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ABSTRACT Ion homeostasis, which is regulated by ion channels, is crucial for intra-
cellular signaling. These channels are involved in diverse signaling pathways, includ-
ing cell proliferation, migration, and intracellular calcium dynamics. Consequently, 
ion channel dysfunction can lead to various diseases. In addition, these channels are 
present in the plasma membrane and intracellular organelles. However, our under-
standing of the function of intracellular organellar ion channels is limited. Recent 
advancements in electrophysiological techniques have enabled us to record ion 
channels within intracellular organelles and thus learn more about their functions. 
Autophagy is a vital process of intracellular protein degradation that facilitates the 
breakdown of aged, unnecessary, and harmful proteins into their amino acid resi-
dues. Lysosomes, which were previously considered protein-degrading garbage 
boxes, are now recognized as crucial intracellular sensors that play significant roles 
in normal signaling and disease pathogenesis. Lysosomes participate in various pro-
cesses, including digestion, recycling, exocytosis, calcium signaling, nutrient sensing, 
and wound repair, highlighting the importance of ion channels in these signaling 
pathways. This review focuses on different lysosomal ion channels, including those 
associated with diseases, and provides insights into their cellular functions. By sum-
marizing the existing knowledge and literature, this review emphasizes the need for 
further research in this field. Ultimately, this study aims to provide novel perspectives 
on the regulation of lysosomal ion channels and the significance of ion-associated 
signaling in intracellular functions to develop innovative therapeutic targets for rare 
and lysosomal storage diseases.

INTRODUCTION
Lysosomes play vital roles in maintaining extracellular and in-

tracellular macromolecules while regulating various degradation 
processes. They modulate ion-related functions within endocytic, 
exocytic, and other signaling pathways, thereby contributing 
to cellular signaling. Lysosomes are distributed throughout the 
body, and defects in lysosomal function are associated with lyso-
somal storage disorders (LSDs). To regulate lysosomal function, 
ion channels, and transporters are necessary to maintain ion 

concentration gradients of Na+, K+, Ca2+, H+, and Cl-. Each ion 
channel operates independently and in correlation with the oth-
ers, responding to changes in individual ion concentrations and 
aiding in the establishment of the lysosomal membrane potential. 
Lysosomes maintain an acidic pH range (approximately 4.5–5.5) 
to support the enzymatic activity required for degradative func-
tions. Ion channel activity influences acidic conditions and plays 
crucial roles in diverse cellular processes, including exocytosis, 
calcium release, wound repair, and recycling. Autophagy and cel-
lular signaling can be severely affected by lysosome dysfunction. 
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Dysfunctions in lysosomal ion channels contribute to the devel-
opment of various diseases, including LSDs, neurodegenerative 
diseases, metabolic diseases, such as Mucolipidosis IV (MLIV), 
and autoimmune diseases. This highlights the importance of 
identifying novel therapeutic targets as increased lysosomal dys-
function may contribute to the prevalence of these diseases.

Numerous reviews have indicated the potential of lysosomal 
ion channels as therapeutic targets in these diseases [1-3]. In the 
context of the Coronavirus disease 2019 (COVID-19) era, the 
lysosomal two-pore channel (TPC) has emerged as a novel target 
for regulating virus-associated diseases such as severe acute respi-
ratory syndrome (SARS), Ebola, and COVID-19.

HISTORY OF LYSOSOMES
The first descriptions of LSD phenotypes were made in the 19th 

century [4,5]. However, it wasn't until 1955–1956 that lysosomes 
were identified. de Duve [6] played a crucial role in this discovery 
by identifying lysosomes as intracellular catabolic stations. This 
has marked the beginning of extensive research on lysosomes. 
In one of his studies, he examined the localization of glucose-6 
phosphatase in hepatic fractions, thereby providing mechanistic 
insights. This allowed him to isolate and identify non-specific 
acid phosphatases and glucose-6-phosphate. Christian discov-
ered acid phosphatase-rich regions between microsomes and 
mitochondrial fractions, which he termed the "L-fraction" [7]. 
They named it the lysosome and hypothesized it functioned as a 
protein degradative organelle. Initially, lysosomes were consid-
ered garbage boxes that were primarily involved in recycling and 
digestion. However, recent studies have provided new insight into 
their roles in autophagy and mitochondrial function. Further-
more, there has been a renewed emphasis on understanding their 
function as nutrient sensors.

