyses of
large studies to finish in minutes instead of days or
months. We quantify 10,000 proteomes in 10 min and
100,000 proteomes in less than 2 h, a 1000-fold faster than
some implementations of the popular LFQ algorithm
MaxLFQ. In-depth characterization of directLFQ reveals
excellent normalization properties and benchmark results,
comparing favorably to MaxLFQ for both data-dependent
acquisition and data-independent acquisition. In addition,
directLFQ provides normalized peptide intensity estimates
for peptide-level comparisons. It is an important part of an
overall quantitative proteomic pipeline that also needs to
include high sensitive statistical analysis leading to pro-
teoform resolution. Available as an open-source Python
package and a graphical user interface with a one-click
installer, it can be used in the AlphaPept ecosystem as
well as downstream of most common computational
proteomics pipelines.

Mass spectrometry (MS)-based proteomics is the method of
choice for global analysis of the proteome (1), including appli-
cations in clinical (2, 3), single cell (4, 5) and spatial (6) prote-
omics. Modern MS-proteomics workflows are increasingly
quantitative, meaning that the major insights derived from the
experiments are gleaned from observed changes in protein
abundances (7). Appropriate computational processing is
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therefore key for obtaining unbiased quantitative protein values
from the raw ion intensities acquired by the instrument (8, 9).
Conceptually, the computational processing of MS proteomics
data comprises identification and quantification. In the identi-
fication step, the ion signals acquired by the MS instrument are
assigned to their most probable peptides and proteins using
statistical models. In the quantification step, the intensities of
the ion signals are used to derive meaningful proxies for protein
(or peptide) abundances.
In this study, we focus on the quantification step, which

again consists of two essential parts: the normalization of
systematic biases between samples and the generation of
peptide and protein intensities from the underlying ion in-
tensities. A variety of methods have been established for
quantification (10–19), of which the MaxLFQ approach is one
of the most widely used. It is implemented in most of the
current computational proteomics pipelines (20–25). One
reason for the popularity of MaxLFQ is that it addresses major
pitfalls in proteomics quantification by accounting for the fact
that different peptides belonging to the same protein can have
very different base intensities, for example, due to differing
ionization efficiencies (26). In addition, it is robust against
missing values for normalization (differing sample depths) and
can reliably estimate protein intensities. MaxLFQ achieves this
by solving equation systems for both steps (10). However, the
number of terms and equations scales quadratically with the
number of samples, leading to challenges in execution time as
well as high overall complexity of the approach. Although this
can be alleviated by faster implementations of the algorithms
for quadratic optimization (22, 27), the issue of quadratic in-
crease remains, imposing an upper limit for feasible sample
numbers.
To mitigate these issues, we have introduced directLFQ as

a simple and direct method for sample normalization and
protein intensity estimation. We reframe the normalization
problem by using the concept of “intensity traces,” which are
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Fast and Accurate Label-Free Quantification With directLFQ
aligned by a single scaling factor per intensity trace. By
reframing the problem in such a way, we reduce the quadratic
to linear scaling (i.e., ten times as many samples only takes ten
times longer), for any number of samples. Comparing
directLFQ with MaxLFQ for several quantitative benchmarking
sets, we show an overall better performance of directLFQ, for
both data-dependent acquisition (DDA) and data-independent
acquisition (DIA) datasets. In a complex spatial proteomics
dataset, we observe that several aspects of the biology are
better resolved with directLFQ.
The code of directLFQ is openly available on GitHub

(https://github.com/MannLabs/directlfq), with easy access for
all types of users (graphical user interface [GUI] for end users,
as well as a command line interface and a Python application
programming interface). Supported input formats include
AlphaPept (22), MaxQuant (16), Spectronaut (23), DIA-NN (24),
and IonQuant/FragPipe (25). The underlying algorithm allows
for easy adaptation to other software pipelines.
EXPERIMENTAL PROCEDURES

directLFQ Analysis of MaxQuant Files

As examples of DDA, MaxQuant result files were (re)processed in
this study by using the evidence.txt output file as an input to
directLFQ. The proteinGroups.txt file was used as an additional input
for protein group mapping.

Dynamic Organellar Maps Analysis

For analysis of the dynamic organellar maps (DOM) data, the orig-
inal MaxQuant output files from the study of Schessner et al. (28)
acquired on an Orbitrap Exploris 480 mass spectrometer were used.
directLFQ was called on the MaxQuant files as described above.
Subsequently, in order to fulfill the formatting requirements of the
DOM-QC analysis tool, an adapted directLFQ file was created, where
columns from the proteinGroups.txt file were added to the directLFQ
file. The adapted directLFQ file as well as the original proteinG-
roups.txt file were both uploaded to the DOM-QC tool (https://domqc.
bornerlab.org/QCtool) and a .yaml file containing the aligned com-
parison results was downloaded. Plots were created on a local ma-
chine based on the DOM-QC code available on GitHub (https://github.
com/JuliaS92/SpatialProteomicsQC). The two-sample t test was
carried out using the “scipy.stats.ttest_ind” function of the scipy
package v. 1.9.3 with default parameters.

