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Cells need to coordinate nutrient availability with their
growth and proliferation. In eukaryotic cells, this coordination
is mediated by the mechanistic target of the rapamycin com-
plex 1 (mTORC1) pathway. mTORC1 activation is regulated by
two GTPase units, the Rag GTPase heterodimer and the Rheb
GTPase. The RagA-RagC heterodimer controls the subcellular
localization of mTORC1, and its nucleotide loading states are
strictly controlled by upstream regulators including amino acid
sensors. A critical negative regulator of the Rag GTPase het-
erodimer is GATOR1. In the absence of amino acids, GATOR1
stimulates GTP hydrolysis by the RagA subunit to turn off
mTORC1 signaling. Despite the enzymatic specificity of
GATOR1 to RagA, a recent cryo-EM structural model of the
human GATOR1-Rag-Ragulator complex reveals an unex-
pected interface between Depdc5, a subunit of GATOR1, and
RagC. Currently, there is no functional characterization of this
interface, nor do we know its biological relevance. Here,
combining structure-function analysis, enzymatic kinetic
measurements, and cell-based signaling assays, we identified a
critical electrostatic interaction between Depdc5 and RagC.
This interaction is mediated by the positively charged Arg-
1407 residue on Depdc5 and a patch of negatively charged
residues on the lateral side of RagC. Abrogating this interaction
impairs the GAP activity of GATOR1 and cellular response to
amino acid withdrawal. Our results reveal how GATOR1 co-
ordinates the nucleotide loading states of the Rag GTPase
heterodimer, and thus precisely controls cellular behavior in
the absence of amino acids.

Cells need to ensure the abundance of nutrients, such as
glucose and amino acids in their local environment before they
can commit to growing (1–5). In contrast, when they are under
starvation conditions, they stop growing to conserve resources
(6–8). In eukaryotic cells, the coordination of cell growth with
the availability of nutrients is controlled by the mechanistic
Target of Rapamycin Complex 1 (mTORC1) (1–5, 9–11).
mTORC1 is a serine/threonine kinase complex that receives
signals from upstream sensors and phosphorylates
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downstream targets to match the current state of the cell (4,
11–14). When mTORC1 is activated, it promotes anabolic
processes such as protein and lipid synthesis and ribosome
biogenesis (15–21). When mTORC1 is inactivated, it promotes
catabolic processes such as autophagy (7).

In human cells, mTORC1 activation requires two GTPase
units, the Rag GTPase heterodimer and the Rheb GTPase.
When amino acid levels are high, the Rag GTPase heterodimer
is activated by its upstream regulators, causing the RagA
subunit to be bound to GTP and the RagC subunit to be bound
to GDP (22, 23). Under this nucleotide loading configuration,
the Rag GTPase heterodimer binds to the Raptor subunit of
mTORC1 to recruit it to the lysosomal surface (24–27). Here,
if growth factor signals are also presented, the Rheb GTPase
switches to the GTP-bound, active conformation that triggers
internal conformational changes within mTORC1 and turns
on its kinase activity (28–31). This coincidental detector en-
sures that cells will grow only when both amino acids and
growth factor signals are present.

The biological activity of the Rag GTPase heterodimer is
determined by the nucleotide loading states of both Rag sub-
units. The active and inactivated states of the Rag GTPase
heterodimer require the two subunits to be occupied by
“opposite” nucleotides (GTP versus GDP). Intrinsically, the
two subunits use unique mechanisms of intersubunit
communication to coordinate their nucleotide loading states.
This system prevents both subunits from binding to the same
nucleotide, thus locking the heterodimer in either the active
(GTPRagA-RagCGDP) or the inactive (GDPRagA-RagCGTP) state
(22, 23, 32). The active and inactive configurations of the Rag
GTPase heterodimer are kinetically stable, which ensures a
steady output toward mTORC1 and also poses a kinetic barrier
when nutrient levels change and the cells must respond.
Multiple protein complexes such as GATOR1 and FLCN-
FNIP2 (33–37) serve as GTPase activating proteins (GAPs)
for the Rag subunits, in order to lower the kinetic barrier for
state switching. Other upstream regulators include guanine
nucleotide exchange factors (GEFs), such as SLC38A9 and
Ragulator (38, 39).

