Skip to main content
. 2023 Jun 30;11:e15552. doi: 10.7717/peerj.15552

Table 3. Results of FS Methods for SC-1 and SC-2.

Feature selection Pre process Classifier Wrapper Number of features AUPRC AUROC
SC-1 Ph.1
ReliefF* STPE LR KNN 55 0.9341 0.8235
ReliefF AF LR XGB 10 0.9264 0.7745
SC-1 Ph.3
Fisher Score* STPE KNN XGB 60 0.9746 0.9167
F Score* STPE KNN XGB 60 0.9746 0.9167
mRMR* STPE SVM XGB 275 0.9706 0.9118
mRMR* STPE KNN KNN 6,805 0.9632 0.8775
Fisher Score* STPE RF LR 20,481 0.9628 0.8725
Gini Index* STPE KNN KNN 12,302 0.9572 0.8627
ReliefF* STPE XGB KNN 18,913 0.9502 0.8725
ReliefF STPE LR LR 22,277 0.9498 0.8627
Fisher Score* AF KNN XGB 40 0.9429 0.8235
mRMR AF SVM KNN 16 0.9325 0.7745
SC-2 Ph.1
Fisher Score* AF KNN KNN 17,566 0.8515 0.8712
F Score* AF KNN KNN 17,566 0.8515 0.8712
Gini Index* AF LR KNN 14,673 0.8365 0.8561
Chi Square* AF XGB LR 8 0.8187 0.7765
Chi Square STPE KNN XGB 54 0.8112 0.7689
Chi Square AF LR KNN 5 0.8039 0.7879
SC-2 Ph.3
Fisher Score* AF KNN KNN 18,084 0.8956 0.8561
F Score* AF KNN KNN 18,084 0.8956 0.8561
Gini Index* AF SVM LR 116 0.8908 0.8939
Chi Square AF LR LR 19 0.8759 0.8712
Chi Square AF LR KNN 6 0.8675 0,8561
Chi Square STPE KNN XGB 180 0.8595 0.8333
ReliefF STPE KNN LR 12,206 0.8518 0.8447
Fisher Score* STPE KNN KNN 22,214 0.8497 0.8598
Gini Index* AF LR KNN 8,495 0.8462 0.8333
Gini Index* AF SVM XGB 4 0.8428 0.8258
ReliefF AF LR XGB 92 0.821 0.8106

Note:

After the features are ranked by a filtering approach, a wrapper algorithm is utilized to select the best feature subset. Wrapper column indicates the prediction algorithm used in wrapper method. Number of Features column represents the number of distinct features selected. An asterisk (*) indicates that the hyper-parameters were not optimized.