DDA Mixed Species Benchmark

For the DDA mixed species benchmark described below, the
MaxQuant output files of the “HeLa–Escherichia coli” dataset acquired
by our group (Meier et al. (29)) on a Q Exactive HF mass spectrometer
were downloaded from the respective PRIDE (30) repository
PXD006109. directLFQ was called on the MaxQuant files as described
above. For benchmarking, a subset of six files was used that had been
acquired in standard DDA mode (not in BoxCar mode). Three files
contained six times the amount of E. coli as compared with the other
three. For analysis, the median log2 transformed LFQ intensity of the
high E. coli set was obtained and subtracted from the median log2
transformed LFQ intensity of the low E. coli set. This resulted in one
log2 fold change per protein. For analysis, these fold changes were
plotted as violin plots or scattered against the mean of the log2
transformed LFQ intensities over all samples.
2 Mol Cell Proteomics (2023) 22(7) 100581
Consistency Analysis of 200 HeLa Files

To assess the performance of directLFQ on larger datasets, the
MaxQuant output files of the “200 HeLa” dataset by Bian et al. (31)
acquired on a Q Exactive HF-X mass spectrometer was downloaded
from the corresponding PRIDE repository PXD015087. directLFQ was
called on theMaxQuant files as described above. The directLFQ output
file and the proteinGroups.txt file were used for further analysis. The
coefficient of variation (CV) was calculated for every protein over the
200 HeLa files, and the resulting distributions of CVs were compared.

DIA Mixed Species Benchmark

For the DIA mixed species benchmark, six.raw files corresponding
to the “large-FC” dataset by Huang et al. (32) acquired on a Q Exactive
HF mass spectrometer were downloaded from the PRIDE repository
PXD016647. The raw files were analyzed using Spectronaut 15 in
directDIA mode based on the UniProt databases UP000000625,
UP000005640, UP000002311, and UP000001940.

The Spectronaut report was exported in the format specified in the
spectronaut_tableconfig_fragion.rs file available on the directLFQ
GitHub repository and accessible via the directLFQ GUI. directLFQ
was called on the exported Spectronaut results file, and the protein
intensities were estimated based on a combination of the MS1 isotope
intensities as well as the fragment ion intensities (i.e., each fragment
ion and MS1 isotope corresponded to one independent intensity
trace). The iq package was called on the same report file using the
“iq::process_long_format” command.

The raw files mapped to two conditions S1 and S2, with three
samples in S1 and three in S2. Saccharomyces cerevisiae and Cae-
norhabditis elegans proteins had different abundances in S1 and S2
(ratios 2 and 0.77, respectively), while Homo sapiens remained con-
stant. As described above for the DDA data, the median log2 trans-
formed intensity of each protein was obtained and these intensities
were subtracted between S1 and S2. The intensity estimate for each
protein was the mean log2 transformed intensity over all conditions.

Consistency Analysis of Clinical DIA Study

The DIA-NN results file of the study of Demichev et al. (33) (acquired
on a TripleTOF 6600 mass spectrometer) was downloaded from the
PRIDE repository PXD029009. directLFQ was called on the output file,
using the “MS1.Area” as well as the “Fragment.Quant.Raw” columns
for creating ion intensities. Each fragment ion as well as the MS1.Area
corresponded to one independent intensity trace. The DIA-NN
implemented MaxLFQ results were obtained via the “Gen-
es.MaxLFQ” column. The iq package was called on the appropriately
reformatted report using the “iq::process_long_format” command.

The dataset contained several types of quality control (QC) sam-
ples. As a quality measure the CV for each type of QC sample was
obtained for every protein. The distributions of all the CVs together
were then used for comparing the different LFQ approaches.

Normalization Analysis

To test normalization on a challenging dataset, the MaxQuant result
files of the tissue dataset by Wang et al. (34) acquired on an Orbitrap
Fusion Lumos mass spectrometer were downloaded from the PRIDE
repository PXD010154. Precursor (sequence and charge) intensities
were extracted from the evidence.txt file. directLFQ normalization was
performed by calling the directLFQ normalization class on the pre-
cursor table. Median normalization was performed using R code for
normalization provided together with the iq package (https://cran.r-
project.org/web/packages/iq/vignettes/iq.html).

The dataset consisted of several different tissue measurements,
from which “lung” was chosen as the reference tissue. The precursor
intensities were log2 transformed, and the precursor intensity of the
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Fast and Accurate Label-Free Quantification With directLFQ
lung tissue was subtracted from the precursor intensities of the other
conditions. This resulted in a distribution of ratios (one ratio per pre-
cursor) relative to lung for each tissue. The boxplots in the main text
below contain the set of precursors that do not have any missing
values, while normalization was performed on the complete dataset.
We chose the precursors with no missing values for visualization
because they are more likely to reflect the true abundance changes
between the tissues.