GATOR1 is a major negative regulator of the mTORC1
pathway. It is comprised of three subunits, nitrogen permease-
like protein 2 (Nprl2), nitrogen permease-like protein 3
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(Nprl3), and DEP-domain containing protein 5 (Depdc5) (33,
34). GATOR1 is a GAP for RagA that stimulates GTP hydrolysis
to convert it to the GDP-bound state. The mechanism by which
GATOR1 regulates the Rag GTPase heterodimer has been
suggested previously, and multiple structural models have been
proposed (40). Recently, we found that GATOR1 binds to the
RagGTPases in two distinct, non-exclusivemodes: a GAPmode
and an inhibitory mode (41). When GATOR1 binds the Rag
GTPase heterodimer in the inhibitory mode, it has a high
binding affinity but low catalytic efficiency. When GATOR1
binds the Rag GTPase heterodimer in the GAP mode, it has a
higher catalytic efficiencywhich is balancedwith a lower affinity.
It is proposed that the inhibitory bindingmode is responsible for
preventing the over-inactivation of the Rag GTPases by a small
pool of GATOR1 (40).

The GAP activity of GATOR1 is specific to the RagA sub-
unit. However, in our recent cryo-electron microscopy (cryo-
EM) structural model, GATOR1 makes extensive contacts
with both RagA and RagC subunits at two interfaces in the
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GAP mode: Nprl2-Nprl3 contacts RagA and Arg-78 of Nprl2
carries out the enzymatic function (42), while Depdc5 interacts
with RagC, forming an additional, auxiliary interface (Fig. 1A).
By forming this additional contact, GATOR1 pulls RagC away
from RagA and breaks the intersubunit communication that
locks up the Rag GTPase heterodimer, allowing RagC to bind
to GTP (41). As a consequence, after RagA hydrolyzes the
bound GTP upon stimulation by Nprl2-Nprl3, the Rag GTPase
heterodimer naturally adopts the inactivated state, GDPRagA-
RagCGTP. This prevents promiscuity that would be caused by
direct hydrolysis, leading to the dual GDP-loaded state.
Currently, the biochemical properties and the biological rele-
vance of the auxiliary interface remain elusive.

In this study, we carried out a structure–function analysis
on the auxiliary interface between RagC and Depdc5. We
identified a critical electrostatic interaction between the two,
mediated by the Arg-1407 residue on Depdc5 and a patch of
negatively charged residues on the αG5 helix of RagC. We
found that this interaction is essential for GATOR1 to properly
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carry out its GAP function, with the loss of this interaction
resulting in a much lower GAP efficiency. Finally, we showed
that Depdc5–RagC interaction is essential for proper
mTORC1 response in cells. Our results demonstrate how
GATOR1 controls cellular behavior in the absence of amino
acids.

Results and discussion

Identification of the structural basis for the Depdc5–RagC
interaction

To investigate the molecular basis underlying the auxiliary
interface, we carefully examined a previously resolved cryo-EM
structural model (PDB: 7T3C) (41), in which the nucleotide-
binding domain (NBD) of RagC contacts the C-terminal
domain (CTD) of the Depdc5 subunit of GATOR1 (Fig. 1A). In
particular, we observed a strong Coulomb density of a posi-
tively-charged arginine residue, Arg-1407 of Depdc5, near a
patch of negatively-charged residues, Asp-201 and Asp-205,
on the αG5 helix of RagC (Fig. 1A). These charged residues
are within 3 to 5 Å of each other, which allows for electrostatic
interactions to form. Moreover, these residues are evolution-
arily conserved in charge (Fig. 1B). This suggests that Arg-
1407 of Depdc5 and Asp-201 and Asp-205 of RagC might be
candidates that mediate the GATOR1–RagC auxiliary
interaction.

We designed a series of point mutants, aiming to specifically
disrupt the potential interaction. We either neutralized the
charges of these residues by mutating them to an alanine
residue (R1407A on Depdc5, or D201A/D205A on RagC) or
reversed the charges (R1407D on Depdc5, or D201R/D205K
on RagC). For the GATOR1 mutants, after gel-filtration pu-
rification, all three subunits co-eluted in the same fraction, as
seen on a Coomassie-stained gel (Fig. 1C), suggesting that the
mutations do not affect the integrity of the GATOR1 complex.
For the Rag mutants, we expressed them in Escherichia coli
following a previously published protocol (43). This yielded
intact Rag GTPase heterodimers that are suitable for
measuring their GTP hydrolysis rates (Fig. 1C). As a control,
we tested their intrinsic hydrolysis rates using a previously
established method (32, 43). Under both single- and multiple-
turnover conditions, these mutants behave similarly to wild-
type Rag GTPases and have minimal effects in GTP hydroly-
sis (Fig. 1, D–F), suggesting any defects that we might see in a
GATOR1-stimulated assay (see below) are not due to a non-
specific disruption of the folding and architecture of the Rag
GTPases.

