
Epigenetic plasticity cooperates with cell-cell interactions to 
direct pancreatic tumorigenesis

Cassandra Burdziak1,2,†, Direna Alonso-Curbelo3,4,†, Thomas Walle1,5,6,7, José Reyes1,3, 
Francisco M. Barriga3, Doron Haviv1,2, Yubin Xie1,2, Zhen Zhao3,8, Chujun Julia Zhao1,9, 
Hsuan-An Chen3, Ojasvi Chaudhary1,10, Ignas Masilionis1,10, Zi-Ning Choo1, Vianne Gao1,2, 
Wei Luan3, Alexandra Wuest3, Yu-Jui Ho3, Yuhong Wei11, Daniela F Quail11, Richard 
Koche12, Linas Mazutis1,9,13, Ronan Chaligné1,10, Tal Nawy1, Scott W. Lowe3,14,*, Dana 
Pe’er1,14,*

1Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan 
Kettering Cancer Center; New York, NY 10065, USA

2Tri-Institutional Training Program in Computational Biology and Medicine, Weill Cornell Medicine; 
New York, NY 10065, USA

3Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering 
Cancer Center; New York, NY 10065, USA

4Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and 
Technology; Barcelona 08028, Spain

5Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ); Heidelberg 
69120, Germany

This work is licensed under a Creative Commons Attribution 4.0 International License, which allows reusers to distribute, remix, 
adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for 
commercial use.
*Corresponding authors. peerd@mskcc.org, lowes@mskcc.org.
†These authors contributed equally to this work.
Author contributions: Cassandra Burdziak: Conceptualization, Methodology, Software, Formal analysis, Data curation, 
Investigation, Writing-original draft presentation, Visualization, Funding Acquisition; Direna Alonso-Curbelo: Conceptualization, 
Methodology, Data curation, Investigation, Writing-original draft presentation, Visualization, Funding Acquisition; Thomas Walle: 
Formal analysis, Data curation, Investigation, Writing-review and editing, Visualization; José Reyes: Data curation, Investigation, 
Writing-review and editing; Francisco M. Barriga: Investigation; Doron Haviv: Formal analysis, Data curation, Investigation; Yubin 
Xie: Formal analysis, Data curation, Investigation; Zhen Zhao: Investigation; Chujun Julia Zhao: Formal analysis; Hsuan-An 
Chen: Investigation; Ojasvi Chaudhary: Investigation; Ignas Masilionis: Investigation; Zi-Ning Choo: Resources; Vianne Gao: 
Data curation; Wei Luan: Investigation; Alexandra Wuest: Investigation; Yu-Jui Ho: Data curation; Yuhong Wei: Resources; 
Daniela Quail: Resources; Richard Koche: Formal analysis; Linas Mazutis: Investigation; Ronan Chaligné: Investigation; Tal 
Nawy: Writing-original draft presentation; Scott W. Lowe: Conceptualization, Methodology, Writing-original draft presentation, 
Funding Acquisition, Study supervision; Dana Pe’er: Conceptualization, Methodology, Writing-original draft presentation, Funding 
Acquisition, Study supervision.

Competing interests: Scott W. Lowe is a consultant and holds equity in Blueprint Medicines, ORIC Pharmaceuticals, Mirimus 
Inc., PMV Pharmaceuticals, Faeth Therapeutics, and Constellation Pharmaceuticals. A patent application (PTC/US2019/041670, 
internationally filing date 12 July 2019) has been submitted covering methods for preventing or treating KRAS mutant pancreas 
cancer with inhibitors of Type 2 cytokine signaling. Direna Alonso-Curbelo and Scott W. Lowe are listed as the inventors. Dana Pe’er 
is on the scientific advisory board of Insitro. Thomas Walle reports stock ownership for Roche, Bayer, Innate Pharma, Illumina and 
10x Genomics as well as research funding (not related to this study) from CanVirex AG, Basel Switzerland and Institut für Klinische 
Krebsforschung GmbH, Frankfurt, Germany. Cassandra Burdziak, Direna Alonso-Curbelo, Scott W. Lowe, and Dana Pe’er are listed 
as inventors on a provisional patent application (63/390,075) related to aspects of this work, where Memorial Sloan Kettering Cancer 
Center is the applicant.

HHS Public Access
Author manuscript
Science. Author manuscript; available in PMC 2023 July 03.

Published in final edited form as:
Science. 2023 May 12; 380(6645): eadd5327. doi:10.1126/science.add5327.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



6Department of Medical Oncology, National Center for Tumor Diseases; Heidelberg University 
Hospital, Heidelberg 69120, Germany

7German Cancer Consortium (DKTK); Heidelberg 69120, Germany

8Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at 
Mount Sinai; New York, NY 10029, USA

9Department of Biomedical Engineering, Columbia University; New York, NY 10027, USA

10Alan and Sandra Gerry Metastasis and Tumor Ecosystems Center; Memorial Sloan Kettering 
Cancer Center, New York 10065, NY, USA

11Rosalind and Morris Goodman Cancer Institute, McGill University; Montreal, QC H3A 1A3, 
Canada

12Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center; New York, NY 
10065, USA

13Institute of Biotechnology, Life Sciences Centre; Vilnius University, Vilnius LT 02158, Lithuania

14Howard Hughes Medical Institute; Chevy Chase, MD 20815, USA

Abstract

Introduction—Virtually all cancers begin with genetic alteration in healthy cells, yet mounting 

evidence suggests that non-genetic events such as environmental signaling play a crucial role in 

unleashing tumorigenesis. In the pancreas, epithelial cells harboring an activating mutation in the 

Kras proto-oncogene can remain phenotypically normal until an inflammatory event, which drives 

cellular plasticity and tissue remodeling. The inflammation-driven molecular, cellular, and tissue 

changes that precede and direct tumor formation remain poorly understood.

Rationale—Understanding tumorigenesis requires a high-resolution view of events spanning 

cancer progression. We leveraged genetically engineered mouse models (GEMMs), single-cell 

genomic (RNA-seq and ATAC-seq) and imaging technologies to measure pancreatic epithelial 

cell-states across physiological, premalignant, and malignant stages. To analyze this rich and 

complex dataset, we developed computational approaches to characterize epigenetic plasticity and 

to infer cell-cell communication impacts on tissue remodeling.

Results—Our data revealed that early in tumorigenesis, Kras-mutant cells are capable of 

acquiring multiple highly reproducible cell-states that are undetectable in normal or regenerating 

pancreata. Several such states align with experimentally validated cells-of-origin of neoplastic 

lesions, some of which display a high degree of plasticity upon inflammatory insult. These diverse 

Kras-mutant cell populations are defined by distinct chromatin accessibility patterns and undergo 

inflammation-driven cell fate transitions that precede pre-neoplastic and premalignant lesion 

formation. Furthermore, a subset of early Kras-mutant cell-states exhibit marked similarity to 

either the benign or malignant fates that emerge weeks to months later; for instance, Kras-mutant 

Nestin-positive progenitor-like cells display accessible chromatin near genes active in malignant 

tumors.

We defined and quantified epigenetic plasticity as the diversity in transcriptional phenotypes 

that is enabled or restricted by a given epigenetic accessibility landscape. Intriguingly, these 
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plastic cell-states are enriched for open chromatin near cell-cell communication genes encoding 

ligands and cell-surface receptors, suggesting an increased propensity to communicate with the 

microenvironment. Given the rapid remodeling of both the epithelial and immune compartments 

during inflammation, we hypothesize that this epigenetically enabled communication is 

a major driver of tumorigenesis. We found that the premalignant epithelium displays 

extraordinary modularity with respect to communication gene co-expression patterns; distinct 

cell subpopulations each express a unique set of receptors and ligands that define the nature of 

incoming and outgoing signals that they can receive and send.

Through the development of Calligraphy, an algorithm that utilizes this receptor-ligand modularity 

to robustly infer the cell-cell communication underlying tissue remodeling, we showed that the 

enhanced signaling repertoire of early neoplastic tissue specifically endows plastic epithelial 

populations with greater capability for crosstalk, including numerous communication routes 

with immune populations. As one example, we identified a feedback loop between inflammation-

driven epithelial and immune cell-states involving IL-33, previously implicated in pancreatic 

tumorigenesis. Using a new GEMM that enables spatiotemporally controlled suppression of 

epithelial Il33 expression during Kras-initiated neoplasia, we functionally demonstrated that the 

loop initiated by epithelial IL-33 directs exit from a highly plastic inflammation-induced epithelial 

state, enabling progression towards typical neoplasia.