Execution Time Analysis

Execution time comparison was performed on a medium-strength
computer cluster (128 GB RAM, 64 logical processors @2.4 GHz).
Execution times of up to 10,000 samples on this cluster were com-
parable with execution times on a state-of-the-art MacBook (Mac-
Book Pro 16-inch, 2021, M1 Max, 64 GB RAM). The MaxLFQ
reference runs were performed in the scope of an interactomics study
(35) on a comparable cluster (512 GB RAM, 40 logical processors
@2.2 GHz). directLFQ runs on CPUs with multiprocessing enabled per
default and the option to manually set the number of cores to use.

Different sample sizes were simulated by using a template dataset
that contained N samples. To simulate M > N samples, we duplicated
the N samples as often as was necessary to reach M. In the case of M
< N, we left out as many samples as necessary, by taking the first M
columns in the template.

The template dataset for DDA data was based on the interactomics
study, and the template dataset for DIA data was based on an
example dataset provided together with the iq package (https://github.
com/tvpham/iq/releases/download/v1.1/Bruderer15-DIA-longformat-
compact.txt.gz).

We called directLFQ on the templates using the “lfq_bench-
mark.LFQTimer” class. For iq, we used the system.time command on
the “iq::fast_preprocess” and the “iq::fast_MaxLFQ” commands. The
data were adjusted to adhere to the format necessary for the
“iq::fast_preprocess” command.

For the 100,000 sample datasets, the memory limit of 128 GB was
surpassed, which is why we decreased the number of proteins in the
template file by a factor of 4 and multiplied the resulting execution time
by 4. As the proteins are processed independently of each other this
should be a realistic estimation of the true execution time.
RESULTS

Reframing the Normalization Problem with Intensity traces

The underlying idea of the directLFQ approach is to frame
the set of samples or ions to be normalized as a set of in-
tensity traces. In the case of sample normalization, such a
trace consists of all the ion intensities measured in a sample
(Fig. 1A). Each point in the trace has the coordinates: (ion
identifier, log2(intensity) of ion). For example, the trace repre-
senting sample 1 might be precursors VTTHPLAK_2+ with
log2(intensity) of 23, VTVAGLAGK_3+ with log2(intensity) of
25, and so on. In sample 2, these same peptides will have
differing intensities, resulting in a slightly different trace. There
are as many traces as there are samples in the dataset.
In the case of protein intensity estimation, each trace con-

sists of specific precursor ions (DDA) or transitions and pre-
cursor ions (DIA) and each trace contains all the intensities of
these ions over the different samples (Fig. 1B). For example,
the protein containing the precursors VTTHPLAK_2+,
VTTHPLAK_3+, DGLILTSR_2+, and VTVAGLAGK _3+ would
have four ion intensity traces with each point in a trace defined
by the coordinates (sample number, log2(intensity)).
Note that the concept of intensity traces requires log

transformation, because the shape of the intensity trace is
then determined by the relative changes between samples
independent of base intensity. For simplicity, we denote the x-
axis components of the intensity traces as features, which
could be either samples, precursor ions, or transitions,
depending on the context.

Shifting Intensity traces to Compare Relative Changes

For the directLFQ approach, we frame sample normalization
and protein intensity estimation as problems of intensity
traces that need to be shifted (Fig. 1C). We do not alter the
shape of each intensity trace but instead make the shapes of
the intensity traces comparable with each other. This is ach-
ieved by adding one scaling factor to each intensity trace
(corresponding to multiplication before the log trans-
formation). The scaling factors are chosen to minimize the
distance of the intensity traces from each other (see section
below). This way the shapes of the intensity traces are pre-
served, but the systematic shifts between the traces are cor-
rected for. In the case of “between sample normalization” this
means that systematic intensity shifts between samples are
corrected without changing the relative intensities of ions
within each sample. In the case of “protein intensity estima-
tion” this means that systematic biases between ions, due to
differing ionization efficiencies of precursors in case of protein
intensity estimation, are corrected for, again preserving the
relative abundance changes of the ions between samples.