Arg-1407 of Depdc5 and Asp-201/Asp-205 of RagC mediate
critical interactions in GATOR1-stimulated GTP hydrolysis
reactions

To investigate how disrupting the auxiliary interface may
affect the stimulatory effect of GATOR1, we first measured
and compared the Michaelis-Menten kinetics using wild-type
and mutant GATOR1. In order to eliminate the competition
from binding to the inhibitory mode, we used the GATOR1
[Depdc5(Y775A)] as our “wild-type” background, as this
mutant specifically traps the Rag GTPases in the GAP mode by
disrupting the inhibitory binding site (40).

As a control experiment, we validated our GATOR1
construct using a single turnover reaction. Here, the Rag
GTPase heterodimer is singly loaded with GTP, with the other
subunit unoccupied. Therefore, only two species, GTPRagA-
RagC and RagA-RagCGTP, exist in the reaction, and the only
one that GATOR1 can bind to and stimulate is GTPRagA-
RagC. In this scenario, RagC is not loaded with GTP, so it does
not have the optimal nucleotide loading configuration to allow
for the formation of the auxiliary interface (41). The only
binding site available to the Rag GTPases and GATOR1 in the
GAP mode is at the GAP interface. When we carried out the
stimulatory hydrolysis reactions, the catalytic rate (kcat) of
GATOR1[Depdc5(Y775A)] is 0.016 min−1 and that of
GATOR1[Depdc5(Y775A, R1407D)] is 0.009 min−1 (Fig. 2, A
and C), which are within two-fold of one another. As we hy-
pothesized that the auxiliary interface plays a minor role in the
single turnover hydrolysis case scenario, the slight two-fold
defect matches our expectation and further confirms the
architectural integrity of the GATOR1 complex carrying the
R1407D mutation, as well as the functional integrity of its GAP
interface.

We then tested the effect of the R1407D mutation on the
formation of the auxiliary interface by carrying out the stim-
ulatory GTP hydrolysis reaction using a multiple turnover
setup. Here, a saturating concentration of GTP was included
so that the Rag GTPase heterodimer is dual-loaded with GTP
(GTPRagA-RagCGTP). In this scenario, the auxiliary interface
could readily form (41), and we can then investigate the effect
of the R1407D mutation. We observed a strong defect here.
When GATOR1[Depdc5(Y775A)] serves as the stimulant, the
catalytic rate (kcat) is 0.11 min−1, while the R1407D mutation
causes an eight-fold decrease in kcat (Fig. 2, B and C). More-
over, the R1407D mutation introduces an 8-fold increase in
KM, suggesting a weakened binding (Fig. 2, B and C). We
calculated the catalytic efficiency (kcat/KM), which represents
the effective association rate (32). The overall effect of the
R1407D mutation on kcat/KM is a 64-fold decrease, strongly
suggesting that the Arg-1407 residue plays a critical role in the
formation of the auxiliary interface in the GATOR1-stimulated
GTP hydrolysis reaction.