Conclusion—Multimodal single-cell profiling of tumorigenesis in mouse models identified the 

cellular and tissue determinants of pancreatic cancer initiation, and a rigorous quantification 

of plasticity enabled the discovery of plasticity-associated gene programs. We found that Kras-

mutant subpopulations markedly increase epigenetic plasticity upon inflammation, reshaping their 

communication potential with immune cells, and establishing aberrant cell-cell communication 

loops that drive their progression towards neoplastic lesions.

Abstract

The response to tumor-initiating inflammatory and genetic insults can vary amongst 

morphologically indistinguishable cells, suggesting yet uncharacterized roles for epigenetic 

plasticity during early neoplasia. To investigate the origins and impact of such plasticity, 

we performed single-cell analyses on normal, inflamed, pre-malignant, and malignant tissues 

in autochthonous models of pancreatic cancer. We reproducibly identified heterogeneous cell-

states that are primed for diverse late-emerging neoplastic fates and linked these to chromatin 

remodeling at cell-cell communication loci. Using an inference approach, we revealed signaling 

gene modules and tissue-level crosstalk, including a neoplasia-driving feedback loop between 

discrete epithelial and immune cell populations that was validated in mice. Our results uncover 

a neoplasia-specific tissue remodeling program that may be exploited for pancreas cancer 

interception.

One-Sentence Summary:

Single-cell analysis reveals that enhanced epigenetic plasticity drives pro-neoplastic crosstalk in 

early pancreatic tumors.

Graphical Abstract
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The initial events by which tissues diverge from normalcy to form benign neoplasms 

and malignant tumors remain poorly understood. It is well established that this process 

is driven by genetic mutations (1); however, the discovery of prevalent cancer driver 

mutations in phenotypically normal epithelia (2) challenges the classic notion of cancer 

pathogenesis and underscores the essential role of cellular and environmental context (3–5). 

Indeed, non-mutagenic environmental insults promote tumor initiation in mice (6, 7) and 

chronic inflammatory conditions substantially increase cancer risk in humans (8, 9). These 

events can have heterogeneous effects even amongst morphologically indistinguishable and 

genetically identical cells from the same tissue (10). Genetic tracing studies similarly reveal 

that all such cells are not equally prone to undergo neoplastic and malignant reprogramming 

(11). This heterogeneity suggests that for tumorigenesis to proceed, select mutant cells either 

possess or gain an enhanced ability to change cell-states, a phenomenon known as cellular 

plasticity (12, 13).

Developmental, regenerative, and pathologic plasticity is largely determined at the 

chromatin level as increases or decreases in the repertoire of transcriptional programs that 

can be accessed by a given cell (13, 14). Cells showing a high degree of plasticity, such 

as stem cells, often have a more ‘open’ or accessible chromatin landscape that becomes 

restricted during differentiation (15, 16). Previous work has used de-differentiation with 

respect to normal cell-states to characterize cancer cell plasticity with single-cell genomics 

from lung cancer models (17, 18). However, we still do not know how plasticity emerges 

in the earliest stages of tumorigenesis, particularly in concert with the environmental 

insults that accelerate these initiating events. Learning how plasticity is triggered to arise 

in pre-malignant tissues and how it contributes to early tumor evolution is paramount to 

understanding and intercepting cancer at its earliest stages.

Pancreatic ductal adenocarcinoma (PDAC) is typically diagnosed too late for curative 

treatment and arises from cooperativity between genetic and epigenetic reprogramming 

events (19). Unlike more genetically heterogeneous cancers, PDAC is invariably initiated 

by an activating mutation in the proto-oncogene KRAS. However, KRAS-mutant epithelia 
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can remain phenotypically normal and depend on inflammatory stimuli (pancreatitis) to 

transform into pre-neoplastic and neoplastic lesions (20–22). We (23) and others (24, 

25) have reported that oncogenic KRAS, in the absence of further mutation, cooperates 

with inflammation to trigger large-scale chromatin remodeling events that promote tumor 

initiation. However, important questions remain: How does KRAS-mediated plasticity give 

rise to neoplastic lineages and enable their subsequent evolution to invasive disease? What 

are critical cell-intrinsic and cell-extrinsic factors that determine a cell’s propensity to 

acquire a plastic and ultimately a tumorigenic cell-state? Understanding the answers to these 

questions may point to intervention strategies to prevent PDAC progression.

To shed light on neoplastic plasticity in PDAC, we compared physiological, pre-malignant, 

and malignant cell-state heterogeneity using single-cell genomics, applying computational 

methods and functional perturbation in autochthonous genetically engineered mouse models 

(GEMMs) that accurately recapitulate many aspects of the human disease. Beyond providing 

a comprehensive charting of epithelial dynamics from normal metaplasia through malignant 

tissue states, our approach allowed us to expose, quantify, and perturb early plasticity 

traits endowed by oncogene-environment interaction, and define molecular, cellular, and 

tissue-level principles of pre-malignant tumor evolution.

Results

Targeted high-resolution profiling of epithelial dynamics during damage-induced neoplasia

The study of epithelial dynamics in pancreatic cancer has been limited by the inability to 

capture early and transitional cell-states, which tend to be rare, short-lived, and difficult 

to identify. To characterize the full spectrum of epithelial cell-states in both normal and 

pathological tissue remodeling, we generated a single-cell transcriptomic (scRNA-seq) 

atlas of healthy, regenerating, benign neoplastic, and malignant epithelia using GEMMs 

that faithfully model cancer from initiation to metastasis. Our GEMMs incorporate a Ptf1a-

Cre-dependent mKate2 fluorescent reporter to enrich pancreatic epithelial cells (23, 26, 

27), allowing us to comprehensively profile pancreatic epithelial dynamics in well-defined 

tissue states. Specifically, we profiled pancreatic epithelial cells from healthy pancreas 

(N1) undergoing reversible metaplasia associated with normal regeneration after injury 

(N1→N2), and the metaplasia-neoplasia-adenocarcinoma sequence that initiates PDAC in 

the presence of mutant Kras (K1→K6) (Figs. 1A, S1A and Table S1). In this setting, 

as in human cancer (10), Kras-mutant metaplasia is accelerated by an inflammatory 

insult (pancreatitis) (pre-neoplasia; K1→K2), proceeds to benign pancreatic intraepithelial 

neoplasia, (PanIN; K3, K4), and ultimately, malignant PDAC (K5) and distal metastases 

(K6; Figs. 1A and S1A).

Using a lineage tagging reporter to enrich for epithelial (mKate2+) cells, we captured both 

abundant and rare constituents of normal, regenerating, and Kras-mutant epithelia, such as 

progenitor-like tuft (Pou2f3+, Dclk1+), EMT-like (Zeb1+), neuroendocrine (Syp+ Chga+), 

and other previously reported subpopulations (28–30) (Figs. 1B, S1B–E and Table S2). We 

also characterized highly granular routes of acinar-to-ductal metaplasia (ADM) associated 

with regeneration and tumor initiation (23, 31) (Fig. S2A,B). Compared to healthy and 

regenerating pancreata, we uncovered a staggering expansion of new cell-states that emerge 
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during the earliest stages of KRAS-driven tumorigenesis (K1-K2, Figs. 1B, S1B–E and 

S2A–C). Despite such heterogeneity, the distinct cell-states captured within pre-malignant 

tissues were reproducible across biological replicates (individual mice) (Fig. S2D). In stark 

contrast, and consistent with studies analyzing human PDAC (32), malignant tumors isolated 

from different mice showed extensive inter-tumor variability, only sharing one small cell 

cluster (Fig. S2D,E).

We next used diffusion maps (33) to characterize the major axes of transcriptional variation 

in our data, ordering cells along components associated with coherent gene expression 

patterns. The top component of variation closely matches progression from normal to 

regenerating, early tumorigenic, and finally late-stage disease, and is consistent with 

gene signatures that distinguish advanced human PDAC from normal pancreas (34, 35). 

Specifically, genes upregulated in human and mouse PDAC rise along the first diffusion 

component (DC), while normal pancreas programs are downregulated (Fig. 1C). Consistent 

with prior reports analyzing bulk RNA-seq data (23), the combined effects of Kras mutation 

and injury-driven inflammation are sufficient to induce signatures of human PDAC in 

pre-malignancy, as early as 24 to 48 hours post-injury (hpi) (Fig. 1C,D). However, the 

added granularity of our single cell analyses revealed that cancer-specific signatures are 

not induced uniformly across pre-malignant epithelial cell-states; for example, some rare 

early Kras-mutant cells express high levels of EMT gene programs (Zeb1, Vim; (30, 36)) 

(Figs. 1D and S1E). Kras-mutant cell-states are also observed with varying degrees of 

de-differentiation (downregulation of acinar genes) and reactivation of developmental (Clu) 

or oncogenic (Kras, Myc) programs (Fig. 1D). Thus, in the presence of inflammation, Kras-
mutant pancreatic epithelial cells rapidly undergo specific and highly reproducible changes 

that endow select subpopulations with the capacity to activate disease-relevant programs 

long before malignant progression.