A Systematic Approach to Shifting Intensity traces

As mentioned, the core concept of directLFQ is to shift in-
tensity traces on top of each other. A wide variety of methods
can implement this shifting. Most simply, one original or an
average/median trace could be selected and all traces could
be shifted toward that trace. Alternatively, one could treat this
as a minimization problem, e.g., using a quadratic solver.
Based on our previous work with the MS-EmpiRe (36) pack-
age, we here chose to use pair-wise comparisons for shifting
using an adapted single linkage approach. This means that we
compare all pairs of traces with each other as follows: each of
the n traces is considered a vector of log2(intensities) with as
many elements as features (Fig. 1C, upper right). In this vector,
missing values are encoded as NaN (Not a Number). When
subtracting both vectors, this results in a distribution of fold
changes. From this distribution we then extract the median
and the variance. The median estimates any systematic shift
between the intensity traces, whereas the statistical variance
reflects the overall divergence of the traces. We shift the whole
set of traces using an iterative procedure as shown at the
bottom of Figure 1C: given n traces, we first collect two n ⋅ n
(half-) matrices, one containing the variances of all pairs of
intensity traces and one containing the medians. From the
Mol Cell Proteomics (2023) 22(7) 100581 3
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FIG. 1. The directLFQ approach. Objects to be normalized are intensity traces that can be shifted. A, between-sample normalization, where
each trace represents a sample and each element of the trace is a peptide's log2 intensity. Traces are shifted on top of each other (blue) as
described below. B, protein intensity estimation, where each trace belongs to a peptide and each element of the trace is a sample’s log2 in-
tensity. C, the shifting process. Traces are compared in a pairwise fashion by subtracting the intensities and extracting the median and variance
of the resulting difference distribution (top). The most similar samples are shifted (indicated in blue) and a merged sample is created. The process
is repeated on a now smaller similarity matrix until all traces are shifted (bottom). A more realistic example for between-sample normalization is
given in (D) and for subsequent protein intensity estimation in (E).
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variance matrix, we extract the pair of intensity traces that is
most similar, i.e., the smallest element in the matrix. One of the
intensity traces in the pair is rescaled to the other by adding
4 Mol Cell Proteomics (2023) 22(7) 100581
the corresponding median shift from the median half matrix.
After scaling, the pair of traces is combined, creating a new
and more stable “averaged trace” that replaces the pair.
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After also recalculating the affected elements of the median
and the variance matrices, the procedure is repeated on the
resulting (n−1) ⋅ (n−1) matrices until all n intensity traces are
merged. Each time an averaged trace is shifted, the corre-
sponding scaling factors need to be propagated to all samples
underlying the averaged trace. To this end, the scaling factors
are tracked throughout the procedure and then used to shift
the original intensity traces on top of each other.
With this approach, the most similar samples are merged

first, decreasing the possible error in each shift. Creating the
average intensity trace in this way has two conceptual
benefits.
First, it should be more stable than the single-intensity

traces, because it is an average of multiple traces. Second,
creating the average trace mitigates the missing value prob-
lem. If an intensity at a certain position is missing in one
vector, but present in another, the averaged vector will auto-
matically be filled with the intensity that is not missing.
As this comparison scales quadratically with n, we define

upper limits nmax (nmax = 50 for sample normalization and
nmax = 10 for protein intensity estimation). If there are more
than nmax intensity traces, we construct an average from the
nmax intensity traces with the lowest numbers of missing
values and shift all the remaining intensity traces toward this
average. The reasoning behind this is that an average con-
structed from nmax traces should be sufficiently stable and
complete to enable precise sample shifting. We tested this
assumption for a case of sample normalization, where the
number of samples (1600) is much larger than nmax. This
showed that the variance between samples did not depend on
nmax, from 5 to 200, indicating that the most complete traces
picked first by the algorithms are already an excellent basis for
robust normalization (supplemental Fig. S1). After having
created the average, the further shifting steps are trivial and
computationally inexpensive. We name the combination of the
ion trace concept and the trace shifting algorithm “directLFQ,”
because it addresses possible quantification biases most
directly.

Between-sample Normalization

With the directLFQ algorithm in hand, we perform between-
sample normalization as the first step of the quantification
workflow. Here each sample is rescaled as described above
and visualized in Figure 1D, adjusting for biases such as due
to differences in sample loading or different performance of
the mass spectrometer. The underlying assumption is that the
majority of proteins are not regulated between samples,
because we use the median between intensity traces as a
scaling factor. This is a common assumption based on bio-
logical observations of proteome regulation and implicit in
many normalization algorithms, including MaxLFQ (10).
In cases where the majority of proteins are regulated, one

could use the mode instead of the median as the metric. The
mode is the most often observed change between the
samples. However, this is more challenging to estimate in
noisy data and is therefore often less stable than the median.
The most common biological reason that our assumption of
an unchanging majority of proteins does not hold would be
that a particular group of “uninteresting” proteins such as
contaminants or extracellular matrix, for instance, are present
in a subset of samples. In such a case these could be
excluded from the intensity traces in directLFQ by providing a
subset of “housekeeping proteins” (37, 38) to perform
normalization on. directLFQ offers the option to pass a set of
such proteins, and normalization will be performed using this
subset.

Protein Intensity Estimation

After sample normalization, directLFQ estimates the most
likely protein profile as illustrated in Figure 1E. After the ion
intensity traces are shifted on top of each other, the median
intensity of each sample is an estimate for the relative protein
intensity. The protein intensity profile is then transformed back
from log2 transformed intensities into linear space and multi-
plied by a single factor representing the overall protein
abundance. This is the sum of all linear ion intensities over all
samples for the given protein divided by the sum of all linear
protein intensities over all samples. In this way, the overall
peptide intensity is retained, as in the MaxLFQ algorithm (10).