For potential interacting counterparts on RagC, we sought
synergistic effects on the Asp-201 and Asp-205 residues. We
carried out a similar set of multiple turnover GTP hydrolysis
reactions (Fig. 2, D and E). When we neutralized the charges
by mutating individual aspartic acid residues to an alanine
residue, we observed a mild defect in the binding between
GATOR1 and RagC, as the kcat/KM value decreases by two-
and fourfold for D201A and D205A, respectively (Fig. 2D, blue
and orange lines, and Fig. 2F). However, when we introduced a
double alanine mutant, we observed a further reduction in the
kcat/KM value of �sevenfold (Fig. 2D, red line, and Fig. 2F).
These results suggest that the two negatively charged aspartic
acid residues form partially redundant interactions with the
Arg-1407 residue on Depdc5, as individual substitution cannot
completely abrogate the interaction to the baseline level.
J. Biol. Chem. (2023) 299(7) 104880 3
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Figure 2. Depdc5-RagC interaction regulates multiple turnover GTP hydrolysis of the Rag GTPases. A, single turnover GTP hydrolysis of the Rag
GTPase heterodimer, stimulated by GATOR1[Depdc5(Y775A)] (black) or GATOR1[Depdc5(Y775A, R1407D)] (red). B, multiple turnover GTP hydrolysis of the
Rag GTPase heterodimer, stimulated by GATOR1[Depdc5(Y775A)] (black) or GATOR1[Depdc5(Y775A,R1407D)] (red). C, summary of single and multiple
turnover GTP hydrolysis kinetics in panels A and B. Gray numbers in parentheses are SEM calculated from three independent experiments. D, GATOR1
[Depdc5(Y775A)]-stimulated multiple turnover GTP hydrolysis of the Rag GTPase heterodimers containing charge-neutralizing mutations. E, GATOR1
[Depdc5(Y775A)]-stimulated multipleturnover GTP hydrolysis of the Rag GTPase heterodimers containing charge-reversal mutations. F, summary of
GATOR1[Depdc5(Y775A)]-stimulated multiple turnover GTP hydrolysis kinetics in panels D and E. Gray numbers in parentheses are SEM calculated from
three independent experiments.
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Given the nature of the interaction formed between oppo-
sitely charged residues, we reasoned that a charge-reversal
mutation may induce a more dramatic effect as we change
the attraction force to repulsion. Indeed, with a single charge-
reversal mutation on RagC (D201R or D205K), the catalytic
efficiency (kcat/KM) drops by seven- and 22-fold, respectively
(Fig. 2E, blue and orange lines, and Fig. 2F). Moreover, when
we reversed the charges on both aspartic acid residues, we
observed an 80-fold decrease in the kcat/KM value (Fig. 2E, red
line, and Fig. 2F). These results suggest that reversing the
charges which generate a repulsive force at the auxiliary
interface leads to a strong binding defect in the GATOR1-
stimulated GTP hydrolysis reaction.
Depdc5-RagC interaction is electrostatic

As the Depdc5-RagC interaction is mediated by positively-
and negatively-charged residues, we hypothesized that it may
be electrostatic. If this were the case, increasing the ionic
strength of the reaction buffer would weaken the auxiliary
interface. To test this hypothesis, we supplemented the
4 J. Biol. Chem. (2023) 299(7) 104880
reaction buffer with increasing concentrations of sodium
chloride (NaCl) and carried out the stimulated GTP hydrolysis
reaction as above. As a negative control, we performed single-
and multiple-turnover assays with the Rag GTPases alone at
increasing concentrations of NaCl (Fig. 3A). We did not see
any appreciable difference between the conditions, implying
that salt does not affect the intrinsic GTP hydrolysis by the Rag
GTPases. We then performed the GATOR1[Depdc5(Y775A)]-
stimulated multiple turnover assay in various salt concentra-
tions and observed a steady decrease in kcat/KM values as salt
concentration increased (Fig. 3, B and C). This suggests a
weakened interaction and supports our hypothesis that the
Depdc5-RagC interaction is electrostatic.
The physiological role of the auxiliary interface in amino acid
sensing

To probe the physiological role of the electrostatic inter-
action and its relevance in amino acid sensing, we need cell
lines in which this interaction is specifically impaired. We first
used CRISPR-Cas9 to generate a Depdc5-knockout HEK-293T
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cell line. Western blotting using the Depdc5 antibody confirms
the complete knockout (Fig. 4A, cell lysates). As shown below,
this cell line becomes desensitized to amino acid withdrawal,
suggesting a defect in the GATOR1 function. We then stably
expressed wild-type or R1407D Depdc5 in the knockout cell
line. Expression levels of Depdc5 within the two cell lines are
comparable to one another (Fig. 4A, cell lysates), as well as
their interaction with Nprl2 and Nprl3, suggesting the integrity
of the GATOR1 complex is maintained (Fig. 4A, IP).