Aberrant, highly plastic cell-states emerge early in PDAC progression

To map the cellular origins and processes underlying this diversity in transcriptional cell-

states, we first visualized heterogeneity in all Kras-mutant epithelia using a force-directed 

layout (FDL), which emphasizes cell-state transitions along axes toward malignancy. As 

expected, we found that the Kras-mutant pancreatic epithelium undergoes progressive 

gene expression changes that activate metaplastic (Clu+, Krt19+; (22)), neoplastic (Agr2+, 

Muc5ac+, Tff1+; (37)) and ultimately, invasive cancer (Foxa1+; (38)) programs (Fig. 2A). 

The relatively low heterogeneity in apoptotic or proliferative signatures (Fig. S3A) implies 

that much of the change in observed cellular states is likely due to cell-state transitions 

rather than population dynamics.

To better characterize sources of cell-state variation, we applied CellRank (39), a data-

driven approach that infers transcriptional dynamics from cell-cell similarity coupled with 

RNA velocity information (27, 40, 41). RNA velocities derived from the proportion of 

spliced to unspliced transcripts in each cell can indicate likely future states in neighboring 

phenotypic space. CellRank integrates directional information from per-cell velocity 

estimates with standard pseudotime inference based on cell-cell similarity to infer global 

transcriptional dynamics that can robustly pinpoint the origins of cell-state trajectories (39). 
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Applying CellRank to early Kras-mutant cells acutely responding to an inflammatory insult 

(K1→K2) identified multiple states that potentially act as distinct origins for the observed 

heterogeneity (Fig. S3B).

The four inferred origin or ‘apex’ states include one differentiated acinar (Ptf1a+) and three 

de-differentiated (Nes+, Aldh1b1+ and Tff2+) populations. Most of these states align with 

independent genetic lineage tracing studies that demonstrate their ‘cell-of-origin’ potential 

individually (26, 42–45) (Fig. S3B,C). These relationships are further supported by single 

molecule fluorescence in situ hybridization (smFISH) data derived from inflamed Kras-

mutant tissue (K2), which revealed clear transitional states (Anxa10+ Nes+ Msn+) in lesions 

containing both apex cells (Nes+ Msn+) and the gastric-like cells (Anxa10+) predominant in 

neoplastic tissue weeks later (K3-K4, Fig. S3D,E).

Moreover, several of the inferred apex states are highly responsive to inflammation, with 

apparent cell-state shifts along the cell-cell similarity graph emerging in the context 

of tissue injury (K2). For instance, during pancreatitis, well-differentiated acinar cells 

generate a metaplastic population with transcriptional features that are intermediate for 

acinar (Zg16, Cpa1) and tumorigenesis-associated (S100a6) programs within 24 hpi (ADM-

PDAC “Bridge”) (Fig. S3F), and Nes+ progenitor-like cells shift into a state showing 

reduced activation of tumor suppressive programs (Cdkn2a). Our findings thus suggest that 

oncogenic Kras enables the emergence of diverse high-potential states (not observed in 

healthy nor regenerating pancreata (see Figs. 1B and S2)), each exhibiting distinct responses 

to inflammatory triggers, but all upregulating cancer-associated programs (see Fig. 1D).

An epigenetic basis for high plasticity states

Given the important role for chromatin dynamics in driving neoplasia (23), we hypothesized 

that the expansive phenotypic diversity in Kras-mutant apex states and their injury-driven 

progeny arises through a diversification of permissive chromatin states. To determine how 

chromatin dynamics correspond to changes observed in our longitudinal scRNA-seq atlas, 

we first analyzed bulk ATAC (assay for transposase-accessible chromatin) sequencing 

data matching the above tissue stages (23, 27). The dominant principal components of 

variation revealed accessibility patterns specific to each stage of progression (Fig. 2B). 

Compared to samples from normal pancreas epithelium (N1-N2), the chromatin landscapes 

of pre-neoplastic Kras-mutant epithelia (K1-K2) reproducibly shift toward states acquired 

in early neoplasia and sustained in advanced disease (K3-K6). Nevertheless, we observed 

that the chromatin landscapes of benign neoplastic lesions (K3-K4) and malignant tumors 

(K5-K6) are highly divergent. Consistent with this, large sets of regulatory elements 

(“chromatin modules”) exhibit mutually exclusive accessibility patterns across benign and 

malignant stages, with one set of ATAC-seq peaks showing increased accessibility in 

benign lesions but not in malignant counterparts (Benign Neoplasia chromatin module) and 

another set behaving opposite (Malignant chromatin module, Fig. 2C and Table S3). The 

modular structure of these data suggests that chromatin accessibility at benign (K3-K4) and 

malignant (K5-K6) stages corresponds to discrete, stable cell-states, which may underlie 

the clearly distinct morphologies (see Fig. S1A) and expression patterns (see Fig. S2D) 

characteristic to cells of these advanced stages.
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Mapping diverging Benign Neoplasia and Malignant chromatin accessibility modules 

to single-cell gene expression reveals a concordant pattern; genes proximal to Benign 

Neoplasia module loci are up-regulated in pre-malignant disease (K3-K4) and genes 

proximal to Malignant module loci increase in malignant disease (K5) (Fig. S4A). 

Chromatin modules associated with advanced stages are induced remarkably early in tumor 

development, such that Benign neoplasia and Malignant chromatin module associated genes 

are expressed and restricted to transcriptionally distinct populations within 24–48 hpi (K1-

K2, Fig. 2C and Table S3). Furthermore, bulk ATAC-seq data show an initial increase 

in accessible chromatin in both modules from samples collected at 48 hpi, or without 

injury (K1-K2)—well before the emergence of benign lesions or malignant disease (K3-

K6, Fig. 2C). These observations imply that the transcriptional diversity of pre-neoplastic 

Kras-mutant cells is established at the chromatin level and involves Benign Neoplasia or 

Malignant module activation prior to the development of PanINs or PDAC. This activation 

requires both oncogenic Kras and inflammation, as these programs are not similarly 

accessible or expressed in normal regeneration (N1-N2) (Figs. 2C and S4A).

The early establishment of a permissive chromatin landscape (K1-K2) that is later specified 

into a restricted, distinct set of accessible regulatory elements (K3-K6) is reminiscent of 

cell-fate determination occurring in developmental systems (16). We thus refer to the 

cell-states that pre-neoplastic Kras-mutant cells may eventually acquire as ‘cell-fates’—

those associated with benign neoplasia (K3-K4) or malignancy (K5-K6). We postulated 

that pre-neoplastic Kras-mutant cells (K1, K2) expressing programs associated with the 

chromatin landscape of a single distinct fate (Benign or Malignant) may be epigenetically 

primed toward that fate, conferring greater propensity to acquire its phenotype over time 

or in response to certain exogenous triggers. We further reasoned that similarities between 

the transcriptomes of Kras-mutant cells from pre-neoplastic (K1, K2) and later neoplastic 

stages (K3–K6) would indicate such fate potential. We therefore developed a classification-

based approach that first identifies gene expression patterns that accurately discriminate 

between cell populations in benign lesions or cancer, and then uses these patterns to 

assign cell-fate probabilities to pre-neoplastic cells based on the activation of fate-associated 

genes. Specifically, we trained a logistic-regression classifier to distinguish between benign 

neoplasia (K3, K4) and malignancy (K5, K6), and used it to classify pre-neoplastic (K1, K2) 

cells (27). This classifier is highly accurate (99%) in assigning fate to PanIN and PDAC cells 

of known fate and identified a set of discriminative genes which have been linked to either 

fate (Fig. S4B).

Applied to pre-neoplastic cells, this approach indeed pinpointed Kras-mutant cells that are 

strongly skewed toward one or the other fate (Figs. 2D and S4C). Most pre-neoplastic cells 

are classified as only having the potential to acquire a single fate, with cells responding 

to inflammation (K2) assigned a higher probability of acquiring a malignant fate. We 

also identified an intriguing set of Kras-mutant cells that are not well classified (Figs. 

2D and S4D), the majority of which express a composite program of otherwise divergent 

fate-associated genes (Fig. S4E). These dual-primed subpopulations exist largely in the 

absence of tissue damage and overlap with initiating apex states (Ptf1a+ acinar and Nes+ 

progenitor) captured independently by CellRank (see Fig. S3B,C).
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Collectively, our results imply that tumorigenesis can proceed from multiple well-

differentiated or progenitor-like states, and that their neoplastic progression is not dictated 

solely by cell intrinsic determinants (Kras gene mutation) but impacted by inflammatory 

signals that epigenetically prime them towards diverse fates that can be predicted early in 

disease progression.