BIOLOGICAL FUNCTIONS OF LYSOSOMES
Numerous lysosomal-resident proteins play significant roles in 

cellular signaling pathways associated with organelle function. 
Approximately 50 proteins were categorized as acidic hydrolases 
[8-10]. Most of these proteins are localized within the lysosomal 
lumen and function as sulphatases or exoglycosidases. However, 
some proteins found in the lysosomal membrane contribute to 
various functions, including acidification, transport, facilita-
tion of interactions between lysosomes and other organelles, and 
maintenance of membrane stability [11,12]. Notably, lysosomal 
proteins do not operate in isolation but rather interact with other 
proteins. These interactions are essential for preserving the 
integrity of lysosomes and ensuring the proper functioning of 
lysosomes, both internally and externally. Some of the proteins 
involved in these interactions include protein kinase B (AKT), 

mechanistic targets of rapamycin complex 1 and 2 (mTORC1 and 
mTORC2), transcription factor EB (TFEB), folliculin (FLCN), 
FLCN-interacting protein, signal transducer and activator of 
transcription-3, and energy-sensing complex AMP-activated ki-
nase (AMPK) [13-29].

Lysosomes play a primary role in the degradation process by 
influencing various components such as nucleic acids, sphingo-
lipids, proteins, glycosaminoglycans, and complex lipids. They 
break down the extracellular and intracellular materials that are 
old or no longer useful, resulting in the production of amino ac-
ids, fatty acids, and saccharides. These dissolved components and 
substrates are then directed to their designated destinations via 
diverse routes, such as endocytosis, exocytosis, phagocytosis, and 
autophagy [2,30-32].

Autophagy, also known as the autophagy-lysosomal pathway, 
plays a crucial role in regulating cellular processes, such as in-
tracellular clearance, recycling of molecules and cellular com-
ponents, and preservation of intracellular energy metabolism. 
It involves the formation of phagophores and the recruitment of 
cargo, eventually leading to the fusion of lysosomes to form autol-
ysosomes [9,16]. Lysosomal degradation is essential for autophagy 
and the elimination of organelles from cells. Defective lysosomes 
can induce cytotoxicity and trigger unexpected inflammatory 
responses. Over 60 known nucleases, phosphatases, lipases, and 
proteases degrade organelles and proteins through degradation 
steps [33-35]. During these degradation steps, lysosomes release 
essential components synthesized from new molecules or associ-
ated with cellular signaling pathways via the diffusion or trans-
port of proteins, such as the cholesterol transporters Niemann-
Pick type C protein 1, 2 (NPC1, 2) and nicotinic acid adenine 
dinucleotide phosphate (NAADP) [36-38].

An acidic environment within lysosomes is critical for activat-
ing lysosomal enzymes and facilitating the conversion of their 
pro-forms into the mature forms necessary for degradation. Ly-
sosomal enzymes involved in the degradation process are highly 
pH-dependent and are influenced by designated pH regulation 
for proper functioning. Disruptions in pH can interfere with sub-
strate clearance, potentially linking diseases such as Parkinson's 
disease (PD) and MLIV, in which abnormal autophagy pathways 
contribute to lysosomal damage and improper protein aggrega-
tion.

Recently, lysosomes have been recognized as nutrient sensors 
that monitor cellular nutrient conditions and help maintain stable 
intracellular metabolism by adjusting various components.
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THE ROLE OF ION CHANNELS IN 
MAINTAINING LYSOSOMAL FUNCTION

Emerging lysosomal ion channels: unveiling new 
therapeutic targets for lysosomal dysfunction

Lysosomal ion channels have only been discovered in the past 
decade, posing challenges in their study owing to the limitations 
of electrophysiological techniques. However, these channels play 
crucial roles in maintaining lysosomal homeostasis. By regulating 
ion channel activity, lysosomal dysfunction can be rescued, and 
promising therapeutic targets for diseases associated with im-
paired lysosomal function can be identified. Various techniques 
have been developed to investigate ion channel activity under dif-
ferent lysosomal conditions. Specific ions, such as Na+, K+, Ca2+, 
and Cl-, have been identified as key players in the maintenance of 
lysosomal homeostasis. Although the number of reported lyso-
somal ion channels is limited, their dysfunction has been strongly 
linked to impaired lysosomal function. This review focuses on 
the functions of lysosomal TPC, calcium-activated large-conduc-
tance K+ channel (BK), TMEM175, ClC-7, and TRPML channels 
(Fig. 1) and highlights their potential implications in lysosomal-
related diseases.