Handling DDA, DIA, and Other Types of Acquisition Data

We have tested and benchmarked directLFQ on DDA as
well as DIA data, with DDA having quantitative data only on
the MS1 level and DIA at the MS1 and MS2 levels. For DDA
data processing, we build ion intensity traces based on the
MS1 intensities of the charged precursors. For DIA data, we
build intensity traces based on the MS1 intensities of the
charged precursors as well as on the MS2 level fragment ion
intensities. Thus DIA multiplies the number of data points
available for quantification, which we find to stabilize the
protein intensity estimation (supplemental Fig. S2). The
directLFQ algorithm can also readily be applied to different
types of quantitative proteomics, including isotope label–
based methods such as tandem mass tags (39) (TMT). For
TMT experiments contained in a single plex, the algorithm can
be applied as is. In case there are more conditions than TMT
channels, the corresponding experiments should be “channel
normalized” before using directLFQ.

Timing directLFQ on up to 100,000 Samples

As described above, the directLFQ algorithm scales linearly
with the number of samples, which should in principle allow
quantification of arbitrarily large numbers of samples in a
reasonable time. To test this in a controlled manner and in the
absence of extremely large datasets, we used real datasets as
templates and simulated datasets with increasing numbers of
samples by replication (Experimental Methods). For any of the
methods that we compared, we used the elapsed execution
Mol Cell Proteomics (2023) 22(7) 100581 5
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times for normalization and protein intensity estimation for
benchmarking, without data loading and data output.
Figure 2A depicts the timing results for the very large

dataset of our recent yeast interactome project (35) as pro-
cessed by MaxQuant. The option “fastLFQ” (10) was enabled
in processing with MaxLFQ. Its execution times increased
quickly and reached 2 weeks of processing time at around
2000 samples after which we broke off the computation. In
contrast, directLFQ took around 2 min for the same number of
samples. To keep execution times reasonable, we omitted
larger samples with MaxLFQ and further scaled up the number
of samples for directLFQ to 10,000 and 100,000 by replication,
which took 10 min and 100 min, respectively (Experimental
Methods).
For DIA data, we instead compared against the fast C++-

based implementation of the popular R package iq, as rec-
ommended for processing DIA data (Fig. 2B). Owing to its very
fast implementation of the quadratic LFQ algorithm, it took
only 2 s on its small 10-sample dataset, compared with 30 s
for directLFQ. While this difference is inconsequential in
routine proteomics practice, we do observe the expected
nonlinear increase in execution time as a function of the
number of samples and 10,000 samples already required a
processing time of 2.5 days, while directLFQ takes around
16 min. We further scaled directLFQ up to 100,000 samples,
which took only around 160 min. Note that directLFQ is only
parallelized for the CPU, whereas implementation on GPUs
would further drastically shrink processing time.
The increased processing time of directLFQ in DIA

compared with DDA is due to the fact that we have one in-
tensity trace for each fragment ion, increasing the total num-
ber of traces to be processed.

Applying directLFQ to Benchmarking Datasets

Next, we benchmarked directLFQ on several public data-
sets that are meant to directly assess quantification
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performance. We first applied directLFQ to a mixed-species
(H. sapiens and E. coli) dataset acquired in DDA mode by
our group (29). A total of six samples were measured, con-
taining identical amounts of H. sapiens cell lysate, while three
of them had 6-fold more E. coli than the others. Comparing
the two groups with three samples each, a ratio around one
would be expected for the H. sapiens proteins and a ratio of
six for the E. coli proteins. The better the quantification is, the
closer the proteins should be to the expected ratios. The
directLFQ-derived protein intensities align well around the
expected ratios, with substantially reduced outliers and lower
standard deviation (0.57 instead of 0.86 for E. coli) as
compared with MaxLFQ. In addition, the H. sapiens proteins
are centered on the expected ratio in directLFQ, while we see
systematic deviation in MaxLFQ (Fig. 3A). The number of
proteins was near identical in both methods (supplemental
Fig. S3A), and the outliers were indeed closer to the ex-
pected value for directLFQ compared with MaxLFQ
(supplemental Fig. S3B).
To test the performance of directLFQ on larger experiments,

we applied it to a published 200-sample HeLa technical
dataset (34) (Fig. 3B). As the samples should be identical and
each protein should therefore not significantly change be-
tween samples, we used the CV of each protein as a quality
measure. Our results show CV distributions of directLFQ and
MaxLFQ that are nearly identical.
To test directLFQ on DIA data, we applied it to a three-