Epigenetic plasticity is enhanced by inflammation

To map the epigenomic landscape at higher resolution, we generated single-cell chromatin 

accessibility (scATAC-seq) profiles of pre-neoplastic (K1), pre-neoplastic inflamed (K2), 

benign neoplastic (K3), and adenocarcinoma (K5) epithelia. Consistent with an epigenetic 

basis for the observed pre-malignant diversity (see Fig. 2C), we found considerable 

heterogeneity in chromatin accessibility within Kras-mutant epithelial cells at each stage 

(Figs. 3A and S5A). A major axis of variation in accessibility reproduced the divergence 

between benign and malignant fates seen in bulk analyses (Figs. 3B and S5B). Substantial 

variation in accessibility near fate-associated genes occurred across both stages and clusters 

(Fig. S5C), with Kras-mutant apex cells exhibiting a composite state defined by open 

chromatin at benign-associated and malignant-associated loci. This pattern extends to 

variation in open chromatin near other genes that define the benign and malignant chromatin 

modules (Fig. S5D). These data support bona fide epigenetic priming of divergent fate-

associated programs in early, pre-neoplastic Kras-mutant cells.

To better connect primed chromatin landscapes to their transcriptional outputs, we next 

sought to integrate scATAC-seq and scRNA-seq profiles from comparable stages. Clustering 

and cell-state annotation demonstrated that cell-states derived from scRNA-seq data 

largely match those derived from scATAC-seq data at the broad cluster level, including 

those corresponding to Nr5a2+ acinar, Neurod1+ neuroendocrine, Pou2f3+ tuft, and Nes+ 

progenitor cells (Fig. S5A). However, we also found substantial epigenomic heterogeneity 

within each scATAC-seq cluster. To explore this heterogeneity in more detail, we applied an 

algorithm that aggregates highly similar cells into granular cell-states, or metacells (27, 46, 

47). Metacells provide much higher resolution than clusters, but aggregate cells sufficiently 

to reduce sparsity and improve statistical power for comparison.

After separately identifying metacells for each scRNA-seq and scATAC-seq modality, 

we developed a framework to map between them based on similarity between a gene’s 

expression and its proximal chromatin accessibility (Fig. S6A–C) (27). This integrative 

analysis showed the expected correspondence between the accessibility and expression 

programs of comparable cell-states (Fig. 3C). However, we also observed extensive 

off-diagonal correspondence, indicating that features of the chromatin landscape are 

shared across diverse gene expression states. Specifically, we found diverse pre-malignant 

transcriptional states (tuft, neuroendocrine, progenitor, and gastric) to broadly correlate with 

the ADM epigenomic state, reflecting the known acinar history of these Ptf1a lineage-sorted 

cells (23, 26). In other cases, these correspondences may indicate widespread transcriptional 

“poising” of regulatory elements near unexpressed genes. Such effects were particularly 

evident in apex Nes+ progenitor cells, which exist in pre-neoplastic tissues at 48 hpi but 

establish chromatin landscapes that are highly correlated with those of late-stage malignant 
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populations (Figs. 3C and S5B). While these similarities can be partially explained by 

lineage relationships within each data modality, the greater off-diagonal (inter-cell-state) 

correlation existing across modalities (Fig. S6D) suggests that subpopulations of pre-

neoplastic Kras-mutant cells are epigenetically primed to engage neoplasia transcriptional 

programs later in progression (see Fig. 2C).

We sought to quantify the degree of epigenetic plasticity, which we define as the amount of 

diversity in transcriptional phenotypes that is enabled (or restricted) by a given chromatin 

accessibility landscape. To first determine these potential transcriptional phenotypes, we 

used a simple classifier to identify gene expression patterns that discriminate cell-states. 

Assuming that proximal open chromatin conveys the potential for a gene’s activation, we 

then applied the classifier to predict cell-states based on accessibility proximal to genes, 

rather than gene expression (Fig. 3D). We reasoned that for a given epigenomic state, 

uncertainty in such predictions serves as a measure of epigenetic plasticity. Following this 

logic, high plasticity is characterized by many accessible loci that define multiple discrete 

transcriptional states and thus produce high classifier prediction uncertainty. In contrast, 

low plasticity is defined by restricted potential diversity and prediction certainty. Applying 

this approach to epigenomic metacells identified populations of varying plasticity (Figs. 

3E,F and S6E), with the most plastic states exhibiting striking overlap with the apex cells 

identified by CellRank (such as Nes+ progenitors, Tff2+ gastric cells) and experimentally 

validated cells-of-origin from lineage tracing studies (such as Pou2f3+ tuft cells; (28, 42–

44)) (Fig. 3F). Some of these states arise largely from pre-neoplastic conditions (K1-K2), 

aligning with observations on priming toward future neoplastic states. Notably, all plastic 

states identified in this analysis have no clear analog in normal or regenerating pancreata 

(see Figs. 1B, S2A,B), although a deeper exploration of physiological plasticity would be 

required to fully contrast normal and disease mechanisms.

To expose potential unifying features of distinct plastic cell-states, we used gene set 

enrichment analysis (GSEA) (48) to identify gene signatures within populations displaying 

high plasticity scores (Table S4). This analysis revealed robust and consistent upregulation 

of sets related to cell-cell communication (Fig. S6F), with Cytokine-Cytokine Receptor 

Interaction yielding the top association (normalized enrichment score = 2.155, adjusted 

p value = 0.000) (Fig. 3G). A substantial fraction of these plasticity-associated genes 

encoded inflammatory mediators, receptors, or ligands involved in cell-cell communication, 

including those previously associated with malignant progression (Csf2, Cxcl1, and Cxcr2 
(49)) (Table S5). Accordingly, plasticity increases significantly (p value = 0.006; one-tailed 

t-test, t = 2.5511) upon injury in the context of Kras mutation (K2 vs. K1) (Fig. 3H), 

suggesting an interplay between highly plastic cells and immune infiltrates flooding the 

pre-neoplastic tissue environment in this context (Fig. 3I). Together, our results indicate 

that epithelial plasticity in pre-malignant cells is directly associated with an increased, 

epigenetically-encoded propensity for ligand-receptor mediated communication with the 

immune microenvironment.
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Calligraphy charts cell-state-specific communication repertoires and their interactions

The dominance of the association between plasticity and cell-cell communication drove 

us to investigate how heterotypic interactions may result from plasticity or enhance it 

in the Kras-mutant pancreatic epithelium. We hypothesized that chromatin remodeling of 

receptor and ligand gene loci (hereafter, ‘communication genes’) contributes to plasticity in 

pre-neoplasia by enabling cells to respond to inductive signals from the environment.

The delineation of communication events requires an assessment of the communication 

propensities of each cell-state (defined by its expressed receptors and ligands), which may 

then be used to link interacting cell-states based on prior knowledge of receptor-ligand 

binding partners. As a first step, we characterized communication gene accessibility and 

expression across cell-states of the pre-malignant epithelium using the scATAC-seq and 

scRNAseq datasets generated above. Each plastic cell-state reveals substantial variability 

in chromatin accessibility near communication genes, consistent with distinct molecular 

repertoires for potential communication (Fig. S7A). To identify trends of coordinated 

gene expression, we searched for co-expression between any two communication genes 

(testing all combinations of two receptors, two ligands, and one of each) in individual 

cells across the pre-malignant epithelium and found a high degree of block structure in 

pairwise co-expression. This pattern implies that communication capabilities are driven by 

‘communication modules’; sets of communication genes that are mutually expressed in the 

same cell populations (Fig. 4A).

We next sought to infer actual cell-cell signaling interactions that may occur between 

cells expressing different communication modules. Although several methods have been 

developed to predict cellular interactions from single-cell data (50), their inference 

relies on weak signals arising from the noisy expression of a single cognate receptor-

ligand (R-L) pair across fixed cell-states. We therefore developed our own approach, 

Calligraphy, that leverages the observed modularity in communication gene expression to 

infer potential cell-cell signaling events (27). Calligraphy first identifies communication 

modules—thereby establishing the incoming and outgoing communication each cell-state 

can participate in. Next, Calligraphy identifies communication events between cell-states 

based on prior knowledge of cognate R-L binding partners. Unlike previous methods which 

test interactions on individual R-L pairs, Calligraphy draws inferences across entire sets of 

genes, making the output insensitive to noise in any single gene (50).