Lysosomal sodium ion channels

TPCs in lysosomal function: TPCs are characterized by a 
dimeric structure with two-pore domains. Three types of TPC 
channels have been identified: TPC1, TPC2, and TPC3 (absent in 

mice, rats, and primates). TPC3 is currently under investigation 
because it localizes to the plasma membrane and is found in Na+-
selective and Ca2+-permeable endosomal and lysosomal mem-
branes [39-41]. TPC1, in contrast, is a voltage-dependent channel 
that is activated by PI(3,5)P2, the second messenger of NAADP, and 
changes in pH [41-45]. TPC2, although independently activated 
by voltage [40,42,46], has caused some problems regarding its ac-
tivator. Some studies have suggested that TPC channels are acti-
vated by PI(3,5)P2 and increase Na+ influx [43], whereas others have 
proposed that NAADP activates Ca2+ influx, which is associated 
with TFEB translocation [47]. Structural studies conducted by 
Guo et al. [47] have indicated that TPC channels exhibit Na+ and 
Ca2+ sensitivity. PI(3,5)P2 has been shown to directly bind to TPCs 
and open channels, based on structural findings [45,48,49]. How-
ever, NAADP activation remains a subject of debate and requires 
further investigation, as it possibly differs among various organs. 
TPCs function as intracellular sensors during nutrient depriva-
tion [43] and interact directly with mTOR, influencing channel 
activation and lysosomal function based on nutrient status. They 
are involved in pH homeostasis and membrane trafficking, af-
fecting the pathogenicity of viruses, such as pigmentation-related 
diseases, Ebola, SARS, and COVID-19 [50-53]. TPC1 also plays a 
crucial role in the endosomes and participates in protein process-
ing and uptake. Defects in TPC1 hinder toxin and protein uptake 
by weakening their interaction with syntaxins (SNARE syntaxins 
7 and 8), leading to aberrant autophagy pathways due to lysosom-
al dysfunction from endosomes to lysosomes. TPC2 regulated 
lysosomal pH and activity. Overexpression of TPC2 led to an 
increase in lysosomal pH, suggesting its involvement in lysosomal 

Fig. 1. Schematic lysosomal ion channels and transporters. The ion movements belong to ion channel directions. Lysosomal ion channels charac-
terized permeability; TRPMLs (few divalent cations, and nonselective cations: yellow), TMEM175, BK (potassium ion: blue), ClC-7 (chloride and hydro-
gen: green), V-ATPase (hydrogen: black), and TPCs (sodium, and calcium: purple). Compared to the cytosol, lysosomal lumen has high concentrations 
of Na+, Ca2+, and H+ but not K+. BK, calcium-activated large-conductance K+ channel; TPC, two-pore channel.
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homeostasis. Additionally, it modulates lysosomal membrane 
potential and channel activity [43,54]. Some studies have dem-
onstrated that TPC2 knockout fibroblasts do not exhibit changes 
in lysosomal pH, but reveal increased lysosomal Ca2+ levels and 
reduced cholesterol degradation during low-density lipoprotein 
(LDL)-derived cholesterol transport [55,56]. Disruption of TPC 
activity can affect endosomal trafficking, thereby inhibiting viral 
spread [57,58], indicating a role for TPCs in lysosomal trafficking. 
Collectively, the regulation of lysosomal ion channels represents a 
promising novel therapeutic target.

Lysosomal potassium ion channels

Potassium influx helps maintain homeostasis by compensat-
ing for the loss of Na+ and Ca2+. Similar to the plasma membrane, 
the movement of K+ ions is closely linked to lysosomal membrane 

potential to ensure normal lysosomal function. Although the BK 
is believed to be the sole K+ channel in endolysosomes, a novel 
transmembrane protein, TMEM175, has been identified as a 
potassium-selective channel [13].

TMEM175: TMEM175 localizes within endolysosomes and 
was initially believed to exist only in prokaryotes. However, after 
the development of mass spectrometry, it was recognized as a 
mammalian protein [59]. TMEM175 acts as a K+ channel with the 
selective movement of K+ ions [60]. Unlike canonical K+ channels, 
TMEM175 does not inhibit tetraethylammonium (TEA) or qui-
nine but suppresses Zn2+ and 4-AP. Although a P-loop selectivity 
filter is lacking in commercial K+ channels, structural studies 
have suggested that threonine and serine residues play a role in K+ 
selectivity [61]. Defects in TMEM175 have been found to regulate 
lysosomal pH and autophagy stages in RAW246.7 macrophage 
cells [60]. TMEM175 is strongly associated with neurodegenera-