species dataset that was acquired by Huang et al. (32) that
we processed with Spectronaut (23) (S. cerevisiae, H. sapiens,
and C. elegans) (Experimental Methods). It consists of six
samples, split into two conditions, with expected ratios 0.77,
1, and 2 (yeast, human, and C. elegans). We compared
directLFQ against the above-mentioned iq package and the
MaxLFQ implementation of Spectronaut. Both the expected
ratios and the spread around them were better for directLFQ.
Standard deviations for S. cerevisiae were 0.21, 0.26, and 0.31
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FIG. 3. Applying directLFQ to different benchmarking datasets. A, mixed-species data-dependent acquisition (DDA) dataset processed
with directLFQ and MaxLFQ. E. coli proteins should align along a log2 ratio of −2.59 (blue line), and H. sapiens proteins should align along a log2
ratio of 0. Median values are indicated by white dots in the violin plots, standard deviations are indicated in the respective color. B, distribution of
coefficient of variation (CV) values on a DDA dataset with 200 replicate HeLa samples, with very similar results for directLFQ and MaxLFQ. C,
mixed-species data-independent acquisition (DIA) dataset processed with directLFQ and two MaxLFQ implementations (iq and Spectronaut).
Expected log2 ratios for S. cerevisiae, H. sapiens, and C. elegans proteins are −0.38, 0, and 1, respectively. D, distribution of CV values between
technical repeat samples from a ~900-sample clinical DIA dataset, processed with directLFQ and two MaxLFQ implementations (iq and DIA-NN)
with comparable results for all approaches. E, testing directLFQ precursor normalization on a challenging tissue dataset and comparing against
standard median normalization. After normalization, all boxes should be aligned around 0, which is the case for directLFQ but not for the median
normalization approach.
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for directLFQ, iq, and Spectronaut, respectively. iq showed a
systematic offset for the H. sapiens proteins, which is not
visible for directLFQ and Spectronaut (Fig. 3C). The number of
proteins was again near identical (supplemental Fig. S3C).
We next tested performance on a clinical DIA dataset con-

sisting of almost 1000 Covid 19 plasma proteomes (33), which
had been processed with the software DIA-NN (24). This
included many QC samples, which ideally should show no
variability between runs, allowing us to use the CVs on the QC
samples as a quality measure of quantification. Comparison of
directLFQ against iq and DIA-NN revealed that the distribu-
tions of CVs are in a similar range, with iq showing an
Mol Cell Proteomics (2023) 22(7) 100581 7
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anomalous peak at a CV of 0.18 and directLFQ and DIA-NN
being comparable (Fig. 3D).
Lastly, we tested the sample normalization algorithm of

directLFQ on a tissue dataset. We chose tissues because they
often have strong differences in their proteome composition
and therefore constitute a challenging normalization bench-
mark. As a first step, we used a lung proteome as a reference
and calculated the ratio to lung for each precursor in each
tissue. This results in a set of ratios for each of the tissues,
with systematic shifts between them (Fig. 3E). The objective of
a normalization function is then to assign constant scaling
factors to each tissue, such that they are optimally aligned.
Clearly, a simple median normalization, as, for example,
implemented in the iq package, does not suffice to align the
datasets (Fig. 3E, middle), while directLFQ normalization re-
sults in well-centered distributions (Fig. 3E, right). This dem-
onstrates that the directLFQ normalization strategy is effective
in correcting systematic biases between samples. As noted
above, such normalization is only recommended if less than
half of the quantified proteins are substantially regulated. If
this is not the case directLFQ provides the option to specify a
protein subset to normalize on.

Applying directLFQ to Organellar Maps Data

To test directLFQ in a sophisticated cell biological situation
involving proteomic separation at different time points, we
analyzed a DOM dataset from Schessner et al. (28). In this
dataset, cells were mechanically lysed and the resulting
cellular compartments were separated using differential
centrifugation (28). Different fractions of the separated sample
were measured with DDA. In these organellar maps, proteins
are most abundant in the fractions that correspond to their
localization (for instance, Golgi apparatus). Furthermore, pro-
teins belonging to the same protein complex or organelle are
expected to have similar intensity profiles. This DOM dataset
is a good benchmark for the performance of the directLFQ
algorithm because this is a complex biological dataset with
many distinct outcomes. In addition, the paper provides the
DOM-QC benchmarking tool that is meant to assess quanti-
fication performance on this type of data, which we use in the
evaluations shown.
Principal component analysis by DOM-QC of the directLFQ

processed data visibly separates different organellar parts of
the cell (Fig. 4A). Comparing the directLFQ results to the
MaxLFQ results originally used in the publication suggests a
more consistent clustering of the directLFQ data. This is
especially visible for the endosome, peroxisome, or Golgi
proteins. The overall spread of the MaxLFQ data is higher,
which could either have biological or algorithmic reasons.
However, investigating the proteins at the extremes of the
principal component analysis indicates that directLFQ accu-
rately reflects the changes visible at the precursor level, while
MaxLFQ appears to overestimate protein ratios (supplemental
Fig. S4).
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To further explore the differences in protein cluster consis-
tencies, we used the DOM-QC tool to quantify the consistency
of protein profiles for proteins belonging to the same complex
(Fig. 4B). On the default list of complexes provided by DOM-
QC, the overall distance within clusters of directLFQ is
consistently better (lower values) with few exceptions.
The protein intensity profiles of the minichromosome

