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Mapping the gene targets of chromatin-associated transcription regulators (TRs) is a major goal of genomics research.

ChIP-seq of TRs and experiments that perturb a TR and measure the differential abundance of gene transcripts are a pri-

mary means by which direct relationships are tested on a genomic scale. It has been reported that there is a poor overlap in

the evidence across gene regulation strategies, emphasizing the need for integrating results from multiple experiments.

Although research consortia interested in gene regulation have produced a valuable trove of high-quality data, there is

an even greater volume of TR-specific data throughout the literature. In this study, we show a workflow for the identifica-

tion, uniform processing, and aggregation of ChIP-seq and TR perturbation experiments for the ultimate purpose of rank-

ing human and mouse TR–target interactions. Focusing on an initial set of eight regulators (ASCL1, HES1, MECP2, MEF2C,

NEUROD1, PAX6, RUNX1, and TCF4), we identified 497 experiments suitable for analysis. We used this corpus to examine

data concordance, to identify systematic patterns of the two data types, and to identify putative orthologous interactions

between human and mouse. We build upon commonly used strategies to forward a procedure for aggregating and combin-

ing these two genomic methodologies, assessing these rankings against independent literature-curated evidence. Beyond a

framework extensible to other TRs, our work also provides empirically ranked TR–target listings, as well as transparent ex-

periment-level gene summaries for community use.

[Supplemental material is available for this article.]

Understanding the regulatory interactions underlying gene ex-
pression programs is of considerable interest to contemporary ex-
perimental and computational biology. A fundamental objective
is to map the relationships between transcription regulators
(TRs) and the sets of gene targets they functionally influence.
TRs, which include DNA sequence-specific transcription factors
and chromatin proteins like MECP2 that bind methylated DNA,
are a large class of proteins generalized by their ability to promote
or repress gene activity (Lambert et al. 2018; Serebreni and Stark
2021). Learning the regulatory range of TRs is essential to under-
standing development, the functional identities of cell types,
and the origins of diseases (Arendt et al. 2016, Lambert et al.
2018). However, experimentally establishing TR–target interac-
tions is laborious and expensive, especially for precious tissues
like the human brain. Additionally, efforts to predictively model
these interactions as networks remain a challenging task compli-
cated by a lack of known interactions (Marbach et al. 2012;
Rothenberg 2019; Nord and West 2020). Identifying high-confi-
dence sets of experimentally supported regulatory relationships
is beneficial to inform biology as well as predictive method
optimization.

We recently curated the literature for low-throughput bio-
chemical assays showing TR–target regulation (Chu et al. 2021), fo-
cusing on neurologically relevant TRs in mouse and human to

expand upon existing resources like TRRUST (Han et al. 2018).
These biochemical assays can provide strong evidence for direct
regulation, but their coverage is limited relative to the potential
number of TR–target interactions. Accordingly, there are currently
multiple genome-scale assays that provide regulatory information,
but many rely on inference to determine TR–target relationships
(Hawe et al. 2019). The most prominent means for high-through-
put experimental assessment of direct interactions are to sequence
purified DNA bound by an immunologically selected TR (ChIP-
seq) or tomeasure changes in gene transcript levels upon perturba-
tion of the TR (differential expression [DE]).

ChIP-seq and TR perturbation each have biological and tech-
nical considerations that complicate the task of assigning direct
targets (Cusanovich et al. 2014; Kang et al. 2020). For example,
perturbation experiments may prioritize indirect targets that are
regulated by processes downstream from the perturbed TR. Conse-
quently, applying both methods to a TR and intersecting the re-
sulting gene lists is a common approach to enrich for regulatory
interactions. This can be as simple as binarizing the significantly
DE genes affiliated with a proximal ChIP-seq binding event or us-
ing moderately more advanced strategies like the BETA algorithm,
which combines the two gene lists into a single ordered ranking
(Wang et al. 2013). However, efforts to evaluate the intersection
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of individual experimental pairs between these two genomic strat-
egies in yeast (Hu et al. 2007; Gitter et al. 2009; Kang et al. 2020)
and human (Cusanovich et al. 2014) have revealed that their evi-
dence rarely converges.