Using Calligraphy (27), we obtained seven communication modules of genes that are 

co-expressed across the pre-malignant pancreatic epithelium (Fig. 4A and Table S6) 

and are reproducible in situ in smFISH data (Fig. S7B). Mapping average expression 

of communication genes back onto the pre-malignant epithelium revealed that most 

cells express a single dominant module, making it possible to annotate cells by their 

corresponding module (Fig. 4B). Strikingly, cell-states defined solely by communication 

gene expression coincide with those identified by clustering the entire transcriptome (Figs. 

S7C–E). We further observe similar patterns in scATAC-seq data, where each subpopulation 

maintains open chromatin around genes of distinct communication modules, supporting an 

epigenetic basis for the emergence of these programs (Fig. S7F).
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Of note, normal and regenerating epithelial cells (N1, N2) showed much less diversity in 

communication module expression compared to their Kras-mutant counterparts, with most 

cells maintaining very low module expression (Fig. 4C). Among cells with wild-type Kras, 

a small injury-induced population does express communication modules associated with the 

Gastric (E6) cell-state, likely reflecting the expected trans/dedifferentiation of acinar cells 

under inflammatory conditions (51). These cells also expressed high levels of transcripts 

derived from a mutant Kras signature (23), implying that high level RAS signaling may 

play a role in normal regeneration and that KRAS mutation might stabilize such transient, 

injury-induced communication modules.

Moreover, communication modules established in the pre-malignant pancreas are maintained 

in advanced cancers (K5, K6), with most cells expressing at least one of the Gastric 

(E6), Progenitor (E7), or Bridge (E3) modules (Fig. 4D). These modules (as well as their 

corresponding cell-states) are observed in an analogous mouse model of pre-neoplasia 

with activation of mutant Kras in adult acinar cells (52) (Fig. S8). Furthermore, these 

communication modules are conserved in human PDAC derived from multiple patients 

(32) (Fig. 4E). The distinct behavior of communication modules in early neoplasia across 

multiple model systems and their persistence in advanced murine and human PDAC implies 

a functional role in pancreatic tumorigenesis.

Extensive epithelial-immune interactions drive oncogenic tissue remodeling

The striking distinction of communication modules that arise in Kras-mutant epithelial cells 

during inflammation compared to normal regeneration implicate one or more signaling 

nodes in early PDAC development (20–22). Tissue damage produces inflammation and 

changes in immune cell-state and composition that contribute to neoplasia (53); thus 

we investigated how mutant Kras-driven epithelial communication modules interact with 

infiltrating and tissue-resident immune cells. scRNA-seq analysis of immune cells (CD45+ 

sorted) from Kras-mutant tissues, before and after induction of pancreatitis (K1–K3), 

identified all expected immune subtypes, including both abundant (macrophage) and rare 

(Treg, ILC) types (Fig. S9) (27). As expected, injury-induced inflammation causes dramatic 

remodeling of the immune cell landscape, including the enrichment or depletion of specific 

lymphoid and myeloid cell-states (Fig. S10A).

Applying Calligraphy to these data identified consistent and structured communication 

modules defining distinct immune populations. To achieve even greater resolution, we 

ran Calligraphy separately on T cells/ILCs/NK cells, myeloid cells, and B cells, and 

found numerous modules containing known regulators as well as candidates for pancreatic 

tumorigenesis (Fig. S10B,C). For example, T cell/ILC/NK cell module 8 is highly expressed 

in ILC2, ILC3/LTi and Treg cells; these cells express the receptor for IL-33 (Il1rl1/Il1rap), a 

ligand that accelerates the formation of mucinous PanIN lesions (23).

Reasoning that such rapid immune and epithelial remodeling could arise through heterotypic 

crosstalk in pancreata undergoing neoplastic transformation, we utilized a feature in 

Calligraphy to nominate potential cell-cell interactions that drive this process (Fig. S11A) 

(27). To limit our search to tumorigenesis-specific crosstalk following tissue inflammation, 

we filtered Calligraphy modules to retain those cognate R-L pairs in which at least one 
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partner is selectively upregulated in Kras-mutant (K2) relative to Kras-wild type (N2) 

epithelial cells (23). This filtering reduced the space of possible interacting molecules from 

340 total communication genes down to 55 receptors and 46 ligands potentially involved in 

tumorigenesis-associated communication. We then assumed that two cell-states potentially 

interact if their associated modules are enriched in the number of shared cognate R-L pairs 

spanning them (27). Whereas CellphoneDB (50) predicts a highly dense network of 720 out 

of 729 (98.8%) of possible interactions, involving nearly all pairwise combinations of cell-

states, Calligraphy identified a sparser, more interpretable network of potential neoplasia-

specific interactions between the Kras-mutant epithelium and the immune environment 

(5.6% of possible interactions, Fig. S11B,C and Table S7).

Within Calligraphy’s context-specific network were apparent ‘master communication hubs’ 

that participate in numerous interactions. We calculated a receiving score (ability to sense 

the environment via expressed receptors) and a transmission score (ability to remodel 

the environment via expressed ligands) based on the number of Calligraphy’s statistically 

significant incoming and outgoing edges for each module (p value < 0.1) (27). The two most 

prominent hubs for transmitting and receiving interactions are the epithelial Gastric (E6) 

and Progenitor (E7) modules, respectively (Fig. 4F), which correspond to ‘high-plasticity’ 

populations identified above. These same communication hubs are enriched in advanced 

mouse and human PDAC (Fig. 4D,E).

To validate predicted communication networks, we mapped interacting modules to 

their spatial context, leveraging smFISH data including probes for transcripts marking 

distinct cell-states and their corresponding communication genes. We identified cells with 

concordant communication gene expression patterns across space for module E6-expressing 

gastric cells (Anxa10+ Il18+ Spp1+) and module E7-expressing progenitor cells (Nes+ 

Il18rl+ Cd44+) (Figs. 4G and S7B) in pre-neoplastic cells subject to inflammation (K2). 

Calculating distances between receiving (progenitor) cells and their closest sending (gastric) 

cells, against a random control set of gastric cells which do not express these ligands, 

showed a significant enrichment (t-test, p value < 0.01) of receiving cells in the vicinity of 

their interacting sending cells (Fig. 4H).

Neoplastic tissue remodeling involves feedback communication loops

One of our most striking observations is the dramatic remodeling of epithelial and immune 

compartments within 24 to 48 hpi (see Figs. S2D and S10A). This remodeling is highly 

reproducible and expansive, involving numerous new cell-states that are quickly adopted 

by most cells. The dynamics of such a rapid and robust response suggest a feedback loop, 

by which immune cell intermediates may amplify tumor-promoting epithelial cues (54). 

We probed the Calligraphy module-module interaction network to systematically enumerate 

cycles involving any epithelial or immune subsets and identified only one feedback loop 

in the system (Fig. 5A) (27). The loop includes the Gastric (E6) hub module, which is 

maintained in late disease, and further involves cytokines and receptors with reported roles 

in KRAS-driven pancreatic tumorigenesis, including IL1A, IL-33, and IL4RA (55, 56). 

Specifically, it engages Treg and ILC2 cells via IL-33 signaling before feeding back to 

epithelial cells (Fig. 5B).
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Il33 is expressed during pancreatitis by a small subset (4%) of TFF1/ANXA10+ Kras-

mutant Gastric module-expressing epithelial cells and is predicted to initiate signaling 

to Tregs and ILCs (Module T8) by binding with its cognate receptor Il1rl1 and co-

receptor Il1rap (Figs. 5B and S12A–D). Supporting the relevance of these interactions, 

immunofluorescence (IF) data reveal that IL-33-expressing epithelial cells (IL-33+ mKate2+) 

and rare Tregs (Foxp3+) are in close spatial proximity in Kras-mutant pancreata under 

injury conditions (distance vs. randomly permuted positions, t-test p value < 0.01 for all 

IF images collected across five independent mice) (Figs. 5C,D and S12E). Subsequently, 

many receiving cells that express Il1rl1 (Module T8) also express the Th2 cytokine gene 

Il4 (Fisher’s exact test; odds ratio = 21.47, p value = 9.88 × 10−35), consistent with the 

known role of IL-33 in triggering Th2-type immune responses (57). Module T8 cells then 

apparently signal through IL-4 (Il4) back to the Gastric Module (E6) via the IL-4 receptor 

(Il4ra), thereby closing the loop and potentially propagating signals to other modules in both 

immune and epithelial compartments (Fig. 5B).