maintenance (MCM) complex had the best results in
directLFQ compared with MaxLFQ and those of the protea-
some complex were best in MaxLFQ (Fig. 4C and indicated by
arrows in Fig. 4B). In the MCM complex, where directLFQ
compared favorably, we see that the traces of directLFQ are
more tightly aligned, with almost identical profiles. For the
Proteasome, where MaxLFQ compared favorably, we see that
directLFQ has a deviating trace. Zooming in further, we
examined the most deviating protein MCM7 of the MCM
complex in the MaxLFQ data. This indicated that the algorithm
might overestimate the ratios for this protein, as for example
visible for the 1K and Cyt fractions of the MCM7 trace, which
was not the case for directLFQ (Fig. 4D). Conversely, to
investigate the cause of the discrepancy for the proteasome,
we inspected all aligned precursor intensity traces that un-
derlie the protein intensity estimation, which is only possible at
the protein level in MaxLFQ. Note that the shapes of each
intensity trace are untouched, therefore accurately reflecting
the underlying data. This revealed that the protein intensity
estimation is indeed consistent with the precursor data for
both MCM7 and PSMB2 in directLFQ. For PSMB2 there are
several datapoints supporting the variation in the shape of the
protein intensity profile in the 6K fraction. Thus, despite the
higher variance, the data clearly validate PSMB2 as a member
of the proteasome complex, while at the same time indicating
underlying technical or even biological reasons such as pep-
tide modifications for the deviating shape.
DISCUSSION

Here, we have introduced a simple yet effective algorithm
for normalization and protein intensity estimation for DDA as
well as DIA proteomics data. Its central concept is the shifting
of peptide intensity traces and sample intensity traces on top
of each other. In computer science terms, it is of linear order
O(n) where n can be the number of samples or the proteins. In
practice this allows the quantification of extremely large
sample sizes of hundreds of thousands. As with any other
algorithm, there are hardware requirements that have to be
fulfilled and, in particular, directLFQ is currently memory
limited, with a rough estimate of around 30 GB of memory
necessary for 10,000 samples. While not a practical problem
now, in the future this could be alleviated by using standard
out-of-memory computing approaches. The underlying code
is openly available on GitHub under the Apache License
facilitating improvements and contributions from the com-
munity. The package is easily accessible via Python Package
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FIG. 4. Applying directLFQ to dynamic organellar maps data from ref. (28) and comparing with MaxLFQ. A, principal component analysis
maps of the dynamic organellar maps data in which protein clusters are color coded. Several clusters such as Golgi and Mitochondrion are
separated more clearly with directLFQ. B, quantitative assessment of the similarity of the intensity profiles of protein clusters (lower distance
means better consistency). On the left, the distances with error bars are displayed for each tested protein cluster. The arrows indicate the two
clusters minichromosome maintenance (MCM) complex and Proteasome where directLFQ and MaxLFQ perform best, respectively. On the right,
the normalized distances are compared with each other as boxplots; directLFQ has significantly lower distance (p = 0.014, two-sided t test). C,
protein intensity profiles of these two clusters. One outlier trace in each cluster is marked by an arrow. D, visualization of the protein profiles over
all replicates together with the underlying ion data. The traces show that directLFQ faithfully represents the underlying data.
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Index (PyPI) as well as through one-click installers coupled to
a GUI. As the concepts underlying directLFQ are relatively
straightforward, we hope for wider use of the algorithm within
the community.
The aim of directLFQ is to provide a scalable alternative to

MaxLFQ with equal or better performance. While MaxLFQ is
the most popular and most widely used quantification algo-
rithm, it should be noted that a wide variety of other LFQ
quantification approaches exist. The “topN” approach is
simple yet widely used, in which the N “best” peptides (typi-
cally the most intense one) are selected for quantification (40).
While this approach is fast, it does not take into account is-
sues such as missing intensities. A further approach is based
on linear models, where effect sizes of proteins are fit toward
underlying peptide data, for example, implemented in the
MSstats (15) or the MSqRob (13, 19) packages. These models
can improve downstream analysis of proteomics data such as
differential expression analysis. However, they depend on
further inputs about the experimental design (“experimental
design template”) and are solved with linear regression, which
does not scale linearly along all axes. Furthermore, a variety of
computational methods have been proposed that focus on
accurate feature selection, especially with the advent of DIA.
Tools such as mapDIA (17) or DIA-NN (24) use correlation-
based metrics between transitions for selection of well-
quantified precursors, while other solutions ((18), diffacto
package and (12), part of MSstats) present statistical ap-
proaches for feature selection. Avant-Garde (16) uses a ge-
netic algorithm and integrates several subscores about
fragment transitions for confident extraction of precursor in-
tensities. Many of these approaches are likely to improve
quantification performance as compared with using directLFQ
Mol Cell Proteomics (2023) 22(7) 100581 9
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on the unprocessed data. In these cases, it is possible to feed
the selected or refined features from the upstream tools into
directLFQ.
We show that directLFQ compares favorably in biological