Despite these complexities, ChIP-seq and perturbation exper-
iments remain important strategies for biological discovery that
continue to proliferate (Luo et al. 2020). These data sets (or their
intersection) are also often used as the “gold standard” for evaluat-
ing computational strategies that predict TR–target interactions
(Marbach et al. 2016; Miraldi et al. 2019; Pearl et al. 2019; Qin
et al. 2020). In particular, two recent resources for human TRs
have shown the importance of aggregating distinct lines of evi-
dence for the purpose of gene target assignment (Garcia-Alonso
et al. 2019; Keenan et al. 2019). However, both focused solely on
human TRs and held out the perturbation data to be used as a
benchmark for their gene target rankings. Given the relative abun-
dance of mouse gene regulation data, there is a clear need for the
parallel organization and analysis of human and mouse TR–target
interactions.

Here we outline a framework to identify and rank experimen-
tally derived TR–target relationships by aggregating ChIP-seq and
perturbation data sets from both mouse and human. We describe
the degree of similarity across experiments and note characteristics
of each data type that can complicate target assignment. We pro-
vide a framework for the aggregation and integration of these
data sets, evaluating these empirically derived rankings against in-
dependent experimental evidence. This study also shows how the
collected information can potentiate further work, such as align-
ing bound regions to orthogonal genomic annotations, or identi-
fying TR–target interactions with cross-species evidence.

Results

For the current study, we focused on an initial set of eight TRs to
establish methodology and to calibrate expectations: ASCL1,
HES1, MECP2, MEF2C, NEUROD1, PAX6, RUNX1, and TCF4
(not to be confused with TCF7L2, which is sometimes referred to
as TCF4 in the literature). The selection of TRs was largely guided
by our prior work on the curation of low-throughout experiments
of neurologically relevant TRs (Chu et al. 2021). We emphasize
that the data used in the current studywere not required to be con-
ducted in a brain-relevant system: Our goal was to identify all
ChIP-seq and high-throughput TR perturbation expression data
sets for these regulators. Experiments excluded from analysis are
noted in Supplemental Table S3. Our workflow is outlined in Fig-
ure 1. In the subsequent sections, we give an overview of each ge-
nomic strategy before describing the aggregation and intersection
approaches and their evaluation, leading to a consolidated ranking
of candidate regulatory targets.

Identification, summarization, and gene-scoring ChIP-seq data sets

ChIP-seq data were predominantly identified across existing re-
sources (particularly ChIP Atlas) (Zou et al. 2022) and supplement-
ed with literature curation (Methods) (Fig. 1A). All samples were
curated into experimental units (based upon sample replication
and presence of input controls) and uniformly processed using
the ENCODE pipeline (Landt et al. 2012). A total of 255 experi-
ments from 363 samples and 244 input controls was kept for anal-
ysis. Although there was approximately equal representation of
experiments across species, this equality does not extend to indi-
vidual regulators (Fig. 1B; Supplemental Table S1).

Consistent with a previous effort to identify literature-
sourced ChIP-seq data (Marinov et al. 2014), we found appreciable
heterogeneity in the structure of experimental designs. Factors like
the presence of an input control or sequencing depth can intro-
duce technical variation to the count of inferred bound regions
(peaks) in an experiment (Supplemental Fig. S1; Landt et al.
2012). This is an unavoidable reality when aggregating literature-
sourced data, motivating our use of the stringent approach for
peak calling promoted by ENCODE. Peaks were assigned to genes
using a continuous scoring metric (from here referred to as the
binding score; see Methods), and the ChIP-seq data were thus rep-
resented and analyzed as gene-by-experiment matrices of binding
scores.