The broad expression of the IL-4 receptor across Kras-mutant epithelial cell-states, including 

gastric, tuft cell and Nes+ progenitor populations (Figs. 5B and S12A,C), implies that this 

signaling loop has a system-wide impact on pre-malignant tissue (45% of pre-malignant 

epithelial cells appear impacted). In contrast, few wild-type normal pancreas cells express 

both sending (Il33) and receiving (Il4ra) factors, and do so at low levels, even during 

injury-induced regeneration (Figs. S12F,G).

A particular strength of Calligraphy is its ability to dissect the complexity inherent to 

tissue crosstalk by constructing communication circuits linking a cascade of signaling 

events between multiple communication modules in a serial fashion, thus mapping cell 

populations that are potentially both directly and indirectly affected by epithelial-derived 

IL-33. Calligraphy predicts that IL-33-driven communication has a large impact on pre-

malignant tissue, and the proportion of affected tissue increases via signaling cascades 

between communication modules that each utilize multiple cognate R-L pairs, ultimately 

reaching the vast majority of the pre-malignant pancreas (72% of cells, Fig. 5E,F). While 

it is unlikely that the IL-33 loop is solely responsible for KRAS-driven tumor progression 

in the context of the high complexity of observed intercellular communication in the pre-

malignant tissue, the number of populations that appear directly and indirectly impacted by 

epithelial IL-33 expression suggests that this communication circuit plays an important role 

in driving tumorigenesis.

KRAS-dependent IL-33 feedback loop directs rapid tissue remodeling in early 
tumorigenesis

Whereas previous studies have implicated stroma-derived IL-33 in disease phenotypes (58, 

59), Calligraphy identified a feedback loop driven by IL-33 expressed from epithelial 

cell-states. To determine how IL-33 derived specifically from the epithelium contributes 

to early neoplasia, we developed a GEMM that enables specific Il33 suppression in lineage-

traced Kras-mutant epithelial cells. Animals were produced from multi-allelic embryonic 

stem cells engineered to harbor a conditional KrasG12D allele together with a doxycycline 

(dox)-inducible GFP-coupled short hairpin RNA (shRNA) capable of suppressing Il33 
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(KC-shIl33), allowing potent Il33 suppression in the epithelial compartment following 

dox administration (Fig. 6A,B). Additionally, a separate cohort of animals was produced 

harboring a control shRNA (shRen) to control for potential perturbations of the RNA 

interference machinery and dox. scRNA-seq and spatial imaging (Imaging Mass Cytometry, 

IMC) were performed on each model assessing epithelial and immune compartments at 

an early time-point (48 hpi), when inflammation unleashes neoplastic remodeling (K2), 

and later (3 weeks post-injury, or wpi), when PanIN lesions normally emerge (K3). As 

expected, IL-33 expression remains intact in non-epithelial pancreatic cells (Il33+ Vim+ or 

Il33+ aSMA+) (Fig. S13A–D) in shIl33 animals on dox, and is specifically abrogated in Kras 
mutant cells expressing the gastric markers TFF1 and ANXA10 (Figs. 6B and S13A,B).

Analysis of co-embedded scRNA-seq data derived from control or KC-shIl33 on-dox 

mice show that IL-33 perturbation profoundly shifted the observed cell-states within 

both epithelial and immune compartments. We applied the Milo algorithm (60), which 

characterizes such local shifts (as opposed to loss or gain of entire clusters) by 

grouping similar cells into ‘neighborhoods’ and identifying those neighborhoods which 

are differentially abundant between perturbed and control conditions. Consistent with 

an epithelial-to-immune crosstalk, we found that Il33 suppression in the Kras-mutant 

epithelium results in rapid remodeling of the immune landscape, with multiple immune 

subpopulations shifting in abundance by 48 hpi (Fig. 6C). Epithelial remodeling is delayed 

by comparison; a lack of substantial changes at the early time point is followed by dramatic 

remodeling of many epithelial cell-states at 3 wpi (K3). By this time, the perturbation of 

IL-33-mediated crosstalk generates evidence of neoplastic epithelial remodeling, with a shift 

to more cells in progenitor-like and fewer in gastric-like states (Figs. 6D and S13E,F), also 

seen by immunofluorescence data (Fig. 6E,F).

To gain insights into the impact of IL-33 on the dynamics of cell-state transitions, we used 

Palantir (61) to infer a pseudotime ordering of epithelial neighborhoods at 3 wpi, beginning 

from the Nes+ progenitor state (Fig. S13E). Ordering Milo log fold-change values along this 

pseudotime axis confirms that more IL-33-perturbed epithelial cells accumulate in earlier 

states expressing progenitor markers (Nes) and other genes associated with a plastic state 

(plasticity score correlation p value < 0.01) (Figs. 6D,G). Although Il33 is expressed in only 

a small fraction of Kras-mutant epithelial cells, Il33 perturbation results in marked changes 

in the cell-state composition of the pre-malignant pancreas, apparently by preventing the 

transition from a plastic progenitor-like state into distinct PanIN populations, such as the 

gastric-like cells that are normally abundant in unperturbed epithelia by 3 wpi.

The widespread changes in cell-state due to IL-33 perturbation support Calligraphy’s 

prediction of the relevance of this feedback loop. To more directly link the specific predicted 

interacting partners with observed perturbation-induced changes, we mapped each Milo 

neighborhood to Calligraphy communication modules (Fig. S13G) and evaluated the extent 

to which cell-states predicted to be downstream of IL-33-mediated crosstalk overlap with 

cell-states impacted by the perturbation. Qualitatively, we found the largest impact of 

Il33 perturbation on Progenitor and Bridge modules, both of which are predicted to be 

downstream of IL-33 and express IL-4 receptor (Il4ra) (see Fig. 5B,E); whereas the only 

two modules not downstream of IL-33 are those with the smallest effect sizes (E2 and E5). 
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Quantitatively, cell-states predicted by Calligraphy to participate in the IL-33 network were 

more significantly affected by the Il33 perturbation (one-sided t-test; t = −5.25, p value = 

1.24 X 10−7) (Fig. 6H). These results functionally validate Calligraphy as an approach to 

infer both communication circuits and the specific subpopulations impacted (directly and 

indirectly) upon perturbation of such networks.

Discussion

While much is known about the molecular processes affecting tumor progression to 

advanced PDAC, pancreatic cancer is diagnosed late, and the paucity in molecular 

studies of early neoplasia has left us with little knowledge of how it emerges from a 

relatively homogeneous epithelium. By combining single-cell sequencing of mouse models 

with computational analysis, we found that permissive chromatin states in Kras-mutant 

cells diversify the communication programs available to pre-neoplastic tissue, expanding 

downstream crosstalk throughout the tumor microenvironment. Moreover, in the Kras-

mutant context, epigenetic reprogramming and the emergence of cancer-driving populations 

is remarkably dynamic, occurring within two days of insult by inflammation.

Mutation is known to drive plasticity in lung cancer via the loss of AT1 or AT2 lineage 

identity and acquisition of a phenotype intermediate between these states (17, 18). In the 

pancreas, a similar loss of acinar identity and gain of an intermediate acinar-ductal state 

have long been observed in both tumorigenesis and regeneration; thus, traditional notions of 

plasticity are insufficient to describe its contribution to disease. We defined plasticity as the 

potential of a cell to manifest diverse future fates, motivating a generalizable plasticity 

score that tracks with the degree of epigenetic priming. This score nominated several 

highly plastic cell-states, in which open chromatin unlocks access to multiple distinct gene 

programs observed in benign lesions or malignant disease and revealed that inflammation 

enhances plasticity across these states.

To better elucidate the emergence of plastic states, we sought to reconcile prior work 

proposing different cells-of-origin for neoplasia. Our GEMMs harbor mutant Kras in all 

acinar cells, allowing us to comprehensively explore which states can initiate tumorigenesis. 

Using CellRank (39), we traced the origins of epithelial transcriptional diversity to multiple 

‘apex’ progenitor populations that correspond with experimentally determined cells-of-

origin. These populations also exhibit high plasticity scores and unify prior work by 

suggesting that neoplasia can arise from multiple Kras-mutant cell-states through distinct 

responses to inflammation. Moreover, our Ptf1a-Cre model traces this diversity back to a 

predominantly acinar-like state, supported by the fact that nearly all pre-malignant epithelial 

cell-states have an acinar-like chromatin state (epigenetic ‘memory’), which itself maps to 

a CellRank-predicted apex state. While non-acinar lineage cells can also undergo neoplastic 

transformation in mice (21, 62), our results agree with the observed loss of normal 

lineage identity upon Kras mutation and inflammation (63) and reveal apex states which 

may emerge following this transition. Among apex states, multiple unbiased analyses in 

particular support a Nes+ progenitor-like state (44, 45), which displays PDAC-associated 

chromatin alterations, expresses progenitor-associated genes, and scores highest for our 

plasticity metric—all hallmarks of highly plastic cells.
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Our plasticity score was most correlated with cytokine and receptor genes, implying 

that plastic populations are primed to both signal and respond to the environment. 