Fig. 2. Interaction between ion channels and regulators. Amino acids and growth factors bind to receptors on the plasma membrane. PI3kinases 
increase the concentration of PIP3 from PtdIns(4,5)P2 (PIP2), which binds to the PH domain of AKT. This binding induces a con-formational change that 
affects downstream signaling pathways such as PIKfyve or mTORC1. AKT phosphorylation occurs at an important residue in the kinase domain (S308) 
by PDK1 and another residue (S473) in the C-terminal regulatory domain. Phosphorylation of AKT induces changes in PIKfyve, which converts PI(3)P2 
to PI(3,5)P2 [25]. BK and TRPML1 channels are promoted by PI(3,5)P2 and reactive oxidative stress (ROS). AKT phosphorylation also inhibits TSC1/2, abol-
ishing Rheb-induced phosphorylation of mTORC1 at residues S2481 and S2448 [26,27]. AMPK signaling is affected by glucose (activation) and setrin 
(inhibition), AMPK inhibits the mTORC1 [28,29]. TPCs are inhibited by mTORC1 when its domain that interacts with TPC is closed. V-ATPase regulated 
by mTOR1 through a regulator complex when binding with Rheb. TMEM175 activation requires aa conformational change in PH domain of AKT but 
does not associate AKT downstream pathways. mTORC1, mechanistic targets of rapamycin complex 1; AMPK, AMP-activated kinase; TPC, two-pore 
channel; BK, calcium-activated large-conductance K+ channel; TRPML, transient receptor potential mucolipin.
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tive diseases like PD and may be involved in various LSDs [62,63]. 
It has emerged as a major protein connecting these diseases, as 
revealed by studies comparing Lewy body dementia patients and 
controls [62,64]. Additionally, TMEM175 deficiency affected mi-
tochondrial function and autophagy in neuroblastoma cells [65]  
(Fig. 2).

BKs: In contrast, BK channels are calcium-activated large-con-
ductance channels comprising six transmembrane segments and 
four pore-forming BK α-subunits (BKβ1-4). These channels were 
initially identified at the Slowpoke locus Slo1 in Drosophila [66]. 
BK channels not only respond to cytosolic Ca2+ but also influence 
membrane depolarization. Unlike other channels, BK channels 
are widely expressed and have been extensively studied in the 
plasma membrane. When activated, they facilitate K+ export from 
the cytosol, leading to hyperpolarization and increased lysosomal 
membrane. Some studies have suggested that BK channels are 
associated with TRPML1-mediated Ca2+ release. TRPML1 ac-
tivation leads to Ca2+ release, which subsequently activates BK 
channels, allowing the influx of K+ ions into the lysosomal lumen 
[67]. This sustains the membrane potential necessary for the con-
tinuous activation of TRPML1 and V-ATPase. Inhibition of BK 
channels reduces lysosomal Ca2+ release, but co-treatment with a 
TRPML1 activator can rescue this effect.

Lysosomal calcium ion channels

TRPML channels: function, localization, and implications 
in lysosomal disorders: TRPML channels, initially discovered 
in Drosophila melanogaster, belong to the transient receptor po-
tential (TRP) superfamily. These channels are nonselective cation 
channels that allow the permeation of calcium ions. The TRP su-
perfamily comprises six main subgroups based on their functions: 
TRPA (ankyrin), TRPC (canonical), TRPM (melastatin), TRPML 
(mucolipin), TRPP (polycystin), and TRPV (vanilloid) [68,69]. 
TRPML isoforms include TRPML1-3, which are six transmem-
brane proteins with N- and C-termini. TRPML1 and TRPML2 
are located on chromosome 19, whereas TRPML3 is located on 
chromosome 1 [70-72]. These isoforms share approximately 40% 
amino acid sequence similarity [73,74], and the localization of 
TRPML3 depends on the presence of TRPML1 and TRPML2. 
Controversially, it has been reported that both TRPML1 and 
TRPML2 bind to TRPML3 [75].