With the stable lines in hand, we tested their response to
amino acid withdrawal by depleting the amino acids from the
culturing media (Fig. 4B). For wild-type cells, 1 h treatment in
amino acid-depleted media caused complete inactivation of
mTORC1, as the phosphorylation signal of its downstream
target, pThr389 on S6K1, disappeared (Fig. 4C, lanes 1 and 2).
In contrast, for Depdc5-knockout cells, this response is
blunted - the cells maintained a high level of phosphorylation
on Thr389 of S6K1 even in the absence of amino acids
(Fig. 4C, lanes 3 and 4), suggesting a negative regulator of the
mTORC1 pathway, here GATOR1, failed to carry out its
normal function. While expression of wild-type Depdc5
restored the sensitivity to amino acids (Fig. 4C, lanes 5 and 6)
and normal cell size response to amino acid withdrawal
(Fig. 4D), expression of Depdc5(R1407D) completely failed to
do so (Fig. 4C, lanes 7 and 8, and Fig. 4E). We also probed the
response of another mTORC1 substrate, 4EBP, and observed a
similar trend based on its laddering pattern: in the absence of
amino acids, hyperphosphorylated 4EBP (asterisk) maintains
in the cell line expressing Depdc5(R1407D), while disappears
in the wild-type cell lines. These results suggest that the
electrostatic interaction between Depdc5 and RagC is neces-
sary for GATOR1 to turn off the mTORC1 pathway in the
absence of amino acids.

To test the synergistic effect between Arg-1407 of Depdc5
and the negatively charged residues on RagC, we performed a
similar set of experiments using RagC mutants. In wild-type
HEK-293T cells, we transfected cDNA expressing either
wild-type RagC or charge-neutralizing mutants (D201A and/or
D205A) and tested their response to amino acid withdrawal by
monitoring the phosphorylation on Thr389 of S6K1 (Fig. 4F).
When we expressed wild-type Rag GTPases in HEK-293T
cells, we did not observe any changes in the cellular
response to amino acid deprivation (Fig. 4F, lanes 1–6).
However, when RagC(D201A) or RagC(D205A) was expressed,
we observed a slight elevation of the phosphorylation signal in
the absence of amino acid (Fig. 4F, lanes 8 and 10), suggesting
a partial defect of GATOR1 function in turning off mTORC1
signaling. This defect is relatively mild, which is consistent
with the mild reduction in kcat/KM values in stimulated GTP
hydrolysis assay in vitro (cf. Fig. 2D). When we expressed the
double alanine mutant in cells (Fig. 4F, lanes 11 and 12), we
observed a much greater defect, which is also consistent with
our previous results (cf. Fig. 2D).

To further test our hypothesis, we introduced charge-
reversal RagC mutants in HEK-293T cells (Fig. 4G). When
we expressed single charge-reversal mutants (D201R or
D205K), we observed a more severe defect in turning off
mTORC1 signaling than the charge-neutralizing mutants
(Fig. 4G, lanes 7–10). Moreover, the double charge-reversal
mutant (D201R/D205K) completely loses sensitivity to amino
acid deprivation (Fig. 4G, lanes 11 and 12), as the phosphor-
ylation level of Thr389 of S6K1 remains almost identical to the
condition where amino acids are well supplemented. This is
fully consistent with the in vitro results of our GTP hydrolysis
experiments, suggesting that the negatively charged residues
on RagC are necessary for GATOR1 to carry out its normal
function during amino acid deprivation.