ChIP-seq experiments targeting the same TR show moderately

elevated similarity

As we aimed to aggregate TR data generated across distinct con-
texts, we first wanted to explore the similarity of binding profiles
between the same TRs (intra-TR) and different TRs (inter-TR) across
experiments. We examined both the Pearson’s correlations (r) of
binding scores, which provided a measure of similarity across all
protein-coding genes, and multiple measures of overlap for the
top 500 scoring genes, inspired by Sikora-Wohlfeld et al. (2013)
and Keenan et al. (2019).

The results were consistent regardless of the approach or
number of top genes selected, showing that, collectively, intra-
TR experiments were moderately more similar than inter-TR pairs
(Fig. 2A–C; Supplemental Figs. S2, S18, S20). Specifically, on aver-
age, intra-TR data sets shared 57/500 top genes, whereas inter-TR
pairs shared 22/500. As expected, the most similar experiments
were in comparable biological contexts from the same NCBI
Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih
.gov/geo/) submission (performed by the same laboratory), fol-
lowed by experiments conducted in comparable contexts by dis-
tinct research groups. For example, the highest global correlation
(r=0.87, 307/500 top-scoring genes) was between two different
ASCL1 constructs in the SH-SY5Y neuroblastoma cell line (GEO;
GSE153823) (Ali et al. 2020), whereas the most correlated experi-
ments from distinct groups both assayed mouse ASCL1 in the de-
veloping neural tube (r = 0.66; 251/500 top-scoring genes) (for
GEOGSE43159, see Sun et al. 2013; for GEOGSE55840, see Borro-
meo et al. 2014).

Elevated intra-TR correlation was not universal to all compar-
isons (Supplemental Fig. S2), which in some instances may be at-
tributable to cell type patterns. For example, the three human
HES1 experiments had intra-correlations ranging from r=0.16–
0.19. A HES1 experiment from this trio conducted in the K562
cell line had inter-correlations ranging from 0.29–0.36 with five
other K562 experiments targeting NEUROD1 or RUNX1.
However, all intra-HES1 pairs hadmore genes in their top 500 over-
lap (range, 68–92) than any inter-HES1 comparison (range, two to
63). We also found instances in which there was less intra-TR sim-
ilarity than might be expected (Supplemental Fig. S22A). Two
ENCODE K562 RUNX1 experiments had an r=0.32 (69/500 top
scoring), despite targeting the same TR in the same cell type.
These experiments used different RUNX1 antibodies and sequence
library strategies, serving as a reminder of the considerable techni-
cal variation of the ChIP-seq methodology.

Using the same approach, we compared the similarity of
mouse and human ChIP-seq experiments, based on orthology of
TRs and of targets. For targets, we focused on a set of 16,686
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high-confidence one-to-one mouse-human orthologs
(Methods). The distribution of binding score correlations for
the same TR but different species (intra-TR & cross-species) was
shifted higher relative to both inter-TR & cross-species and in-
ter-TR & within-species comparisons (collapsed as one group
for simplicity in Fig. 2C; Supplemental Fig. S2C). The top of these
intra-TR & cross-species rankings were dominated by RUNX1 ex-
periments: Of the 2323 intra-TR& cross-species comparisons that
had greater than average common top-scoring genes (more than
37/500), 2097 (90%) were associated with RUNX1. This is attrib-
utable to the relatively high abundance of data for this TR and the
frequency in which RUNX1 experiments were conducted in
blood contexts in both species, consistent with conserved regula-
tory profiles leading to cellular identities (Arendt et al. 2016).
Although slightly attenuated, the shift in correlation distribu-
tions was held when excluding RUNX1 experiments
(Supplemental Fig. S3).

Collectively, these observations support that consistent TR
binding profiles may be identified across studies, albeit with an ex-
pected loss of highly context-dependent signals. Despite this po-
tential for false negatives, this was nevertheless promising for

our goal of aggregating data to uncover
consistent evidence in support of specific
TR–target relationships.