Among TRPML channels, TRPML1 is widely expressed [55], 
and localized in endosomes and lysosomes. The activation of 
TRPML1 channels leads to increased ion transport from the 
lysosomal lumen to the cytosol [76]. These channels are acti-
vated by PI(3,5)P2 and ML-SA1 but inhibited by ML-SL1. TRPML 
channels function within the lysosomes and interact with each 
other. TRPML1 has been extensively studied because of its as-
sociation with LSDs. Mutations in TRPML1, also known as 
MCOLN1-3, are linked to LAMP-1 in the lysosomal membrane 
[77,78]. TRPML1 defects disrupt lysosomal conditions and lead to 

autophagic dysfunction and neurodegeneration. This highlights 
the importance of TRPML1 in organelle homeostasis and cel-
lular function and suggests its role in lysosomal pH regulation. 
Interestingly, TRPML1 exhibited the opposite behavior of other 
ion channels. Dysfunction of TPCs and TMEM175 or nutrient 
deficiency increases lysosomal pH [13,42,79], whereas TRPML1 
moves towards an acidic pH when depleted. TRPML1 plays a cru-
cial role in sustaining the lysosomal function by interacting with 
lysosomal enzymes. However, some studies have suggested that 
pH can also influence TRPML channels [74]. TRPML1 contains 
an intraluminal pore with aspartate residues that modulate Ca2+ 
conductance depending on the surrounding pH [79].

TRPML2 and TRPML3: tissue localization and functions: 
TRPML2 exhibits tissue-specific expression and is primarily 
found in the heart, kidney, thymus, liver, immune cells, endo-
somes, and lysosomes [80]. Although the exact functions of 
TRPML2 channels are not well understood, some studies have 
suggested their association with glycosylphosphatidylinositol-
anchored proteins (GPI-APs), a major histocompatibility protein 
class I, and ADP-ribosylation factor (ARF6), a small G protein in-
volved in membrane trafficking and recycling. TRPML2 localizes 
to the ARF6-modulated pathway and regulates GPI-AP sorting 
[81].

In contrast, TRPML3 is found in various tissues, including 
the spleen, lungs, eyes, thymus, and melanocytes [82,83]. It is 
primarily localized in the endosomes, lysosomes, and intracel-
lular vesicles [84,85]. TRPML3 plays a crucial role in regulating 
sodium ions (Na+) and cytosolic hydrogen ions (H+). However, 
it exhibited distinct pH regulation compared to TRPML1. The 
functional pH of TRPML3 is approximately 6.4, and its activity 
is inhibited at an acidic pH [85]. TRPML3 is present in multiple 
cellular compartments including the plasma membrane, endocy-
tosis, and autophagy. Its activity is inhibited by acidic pH; how-
ever, when overexpressed or activated, it enhances autophagy and 
regulates its status. TRPML3 interacted with GATE16, an ATG8 
homolog [86]. During autophagy induction, TRPML3 undergoes 
palmitoylation, a post-translational modification that facilitates 
the movement of specific components within the autophagosome, 
activating the process [87]. Previous studies have suggested a cor-
relation between the number of autophagosomes and TRPML3 
expression during cellular stress and nutrient deprivation. Cells 
lacking TRPML3 show reduced autophagosome formation, 
potentially leading to nutrient deficiency [88]. TRPML3 also 
interacts with autophagosome markers, indicating its direct 
involvement in the regulation of Ca2+-mediated membrane fu-
sion. Structural studies have identified specific PIP2 binding site 
mutations (K52AR58AK62A, R305A, and F524A) that abolish 
TRPML3 currents, whereas K52AR58AK62A and R305A com-
pletely block PIP2 binding [83]. Constitutively activating isoforms 
of TRPML3, including the A419P and I362T mutants, have been 
reported, although the status of I362T remains controversial. 
Variants such as A419P are associated with conditions such as 
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deafness and vascular problems because these mutations cause 
continuous Ca2+ release from lysosomes into the cytosol, leading 
to elevated cytosolic Ca2+ levels and disruption of intracellular sig-
naling pathways. In the A419P mutant, sensory hair cell death re-
sults in hearing loss. Another mutation, I362T, reduced TRPML3 
currents, resulting in a milder phenotype when co-mutated with 
A419P. Recent findings indicated that phosphatidylinositol-
3-phosphate (PI3P), a crucial lipid for autophagosome formation, 
specifically interacts with TRPML3. The binding of TRPML3 to 
PI3P increases Ca2+ release from phagophores and promotes au-
tophagy. Furthermore, TRPML3 inhibition abolishes autophagy, 
even in the presence of PI3P [89].

Lysosomal chloride-permeable channels: ClCs

The ClC family encompasses the voltage-gated Cl- channels 
that distinguish themselves from others by functioning as Cl-/
H+ antiporters [90,91]. These channels are present in the plasma 
membrane and intracellular organelles. Depending on their loca-
tion, ClC channels contribute to various processes, such as rest-
ing membrane potential, pH regulation, and overall homeostasis 
[90,91].