mTORC1 is responsible for regulating autophagy in the
absence of nutrients. We, therefore, proposed that the auxil-
iary interaction between GATOR1 and RagC plays a role in
initiating autophagy. To test this hypothesis, we used the stable
cell lines in a long-term starvation experiment (Fig. 4H). Here,
we incubated the cells in the absence of amino acids for a
prolonged time (�8 h), and checked the kinetics of a protein
J. Biol. Chem. (2023) 299(7) 104880 5
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Figure 4. Disrupting the electrostatic interaction abrogates amino acid signaling in HEK-293T cells. A, generation of stable cell lines expressing wild-
type Depdc5 or Depdc5(R1407D). Endogenous Depdc5 was first knocked out in HEK-293T cells using CRISPR-Cas9, and HA-tagged wild-type Depdc5 or
Depdc5(R1407D) was then stably expressed in the knockout line. Co-immunoprecipitation experiment shows comparable GATOR1 complex formation
between wild-type Depdc5 or Depdc5(R1407D) with Nprl2 and Nprl3 (lanes 3 and 4). B, amino acid starvation experiment to monitor mTORC1 signaling
when cells are deprived of amino acids. C, Depdc5(R1407D) fails to restore cellular response to amino acids deprivation in Depdc5-knockout cell line.
Asterisk denotes hyperphosphorylated 4EBP. Cross denotes unphosphorylated 4EBP, which only appears when mTORC1 activity is turned off (lanes 2 and 6).
D, cell size analysis of HEK-293T cells expressing wild-type Depdc5 under starvation (black) or fed (red) conditions. The average size of cells under starvation
condition is 17.1 μm, while that under fed condition is 18.5 μm. E, cell size analysis of HEK-293T cells expressing Depdc5(R1407D) under starvation (black) or
fed (red) conditions. The average size of cells under starvation condition is 18.0 μm, while that under fed condition is 18.3 μm. F, amino acid starvation
experiment in HEK-293T cells expressing charge-neutralizing RagC mutants. Cellular response to amino acid deprivation was blunted. G, amino acid
starvation experiment in HEK-293T cells expressing charge-reversal RagC mutants. Cellular response to amino acid deprivation was abrogated. H, long-term
starvation assay to monitor autophagy mediated by wild-type GATOR1 or GATOR1[Depdc5(R1407D)]. Depdc5(R1407D) severely delays response to amino
acid deprivation. I, quantification of S6K1 phosphorylation in response to amino acid deprivation. J, quantification of ULK1 abundance in response to amino
acid deprivation.
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marker for autophagy, ULK1. Upon initiation of autophagy,
the ULK1 protein level is downregulated by an E3 ligase,
NEDD4L (44, 45), which provides a sensitive measure to
quantify the autophagy process. As a control experiment, we
first probed the phosphorylation level of the Thr389 residue on
S6K1 and found that its decrease in the cell line that stably
expresses Depdc5(R1407D) is blunted in comparison to the
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cell line that stably expresses wild-type Depdc5 (Fig. 4H,
quantified in Fig. 4I), which is consistent with our results
above. When probing the protein level of ULK1, we observed
that the degradation of ULK1 in the Depdc5(R1407D)-
expressing cell line is also severely delayed (Fig. 4H, quanti-
fied in Fig. 4J), suggesting the auxiliary interaction between
Depdc5 and RagC is necessary for efficient initiation of
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autophagy under nutrient-deprived conditions. At late time
points, autophagy is eventually initiated in the mutant cell line,
suggesting parallel pathways, such as GCN2, may kick in and
act independently of mTORC1 (46, 47). These mTORC1-
independent pathways activate autophagy and may feed back,
causing a loss in the mTORC1-dependent markers, such as
S6K1 phosphorylation. In general, these signaling experiments
in cells corroborate our in vitro result and suggest a functional
role of the electrostatic interaction between Depdc5 and RagC
in transmitting amino acid signals.

Summary

Amino acid signaling is essential for coordinating cell
growth with nutrient levels. Amino acid sensors upstream of
the GATOR complexes transmit the signals toward the Rag
GTPase heterodimer to control the activity of mTORC1.
GATOR1 is a GAP for the Rag GTPase heterodimer, which is
an important negative regulator of mTORC1. Despite the
enzymatic specificity of GATOR1 to RagA, a recent cryo-EM
structural model revealed unexpected interactions between
Depdc5 and RagC when GATOR1 carries out its GAP activity.
In this study, we identified redundant electrostatic interactions
between RagC and Depdc5 that form the auxiliary interface
during GATOR1-stimulated GTP hydrolysis. These in-
teractions are mediated by the Arg-1407 residue of Depdc5
and the Asp-201 and Asp-205 residues on RagC. Impairing
these interactions disrupt the GAP activity of GATOR1 by
causing a binding defect, leading to the blunted cellular
response to low levels of amino acids. Our study uncovers a
novel step in GATOR1-mediated mTORC1 inactivation that is
essential for proper temporal response to nutrient scarcity.