Addressing this, we asked how cell-cell communication may drive rapid tissue remodeling. 

Communication inference approaches failed to find specific signals among the large number 

of cytokines and receptors expressed across cell populations. We therefore developed 

Calligraphy to leverage modularity in gene expression for greater power and robustness 

over testing individual receptor-ligand gene pairs, allowing us to focus on neoplasia-specific 

communication networks.

Calligraphy identified modules of co-expressed communication genes that, surprisingly, 

mapped one-to-one to transcriptional cell-states, implying that communication is critical 

for establishing cell-state diversity within the pre-malignant pancreas. These networks were 

largely absent from normal pancreas, with only one being induced in a rare subpopulation 

of cells that emerges upon tissue damage. The same module has the highest propensity for 

tissue remodeling and persists in advanced murine and human cancers, demonstrating that 

cancer commandeers gene programs used during normal regeneration.

Our analyses revealed a feedback loop initiated by IL-33 signaling from epithelial cells 

expressing the Gastric module to Th2 cytokine-expressing Tregs and ILCs, which signal 

back to the epithelium (among multiple other routes). These findings link previous results on 

the relevance of Th2 signaling in PDAC tumorigenesis (56) to those on the role IL-33 

in this process (23). Spatial analysis revealed co-localization of signaling populations 

in the loop, and epithelial Il33 knockdown in a GEMM impaired inflammation-driven 

remodeling of plastic populations, blocking the emergence of gastric-like state cells that are 

otherwise abundant in PanIN lesions. This mechanism can be driven solely by epithelium-

derived IL-33, despite the high stromal IL-33 expression previously implicated in disease 

phenotypes (58, 59). Further, the results of in vivo Il33 perturbation support Calligraphy 

inference, by matching predictions of which populations are perturbed, to what degree, and 

in what temporal sequence. Other modules defined herein are likely also to have functional 

importance. Future work can extend this approach to other niche components such as 

fibroblasts or endothelial cells and should expose additional communication with potential 

for therapeutic or diagnostic exploitation.

PDAC is frequently detected too late for curative intervention, a detailed understanding of 

early neoplastic events may enable the development of rational strategies to prevent, detect, 

and intercept tumors before they progress to an intractable stage. Our results show that 

GEMMs can be used to study and perturb early events, revealing epigenetically plastic 

cell-states in neoplasia that are not observed in the normal or regenerative pancreas. Further 

efforts to understand neoplasia-specific communication networks driving PDAC initiation 

hold promise for the development of therapeutics that block early cancer progression, and 

may also be effective against advanced disease.
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Materials and methods summary

Experimental design:

Samples from GEMMs were collected to span the entire range of PDAC progression 

(K1-K6) as well as regenerating pancreata (N1-N2). Additional samples were collected 

from GEMMs enabling selective genetic perturbation of pre-malignant Kras-mutant cells. 

Table S8 summarizes experimental conditions (27). All animal experiments were performed 

in accordance with the Institutional Animal Care and Use Committee (IACUC)-approved 

protocol (11–06–018).

Generation of bulk and single-cell omics data:

Tissue dissociation and cell preparations for bulk and single-cell ATAC-seq were performed 

as previously described (23). For scRNA-seq analysis, FACS-sorted epithelial or immune 

cells were encapsulated and processed following 10x Genomics user manual (Reagent Kit 3’ 

v2) as described (27).

Spatial and immunophenotyping data:

Tissues were processed and stained for imaging (IF/IHC, IMC, H&E, and smFISH) or FACS 

analyses (27). Tables S9 and S10 summarize panels used for multiplexed IMC and smFISH. 

IMC data was collected using Hyperion Imaging System and CyTOF Software v7.0.8493.0 

(Fluidigm). smFISH imaging was performed on a Nikon Ti2 inverted microscope. FACS 

data was acquired using a 5-laser BD LSRFortessa and analyzed using FlowJo v10.0.

Computational analysis:

scRNA-seq data were processed with SEQC (64), filtered with a custom pipeline (27), and 

log library size normalized. scATAC-seq data were processed with ArchR (65). Processed 

transcriptomic and epigenomic datasets were analyzed with custom Python scripts for 

visualization, cell-state annotation, metacell inference, multimodal integration, plasticity 

scoring, and Calligraphy communication inference, among other analyses fully described 

in (27). smFISH image analysis was performed on maximum projection images with 

segmentation on the DAPI channel using Mesmer (66) and Python code for phenotyping 

and spatial analyses.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. A single-cell transcriptomic atlas of pancreatic regeneration and tumorigenesis.
(A) Experimental design for tissue collection. GEMMs expressing Ptf1a-Cre enable FACS-

based enrichment of mKate2-labeled exocrine pancreas epithelial cells (23). mKate2+ cells 

were isolated from wild-type Kras mice before injury with caerulein (N1) or 48 hours 

post-injury (N2); and from KrasG12D mice (KC genotype) before injury (K1), and 24–48 

hours (K2) or 3 weeks after caerulein (K3, PanIN stage), as well as uninjured older KC mice 

(K4). PDAC primary tumors (K5) and liver and lung metastases (K6) were harvested from 

KC mice with a p53 floxed (p53fl/+) or mutant (p53R172H/+) allele (KPC genotype). Mouse 

illustration was created with BioRender (https://biorender.com/). (B) tSNE visualization of 

pancreatic epithelial scRNA-seq profiles from all collected stages (n = 17 mice), colored 
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as in (A) and labeled by cell-state (27). ADM denotes cells undergoing acinar-to-ductal 

metaplasia (31), and ‘Bridge’ denotes cells between acinar-like and malignant programs, 

which express genes from both. (C) Expression of PDAC-associated gene sets (rows) 

across all pancreatic epithelial cells (columns) (34, 35). Cells are ordered by the first 

diffusion component (DC1), representing the major axis of progression from normal (N1) to 

metastatic (K6) states. Plot at top displays frequency (from 0 to 1) of cells per stage, in bins 

of n = 2000 cells. Gene set score for each cell is computed as the average of log-normalized 

expression, z-scored for each gene to obtain a comparable scale. Heatmap is standardized to 

compare cells within each gene set. (D) tSNE plots as in (B), with pre-malignant (K1–K4) 

Kras-mutant cells colored by the expression of genes (from left to right) upregulated in 

bulk RNA-seq of Kras-mutant (Kras*) pancreas relative to normal (67), associated with Myc 

activity (68), EMT (36), or down-regulated upon Ptf1a knockout (67). Colors are scaled 

from 5th to 95th percentile of expression.
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Figure 2. Differential epigenetic priming of Kras-mutant cells.
(A) Force-directed layout (FDL) of all Kras-mutant scRNA-seq profiles (K1–K6, n = 11 

mice). Cells colored by stage as in Fig. 1A. Stars highlight ‘apex’ states inferred by 

CellRank (39) (see Fig. S3B). (B) Principal component analysis (PCA) of bulk ATAC-seq 

profiles from pancreatic epithelial cells. Each point shows the position of a single biological 

replicate (individual mouse), colored by stage as in (A). Arrows indicate a transition 

upon injury and Kras mutation (N1-N2, K1-K2; green arrow) and a divergence between 

benign neoplastic (K3-K4; pink arrow) and malignant (K5-K6; purple arrow) stages. (C) 
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Left: Chromatin accessibility along progression. Subsets of differentially accessible ATAC-

seq peaks (rows) are organized into three modules by clustering (27); bulk ATAC-seq 

replicates (columns) are ordered and colored by stage as in (A). Peaks organize into 

distinct accessibility patterns, denoted as chromatin modules (27). Right: Expression of 

genes corresponding to chromatin accessibility modules in pre-neoplastic cells (K1, K2). 

FDL map as in (A), colored by module expression score computed by z-scoring each cell to 

emphasize dominant gene programs per cell, and averaging genes nearest to module peaks. 