Among them, ClC-7 is widely expressed and prominently 
found in the central and peripheral nervous systems. It local-
izes to late endosomes and lysosomes, alongside Lamp-1 [92-99]. 
For its distinct functioning and localization, ClC-7 requires co-
localization with the β subunit of osteoclastogenesis-associated 
transmembrane protein 1 [100,101]. ClC-7 is expressed at the 
ruffled borders of osteoclasts [92]. However, its specific role in the 
lysosomes remains debatable.

Recent findings have suggested that ClC-7 defects have a 
minimal impact on phagosomal acidification. Instead, ClC-7 
primarily contributes to the accumulation of lysosomal Cl-, while 
V-ATPases are responsible for maintaining a low pH necessary 
for degradative hydrolase activity. ClC-7 indirectly activates V-
ATPase by providing a driving force for Cl- accumulation [102].

Other studies have proposed that ClC-7 is predominantly as-
sociated with lysosomal hyperacidification, leading to the deple-
tion of PI(3,5)P2 by inhibiting PIKfyve (an FYVE finger-containing 
phosphoinositide kinase) [65,103]. Notably, PIKfyve potently acti-
vates ClC-2 [104]. This suggests that ClC-7 is directly inhibited by 
PI(3,5)P2, thereby preventing functional mutations (such as Y715C) 
and regulating lysosomal pH [103,105].

LSDs linked to ion channels

LSDs are inherited metabolic disorders with a prevalence of ap-
proximately 1 in 5,000 live births [106], indicating the critical role 
of lysosomes in numerous cellular processes. Lysosomal dysfunc-
tion leads to various defects in lysosomal properties including pH 
imbalance, membrane potential disruption, enzymatic activity 
impairment, and abnormal autophagy. These lysosomal-mediat-

ed diseases encompass a broad range of conditions, from LSDs to 
neurodegenerative diseases, such as Parkinson's and Alzheimer’s 
disease, hearing loss, obesity, osteopetrosis, fatty liver, cancers 
(lung, breast, prostate, and colon), and viral diseases (Ebola and 
SARS) [107-118].

LSDs, which involve mutations or defective channel function, 
are common lysosomal dysfunctions. One such example is MLIV, 
a neurodegenerative and neurodevelopmental disease caused by 
mutations in TRPML1. Patients with MLIV exhibit dysfunctions 
in mTOR, trafficking, metabolism, lysosomes, and autophagy. 
Vardi et al. [119] conducted a study using TRPML1 knockout 
mice and obtained proteomic data through pathway analysis. The 
study revealed upregulated pathways in the cerebellum and cere-
bral cortex (integrin pathway, innate immune system, lysosome, 
and sphingolipid metabolism, among others) as well as downreg-
ulated pathways (GABAergic synapses). TRPML1 knockout mice 
displayed upregulated immune response, cytokine production, 
coagulation cascades, and viral susceptibility [119].

Niemann-Pick disease, another type of LSD, is associated with 
TRPML channels. This group of disorders causes cellular changes 
due to the accumulation of cholesterol and other lipids in endo-
cytic compartments. In Niemann-Pick disease, cholesterol traf-
ficking from the lysosome to the endoplasmic reticulum leads to 
dysfunction in transcriptional cholesterol metabolism and esteri-
fication. The improper regulation of lysosomal calcium release by 
TRPML1 mutations is thought to be associated with these issues 
[120].

Over the past few years, COVID-19 has become a pandemic, 
primarily causing respiratory syndromes related to SARS-CoV-2. 
While some individuals recover or improve naturally, others 
develop acute respiratory distress syndrome [121-123]. However, 
a few individuals may experience primary cardiovascular dys-
functions [124,125]. TPC channels, which localize in endosomes, 
lysosomes, and Na+ and Ca2+ channels, have been identified as 
potential candidates. It is suggested that TPCs regulate Ca2+ asso-
ciated with SARS-CoV-2 through endocytosis and endolysosomal 
trafficking [50,126]. However, this hypothesis warrants further 
investigation. TPC1 is associated with systemic anaphylaxis 
and mast cell activity. TPC1-deficient mice exhibited enhanced 
passive systemic anaphylaxis, lower body temperature, slower 
recovery, reduced histamine release, decreased mast cell number 
and size, and impaired regulation of exocytosis [127]. TPC2, in 
contrast, modulates the endolysosomal degradation pathway 
by regulating trafficking. TPC2 dysfunction impairs epithelial 
growth factor (EGF)/EGF-receptor trafficking and LDL-derived 
cholesterol in mouse fibroblasts and hepatocytes. This indicates 
that TPC2 plays a role in regulating the trafficking mechanism 
of endolysosomal degradation pathways, which affect metabolite 
and macromolecule homeostasis. Recently, TPC2 has been shown 
to rescue lysosomal storage in MLIV and Batten disease. This 
channel activation improves the cellular phenotypes associated 
with lipofuscin accumulation, lactosylceramide buildup, choles-