Experimental procedures

Chemicals and Flag-M2 affinity gel were purchased from
Sigma-Aldrich. 32P-radioactively labeled GTP was purchased
from PerkinElmer. Antibodies were purchased from the Cell
Signaling Technology (CST), Abcam, Sigma-Aldrich (SA), or
Millipore: Rabbit anti-HA: CST 3724; Rabbit anti-pT389-
S6K1: CST 9205; Rabbit anti-S6K1: CST 2708; Rabbit anti-
4EBP: CST 9452; Rabbit anti-Depdc5: Abcam ab185565;
Rabbit anti-Nprl2: CST 37344; Rabbit anti-Nprl3: SA
HPA011741; Rabbit anti-ULK1: CST 8054; Rabbit anti-pS757-
ULK1: CST 6888; Rabbit anti-RagA: CST 4357; Rabbit anti-
Raptor: Millipore 09-217; Goat-anti-rabbit HRP-linked anti-
body: CST 7074.

Protein purifications

The Rag GTPase heterodimer was purified based on an
established protocol (43). In brief, a pCOLADuet-1 vector
encoding His8-Arg10-SUMO-tagged RagA and tagless RagC
was transformed into BL21(DE3) E. Coli strain and was grown
at 37 �C. When the optical density (OD) of the bacteria culture
reached 0.8, protein expression was induced overnight with
0.5 mM IPTG at 18 �C. The next morning, the cell pellets were
resuspended in resuspension buffer (50 mM NaHEPES, pH
7.4; 100 mM NaCl; 2 mM MgCl2; 2 mM DTT; 0.5 mM PMSF;
0.05% Triton; 100 μM GDP; and EDTA-free protease inhibi-
tor). The resuspension was passed through a microfluidizer
three times and was cleared via centrifugation. The superna-
tant was applied to a Ni-NTA column (Qiagen) and washed
extensively. The eluate was concentrated down and passed
through a MonoS column (Cytiva). The Rag-containing frac-
tions were pooled, and the His8-Arg10-SUMO-tag was cleaved
by HRV 3C protease (Pierce/ThermoFisher). Following
cleavage, the protein was subjected to a second round of
MonoS column to remove the cleaved tag. The Rag GTPase
heterodimer was then applied to a MonoQ column (Cytiva).
The eluate from the salt gradient was stripped by 20 mM
EDTA, concentrated, and finally applied to a HiLoad 16/60
Superdex 200 gel-filtration column. Glycerol was added to the
final, concentrated product and was flash-frozen and stored
at −80 �C.

To recombinantly express GATOR1, 293-FreeStyle cells
(ThermoFisher) were inoculated at 1 M/ml in SMM 293-TII
serum-free culturing media (SinoBiological). After 24 h, the
cells were transfected using PEI with a mixture of plasmids
including Flag-Depdc5, HA-Nprl2, and HA-Nprl3. 36 h post-
transfection, cells were harvested and lysed with Triton lysis
buffer (TLB, 40 mM NaHEPES, pH 7.4; 100 mM NaCl; 5 mM
MgCl2; 100 μM ATP; 10 mM Na4P2O7; 10 mM Na β-glycerol
phosphate; 1% Triton; and EDTA-free protease inhibitor). The
insoluble fractions were cleared by centrifugation, and pre-
equilibrated Flag-M2 affinity gel (Sigma) was added to the
lysate. GATOR1 was immunoprecipitated for 3 h at 4 �C. Flag
gel was washed with TLB, followed by TLB supplemented with
300 mM NaCl. GATOR1 was then eluted with 3× Flag peptide.
The eluate was concentrated down using a 100 kDa molecular-
weight cut-off filter (Millipore) and passed through a HiLoad
16/60 Superdex 200 gel-filtration column to further improve
the purity. The GATOR1-containing fractions were pooled,
concentrated, flash frozen in the presence of 10% glycerol, and
stored at −80 �C.
GTP hydrolysis assay