Color (expression scores) are scaled between the 40th and 90th percentiles. (D) Probability 

of classifying pre-neoplastic cells (K1, K2) as more similar to benign neoplastic (K3-K4) 

or malignant (K5-K6) scRNA-seq profiles, based on expression similarity. Sampled cells 

(rows) are ordered from highest benign fate probability (top) to highest malignant fate 

probability (bottom); bars represent probability of classification from 0 to 1 to K3, K4, K5, 

or K6 labels, colored as in (A). A fraction of cells exhibit composite states with probability 

for both fates.
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Figure 3. Kras-mutant cells display elevated epigenetic plasticity, which is associated with cell-
cell communication propensity.
(A) FDL of scATAC-seq profiles from Kras-mutant epithelial cells from pre-malignant (K1–

K3) and malignant (K5) stages (n = 9 mice), colored by stage. (B) Frequency of cells 

from each stage along second high-variance component from latent semantic indexing (LSI) 

of scATAC-seq profiles (65). (C) Pairwise Pearson correlation coefficients of metacells 

from scATAC-seq ArchR gene accessibility scores (rows) and scRNA-seq expression values 

(columns). Annotated cell-states, determined by refined PhenoGraph clustering of scRNA-
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seq (Fig. S1C) and scATAC-seq (Fig. S5A), are colored according to their annotation 

as in labels from (A). Blocks of positive correlation along diagonal represent similar 

cell-states across the two modalities, whereas off-diagonal correlations indicate similarity 

across distinct cell-states. (D) Cartoon of classifier-based approach to quantify plasticity 

(27). (E) Classifier confusion matrix based on procedure in (D). Cell-states, determined 

by scRNA-seq (Fig. S1C) and scATAC-seq (Fig. S5A) metacell clusters, are colored as 

in labels in (A). Values represent number of metacells from an epigenomic cluster that 

classify to a transcriptomic cluster, normalized within each row. Dashed box highlights 

high plasticity epigenomic states. (F) Plasticity scores for epigenomic clusters in (E). Boxes 

represent interquartile range (IQR) of plasticity scores for all epigenomic metacells assigned 

to that cluster, computed as per-cell Shannon entropy in the classifier’s predicted probability 

distribution across transcriptomic states. Lines represent medians and whiskers represent 

1.5x IQR. (G) GSEA plot based on Spearman rank correlation between plasticity score and 

each gene’s accessibility score. (H) Plasticity scores for epigenomic metacells from K1 and 

K2, showing significant increase in plasticity in K2 (one-tailed t-test; t = 2.5511, p value = 

0.006). (I) Immunohistochemistry of CD45 (brown) marking immune cells in K1 and K2 

tissue, showing increase in immune infiltrate in response to injury. Scale bar, 200 μm.
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Figure 4. Inferred epithelial-immune crosstalk in plastic neoplastic states.
(A) Calligraphy-inferred ‘communication modules’ in pre-malignant Kras-mutant epithelial 

cells (K1-K3, n = 6 mice). Each row or column represents one receptor or ligand; value 

at intersection indicates correlation in expression (Pearson r) of that gene pair across pre-

malignant cells. Blocks of highly correlated genes denote partially overlapping modules 

(annotated at right) that tend to co-express in the same cell-states. Schematic (far right) 

describes the second step of Calligraphy (see Fig. S11A). (B) FDL of K1–K3 epithelial cells 

with color values based on relative communication module gene expression (27). (C) FDL 
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of KrasWT pancreas cells before and after injury (N1-N2, n = 4 mice), colored by K1–K3 

communication module expression as in (B) (top) or Kras mutant signature gene expression 

(bottom, (23)), scaled between 1st and 99th percentile. (D) FDL of malignant cells (K5-

K6, n = 3 mice), colored as in (B). (E) Communication module expression in human 

pancreatic tumor scRNA-seq data (32), colored as in (B). (F) Pairwise crosstalk between 

communication modules inferred by Calligraphy from epithelial or immune scRNA-seq 

data (one module per row or column), colored gray for immune or as in (A) for epithelial 

modules. Heat values represent number of inferred cognate R-L pair interactions across 

each communicating module pair; some contributing receptors or ligands are shown at 

right. Bars quantify total inferred edge counts, representing remodeling (row) or sensing 

(column) interactions for that module. (G) Two smFISH fields of view reveal the spatial 

proximity of sending (magenta box) to receiving (green box) mKate2+ epithelial cells. The 

expression of two Gastric (E6) module ligands (cyan and red), as well as two Progenitor 

(E7) receptors (magenta and green) overlap spatially in these three examples. Scale bars, 

20 μm. (H) Distance between each receiving progenitor cell (Il18r1hi Cd44hi) and double-

positive sending gastric cell (Il18hi Spp1hi), versus randomly selected non-sending gastric 

cells (Il18lo Spp1lo).
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Figure 5. Kras-mutant epithelial states participate in a feedback loop with immune populations.
(A) A feedback loop identified by Calligraphy in the pre-malignant pancreas. Arrows 

depict cognate R-L interactions. (B) tSNEs of immune and epithelial scRNA-seq data 

from pre-malignant stages (K1–K3, n = 6 mice), displaying imputed expression (69) of 

key genes from the loop in (A). Arrows between plots indicate sequential steps of the 

loop. (C) Co-immunofluorescence (co-IF) images showing co-expression of IL-33 and 

E-cadherin (epithelial marker), and apposition of FOXP3-expressing Tregs (arrows) and 

IL-33-expressing epithelial cells. Scale bar, 10 μm. (D) Distance in pixels (0.325 μm per 

pixel) of IL-33+ epithelial cells to Tregs against a null model of spatial distribution in 
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co-IF data pooled across all biological replicates from K2 tissue. Distances are calculated 

between each IL-33+ epithelial (E-cadherin+) cell and its closest Treg (CD3+ FOXP3+). 

Asterisks, significant difference (one-tailed, un-paired t-test, p value < 0.0001) compared to 

random distances calculated by permuting epithelial cells. (E) IL-33-centric crosstalk paths 

originating from epithelial Gastric module E6 (central circle, magenta), with each outward 

concentric circle illustrating possible communication paths from inner to outer modules 

based on links inferred by Calligraphy. Arc length is proportional to the number of inner-

module ligands that can bind to cognate receptors in the outer module. (F) tSNE as in (B), 

colored according to the step in which communication events from the IL-33-centric path 

in (E) reach the module expressed by that cell. Cells are assigned to their highest-expressed 

module, and each module is scored by the earliest step in which it appears along any 

paths through the Calligraphy network emanating from E6-derived IL-33. Cells expressing 

modules which are not downstream of IL-33 are colored in gray.
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Figure 6. Spatiotemporal in vivo perturbation of Il33 impairs neoplastic progression.
(A) Mouse models for inducible repression of Il33 (KC-shIl33, 2 independent strains) 

or Renilla control (KC-shRen), restricted to Kras-mutant epithelial cells by Ptf1a-Cre 

expression. (B) Representative IF of pancreata from control (top) or KC-shIl33 (bottom) 

mice placed on dox at 5 weeks of age and analyzed 9 days later at the 48 hpi timepoint 

(K2). Kras-mutant epithelial cells, not surrounding stroma, express Il33 shRNA marked 

by GFP in KC-shIl33; TFF1 marks cell-state in which IL-33 is activated at 48 hpi in 

control but not shIl33 animals. Dashed lines demark epithelium-stroma boundary, asterisks 
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highlight suppression of Il33 in TFF1+ metaplastic cells of KC-shIl33 mice. DAPI marks 

nuclei (blue). Scale bar, 20 μm. (C) Milo (60) log fold change (logFC) magnitudes 

across cell neighborhoods (n = 5 mice), with higher values indicating greater impact of 

IL-33 perturbation. Rightward distribution shifts (dotted lines) indicate a larger impact on 

particular cell-states; vertical dashed lines indicate neighborhoods with significant (adjusted 

p < 0.1) shifts according to Milo, appearing only in K3 epithelia. (D) FDL of Milo 

neighborhoods colored by logFC of abundance in shIl33 samples relative to controls, at 

the late (3 wpi) timepoint. (E,F) Representative IF in pancreata from KC-shIl33 mice placed 

on-dox (bottom) or off-dox (top) at 3 wpi (K3), showing (E) aberrant accumulation of 

progenitor-like state (MSN+) in epithelial cells (E-cadherin+) of IL-33-perturbed animals at 

48 hpi and (F) depletion of gastric-like (AGR2+) states upon epithelial IL-33 suppression. 

DAPI marks nuclei (blue). Scale bar, 100 μm. (G) Impacts of Il33 perturbation across Kras-

mutant epithelial neighborhoods at K3 (3 wpi). Top, pseudotime-ordered neighborhoods 

(columns) colored by cell-state. Middle, neighborhoods plotted and colored by Milo logFC; 

higher logFC denotes greater abundance in shIl33 relative to control. Bottom, Nes and 

plasticity-associated gene expression (Fig. 3F) (27); heatmap colors scaled to ±2 s.d. from 

mean. (H) Milo logFC of neighborhoods mapped to modules that are (left) or are not 

(right) downstream of Calligraphy’s IL-33-centric network; asterisks, indicate significance 

(unpaired, one-tailed t-test, p value = 1.24 X 10−7).
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