Lysosomal ion channels: signaling and disease implications

Korean J Physiol Pharmacol 2023;27(4):311-323www.kjpp.net

317

terol storage, and abnormal vacuole formation. TPC2 activation 
promotes lysosomal exocytosis and autophagy, providing a po-
tential therapeutic avenue for these diseases [128].

Although BK channels were initially studied in the context of 
cancer, they have now gained attention for their use in neurologi-
cal diseases. Mutations in KCNMA1, which encodes the pore-
forming-subunit of BK channels, have been identified as crucial 
points. BK channel conductance plays a role in the regulation of 
breast cancer progression, and its localization and activation are 
linked to cancer development. Low expression of KCNMA1 has 
been associated with shorter recurrence-free survival in patients 
with breast tumors, regardless of treatment or estrogen receptor 
status. LRRC26, an auxiliary subunit, is required to activate BK 
channels in non-excitable tumor cells at a depolarized resting 
membrane potential [129]. In terms of neurological diseases, mu-
tations in KCNMA1 (BKG354S) located in the selectivity filter and 
pore region have been linked to accelerated cognitive impairment 
in children with congenital and progressive cerebellar ataxia. 
These mutations significantly reduce ion selectivity and channel 
conductance and impair cell viability, mitochondrial content, and 
neurite outgrowth; however, they do not affect channel traffick-
ing. However, the BK activator, NK1619, selectively blocks mu-
tated BKG354S channels, suggesting a potential therapeutic strategy 
[130]. Another study proposed a correlation between KCNMA1 
mutations and paroxysmal non-kinesigenic dyskinesia 3, which 
may occur with or without generalized epilepsy in mice and in 
three KCNMA1 patient variants. The BKN999S and BKD434G chan-
nels exhibited a gain-of-function phenotype, whereas the BKH444Q 
channel was negatively activated in heterologous cells. Hetero-
zygous mutant mice with activating mutations show increased 
action potential firing and reduced seizure thresholds. However, 
this effect was not observed in mice harboring the H444Q muta-
tion. N999S heterozygous mice demonstrate severe behavioral 
impairment in paroxysmal dyskinesia tests, suggesting its role in 
promoting seizure propensity (Table 1) [131].

TMEM175 has recently been implicated in PD. Unlike most 

ion channels that exhibit heterozygous activity, TMEM175 ac-
tivation is dose-dependent. TMEM175 knockout mice display 
impaired clearance of phosphorylated α-synuclein (S129), a 
marker of PD, and increased galectin-3 levels, indicating lyso-
somal membrane damage. TMEM175 also functions as a nutrient 
sensor and its knockout negatively affects lysosomal pH, enzyme 
function, and autophagy. Furthermore, TMEM175 knockout 
mice were more susceptible to damage induced by starvation and 
neurotoxins (MPP+ and H2O2) than wild-type mice. Mutations 
in TMEM175 (M393T and Q65P) are associated with PD. The 
M393T mutation increased the likelihood of developing PD by 
more than 25%. Patients with PD and the M393T mutation expe-
rience decreased motor and cognitive functions. In vitro studies 
have shown that the M393T mutation reduces channel activity, 
impairs α-synuclein clearance, causes nutrient deficiency, and 
increases sensitivity to neurotoxins. In contrast, the Q65P muta-
tion affected channel activity differently and was more resistant 
to nutrient deficiency. After deficiency, growth factors can rescue 
channel activity, indicating a connection between growth factors 
and TMEM175 channels. Protein kinase B (AKT), which is in-
volved in multiple signaling pathways including cell proliferation, 
apoptosis, and metabolism, directly influenced TMEM175 activ-
ity through conformational changes in the AKT PH domain [13].