Unless otherwise specified, all the biochemical assays
below were carried out in Assay Buffer [50 mM NaHEPES,
pH 7.4; 100 mM potassium acetate; 2 mM MgCl2; 2 mM
DTT; and 0.1% (3-((3-cholamidopropyl)dimethylammonio)-1-
propanesulfonate) (CHAPS)]. GTP hydrolysis kinetics were
measured using established protocols (32, 41, 43). To measure
the intrinsic hydrolysis rates of the Rag GTPase heterodimer,
we used single- and multiple-turnover setups. Briefly, in a
single turnover reaction, increasing concentrations of the Rag
GTPases (2 nM–100 nM) were mixed with a trace amount of
32P-radioactively labeled GTP. Small aliquots of the reaction
were taken and quenched by 0.75 M KH2PO4 (pH 3.3) at
varying time points. The time points were then run on a thin
layer chromatography (TLC) plate to separate the hydrolyzed
GDP from the intact GTP. The reaction rates were determined
and used to obtain kobsd values, which were fitted against the
concentrations of the Rag GTPases to obtain kcat and K½

values. The multiple turnover reactions used a similar setup,
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except the Rag GTPases were kept constant (2 μM), while the
concentration of GTP ranged from 2 μM to 100 μM. The
resulting kobsd values were corrected for the turnover number,
and fitted against the concentration of GTP to get the kcat and
KM values.

GATOR1-stimulated single-turnover GTP hydrolysis re-
actions were carried out by first loading 50 nM Rag-Ragulator
with a trace amount of 32P-radioactively labeled GTP.
Increasing concentrations of GATOR1 (25 nM–750 nM) were
then added to the reaction to stimulate GTP hydrolysis, and
the time points were analyzed accordingly. The resulting kobsd
values are fitted against the concentration of GATOR1 to get
the kcat and KM values.

For GATOR1-stimulated multiple-turnover hydrolysis as-
says, 2 μM of Rag-Regulator was first incubated 100 μM of
unlabeled GTP doped with a trace amount of 32P-radioactively
labeled GTP. Increasing concentrations of GATOR1 (25 nM–
750 nM) were then added to the reaction to stimulate GTP
hydrolysis and the time points were analyzed accordingly.
Similarly, kobsd values were corrected for the turnover number,
and fitted against the concentration of GATOR1 to obtain the
kcat and KM values.

The assay to measure the effect of ionic strength was per-
formed using the GATOR1-stimulated multiple-turnover hy-
drolysis setup, except the buffer conditions were different from
the normal composition. For the low salt buffer, we used
50 mM NaHEPES, pH 7.4; 50 mM potassium acetate; 2 mM
MgCl2; 2 mM DTT; and 0.1% CHAPS. To set up assays in
increasing salt concentrations, we supplement the low salt
buffer with 50, 150, and 350 mM sodium chloride. Data were
acquired and analyzed similarly.

Generation of stable cell lines

To generate Depdc5-knockout HEK-293T cell line, 2 million
HEK-293T cells were seeded in a 6-well plate containing 2 ml
DMEM with 10% IFS supplemented with 2 mM glutamine,
penicillin (100 IU/ml), and streptomycin (100 μg/ml). The next
day, the cells were transfected with guides encoded in a pX330-
based CRISPR-Cas9 vector and GFP, and sorted by FACS.
Single-cell clones were grown out and analyzed with Depdc5
antibody, to select the knockout line. As the CRISPR guide was
transiently expressed in a plasmid, the final Depdc5-knockout
HEK-293T cell line does not have puromycin resistance.

To generate stable cell lines that express wild-type Depdc5
or Depdc5(R1407D), 3 million Depdc5-knockout cells were
plated in a 6-well plate containing 2 ml DMEM with 10% IFS
supplemented with 2 mM glutamine, penicillin (100 IU/ml),
and streptomycin (100 μg/ml). The next day, the cells were
infected with lentivirus encoding HA-tagged wild-type Depdc5
or Depdc5(R1407D) and selected using puromycin 36 h post-
infection. The resulting cell lines were probed with Depdc5
antibody to confirm the expression of genes of interest.

Co-immunoprecipitation and signaling experiments

Co-immunoprecipitation and cell signaling experiments
were performed based on established protocols (32, 40).
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Briefly, 1.5 million HEK-293T cells were plated on 10 cm petri
dishes. 24 h later, the cells were treated in RPMI media con-
taining, or deprived of, amino acids as indicated. Cells were
lysed in Triton lysis buffer (TLB; 40 mM NaHEPES, pH 7.4,
5 mM MgCl2, 10 mM Na4P2O7, 10 mM Na β-glycerol phos-
phate, 1% Triton, and EDTA-free protease inhibitor) at specific
time points and cleared by centrifugation, before proceeding
with the co-immunoprecipitation. Western blots were quan-
tified using LI-COR Odyssey imaging system.

Data availability

All data are included in the manuscript.
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