and technical benchmarks to the state-of-the-art imple-
mentations of MaxLFQ algorithms. In both DDA and the DIA
spike-in datasets (Fig. 3, A and C), the overall outcomes are
similar on the qualitative level, but notable differences in the
quantification for directLFQ and MaxLFQ remain. While the
MaxLFQ and the directLFQ approach both have the same goal
of calculating accurate protein intensities given the data, the
algorithms are different. MaxLFQ does not have an equivalent
to shifting peptide intensity traces on top of each other, an
inherently stable method. Instead, it is based on minimizing
ratios. This seems to be the underlying reason why directLFQ
can be more stable than MaxLFQ in some situations.
The directLFQ approach effectively deals with quantification

challenges such as differing sample loadings, differing ioni-
zation efficiencies between peptides, as well as missing
values. It also provides normalized peptide or fragment-ion
intensities, which allows retracing the protein intensity esti-
mation, enabling inspection of individual peptides.
Nevertheless, as in the other current protein intensity esti-

mation approaches, some challenges remain.
First, directLFQ performs linear per-sample normalization,

meaning that one scaling factor per sample is derived. If shifts
occur in a nonlinear manner, for example, due to distortions in
the chromatographic elution profile, this is not corrected by
directLFQ. However, the occurrence or severity of the distor-
tion depends on the individual case. If single precursor elution
profiles suffer from distortion, this is often compensated by
having multiple precursors quantified per protein. As we use
the median to estimate the protein intensity, this is robust
against such outliers. More systematic effects such as
increased peak tailing or peak broadening throughout the
whole run are ideally corrected for already, whereas directLFQ
automatically corrects the “linear components” of such
effects.
Second, directLFQ solves the ionization efficiency problem

(different intensity levels of peptides of the same proteins) by
using relative instead of absolute quantification. This is done
by (implicitly) comparing the relative quantification of all
samples. This stabilizes the protein intensity estimation and
also means that each individual sample can influence the
protein intensity estimation of all other samples. In other
words, actions like adding or removing samples may slightly
alter the protein intensity estimations of all other samples. In
practice, this means that all comparisons have to be done on a
dataset that has been processed in the same directLFQ
analysis.
Third, recall that the aim of directLFQ is to estimate protein

intensities. By definition, this reduces multiple data points that
could describe the protein to a single data point that is the
“best guess” protein intensity. This reduces overall complexity
10 Mol Cell Proteomics (2023) 22(7) 100581
and is useful for many tasks, such as globally analyzing pro-
tein behavior. However, this aspect of quantification only
represents a subset of the tasks and algorithms required for
comprehensive analysis of quantitative proteomics data. In
particular, it is usually necessary to perform statistical ana-
lyses such as differential expression analysis in order to
determine the regulation between biological conditions. For
these, it can be more informative to retain the ion-level infor-
mation (precursor or transition intensities) instead of working
with protein intensity estimates (19, 36). For this, resolving
peptide level information more deeply is an outstanding
challenge in quantitative proteomics. In particular, in-
terferences, systematic biases, and assessment of consis-
tency from the basic ion-level to the protein or gene level will
still need to be better addressed, a topic that we are working
on already.
Fourth, directLFQ uses the standard output tables of com-

mon proteomics search engines as an input. These output
tables all contain a protein group mapping, where peptides are
assigned to a “best guess” group of protein isoforms, usually
based on Occam’s Razor principle. The division into groups of
isoforms, e.g., due to splicing or also handling of peptides
mapping to multiple homologous genes, is therefore left
entirely to the search engine. In the case of a false mapping,
this will result in nonoptimal protein intensities. It should be
noted, however, that alignment of intensity traces with
directLFQ allows comparison of the relative quantitative
behavior of peptides. In the case of differential alternative
splicing, such peptides are expected to behave differently (41,
42) and it is therefore possible to visualize such diverging
peptide intensity traces using directLFQ. We are currently
addressing these issues in follow-up work.
The possibility to quantify increasingly large numbers of

samples becomes more and more important with the advent
of high-throughput proteomics approaches, such as
measuring very large cohorts of patients. In addition, the
emerging field of single cell proteomics will drastically in-
crease the number of cells (and therefore samples) that will be
measured and quantified. With directLFQ we provide an
approach that allows fast quantification for all such scenarios.
Furthermore, directLFQ can already be used on other MS data
types such as TMT and we see no reason why it should not be
useful for RNA sequencing data, too.
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