The industrial application of TMEM175 as a therapeutic target 
is supported by collaborations such as that between Caraway and 
AbbVie, which aim to develop therapies targeting TMEM175 
with a funding allocation of up to $267 million. This highlights 
the potential significance of lysosomal ion channels as targets for 
therapeutic interventions. Another channel, TRPML1, has also 
been investigated as a potential target for agonist development to 
treat neurodegenerative diseases and muscular dystrophy. Merck 
has invested up to $576 million in this study owing to the close 
relationship between TRPML1 and lysosomal calcium. Reactive 
oxidative stress (ROS), TFEB, and GSK3 signaling are additional 
possible connections that warrant further investigation [132-138]. 
Reports have suggested that Mucopolysaccharidosis and Krabbe 

Table 1. Lysosomal ion channels and diseases

Ion channel name Transported ion(s) Disease type

TPC1 Na+, Ca2+ Associated with the fusion of virus [50,120], acute respiratory distress syndrome 
[115-117]

TPC2 Na+, Ca2+ Associated with the fusion of virus [50,120], Mucolipidosis type IV (MLIV) [113]
TMEM175 K+ Parkinson’s disease [13,64]
BK K+ Cancer [123], seizure [125]
TRPML1 Na+, Ca2+, Zn+, Fe2+

Cations (nonselective)
MLIV [113], Niemann–Pick disease [114], Hearing loss [103,104]

TRPML2 Na+, Ca2+, Zn+, Fe2+

Cations (nonselective)
TRPML3 Na+, Ca2+, Zn+, Fe2+

Cations (nonselective)
Hearing loss [85,103,104]

ClC7 Cl-

BK, calcium-activated large-conductance K+ channel; TPC, two-pore channel; TRPML, transient receptor potential mucolipin; CLC7, 
voltage-gated Cl- channel7.
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disease may be caused by ROS, indicating the potential involve-
ment of TRPML and TPC channels. These channels can modu-
late lysosomal calcium release, affect local calcium levels, and 
potentially influence intracellular signaling. TFEB-mediated au-
tophagy is linked to LSDs through the inhibition of mTOR path-
ways by drugs such as rapamycin. However, it has been observed 
that rapamycin can independently activate TRPML1 channels, 
leading to lysosomal calcium release and affecting TFEB. This in-
teraction elucidates the coordination between lysosomal function 
and autophagy regulation. GSK3, a member of the AKT signaling 
pathway, is associated with familial Alzheimer's disease. Inhibi-
tion of GSK3 increases lysosomal activity, although its connection 
lies with plasma membrane ion channels rather than lysosomal 
ion channels.

The emerging understanding of lysosomal ion channels and 
their involvement in various diseases, such as LSDs and neurode-
generative conditions, opens exciting possibilities for the devel-
opment of novel therapeutic strategies. Targeting lysosomal ion 
channels may provide a new approach to modulating lysosomal 
function, restoring cellular homeostasis, and alleviating disease 
symptoms.

Further research is required to elucidate the precise mecha-
nisms and interactions of lysosomal ion channels with other 
proteins and signaling pathways. Investigating these complex net-
works can provide deep insights into underlying disease processes 
and identify novel therapeutic targets. Additionally, exploring the 
functional roles of lysosomal ion channels in different cellular 
contexts and organ systems can help to develop individualized 
and effective treatment approaches. Continuous research in this 
field holds significant potential for the development of innovative 
therapies that mitigate the impact of lysosomal dysfunction and 
neurodegeneration, thereby improving the quality of life of indi-
viduals suffering from these diseases.

CONCLUSION
Lysosomes play a crucial role in cellular signaling and main-

taining cellular homeostasis. Dysfunctional lysosomes disrupt 
cellular homeostasis and contribute to the development of vari-
ous diseases including neurodegenerative disorders and LSDs. 
Lysosomal ion channels, such as lysosomal membrane potential 
channels, are primarily responsible for regulating lysosomal 
conditions. The pathogenesis of these diseases has been linked 
to dysfunctions in these ion channels and their related signaling 
pathways. Therefore, a comprehensive understanding of the cor-
relation between lysosomal ion channels, their regulatory mecha-
nisms, and their impact on intracellular signaling is essential for 
the development of novel therapeutic approaches. Further inves-
tigations are highly recommended to unravel the precise roles of 
lysosomal ion channels and ion-related signaling in intracellular 
processes. In conclusion, this review aimed to provide valuable 

insights into the significance of lysosomal ion channels and ion-
related signaling in intracellular signaling and their potential as 
therapeutic targets. A deeper understanding of the mechanisms 
involving lysosomal ion channels warrants continued research 
with the ultimate objective of developing effective therapies for 
LSDs and other related disorders.
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