A mixed effect linear modeling

framework identifies genes

with TR-enriched binding

Finding evidence for intra-TR binding
similarities, we looked to identify and
rank the bound genes for each TR. Al-
though we ultimately used the intra-TR
mean binding score in our final aggregat-
ed rankings (Discussion), we found that
certain regions had a propensity to be
bound generically, consistent with prior
observations (Discussion) (Supplemental
Fig. S5). For example, the constitutively
expressed GPAA1 was found to have a
peak within 25 kbp of its transcription
start site (TSS) in 104/129 (81%) of the
human experiments, distributed across
all TRs.We therefore developed a strategy
to identify candidate TR targets that
could address the concern of binding
specificity (Methods). Briefly, we used a
mixed effect linear modeling framework
with TR identity as the main effect, ac-
counting for high-level experimental fac-
tors and the heightened correlation
among experiments generated by the
same group. Although not without cave-
ats (Discussion), this approach was de-
signed to seek evidence for selective TR
binding patterns despite the heterogene-
ity of contexts typically found in each
comparator group.

Figure 2D shows the results of this
approach, plotting the differential bind-
ing scores of the eight most significant
genes for each human TR, whereas

Figure 2E shows the boxplots of the binding scores of each TR’s
most significant gene (mouse in Supplemental Fig. S4). This yielded
an average of 618 candidate target genes per TR (log2 fold change
[FC] >0 & false-discovery rate [FDR]<0.05), ranging from three
(mouse HES1) to 1402 (human RUNX1). This model revealed a
number of previously characterized TR–target interactions.Well-de-
scribed ASCL1 targets and Notch pathway effectors DLL1, DLL3,
DLL4, and HES6 (Castro et al. 2006, 2011; Nelson et al. 2009) had
elevated binding in both the human and mouse ASCL1 compari-
sons, whereas the HES1 target ATOH1 (Kazanjian and Shroyer
2011) was the most significant gene in the human HES1 compari-
son. Taken together, this analysis supported that aggregated ChIP-
seq data can prioritize independently described regulatory interac-
tions. We more formally evaluate this approach in a later section.

Identifying frequently bound loci relative to regulatory element

annotations

The framework described thus far is gene-centric, relying on a scor-
ing metric that sums the contribution of binding events around a
TSS. Consequently, a gene may have a high binding score for a

A

B

Figure 1. Study overview. (A) Workflow for TR ChIP-seq (left) and TR perturbation (right) data. (B)
Counts of TR experiments considered for analysis.
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given TR, even if the individual binding events are dispersed
around the TSS across experiments. We therefore identified the re-
gions most commonly bound by a TR, providing discrete coordi-
nates for future investigation (Supplemental Data S5).

To showan application of these bound loci, we examined their
overlapwith candidate cis-regulatory elements (cCREs) (Moore et al.
2020). These regions, which encompass predicted promoter- and
enhancer-like regions, were previously defined through the integra-

tion of multiple genomic features across diverse cellular contexts.
Genomic annotations like the cCREs aim to characterize the
biological function of the underlying DNA sequences. To provide
context before focusing on frequently bound loci, we first examined
the proportion of each ChIP-seq experiment’s peaks that over-
lapped each class of cCRE (Fig. 3).

With the exception of MECP2, we found that 78% of the
peaks in a typical human ChIP-seq experiment overlap with a

A

ED

B C

Figure 2. ChIP-seq experiment similarity and specifically bound genes. (A–C ) Distribution of binding score correlations between ChIP-seq experiments
targeting the same TR (intra-TR) versus different TRs (inter-TRs). (D) Log2 fold changes of binding scores for the top eight ranked genes (by P-value) for each
TR in human experiments using a mixed effect linear model. As scoring was distance based, linearly proximal genes had similar ranks, and so for plotting,
only the most significant genes (PCDHGA7 for MECP2 and KRTAP9-3 for ASCL1) are shown. (E) Distributions of binding scores for the most significant gene
for each TR from the same model as in D.
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cCRE (Fig. 3A); in mouse, 60% (Fig. 3B). We note that mouse cCRE
groups were defined with less input data than those of human and
are expected to have fewer discovered elements and thus less over-
lap. And although there was variation across TF experiments in
how peaks were distributed across the cCRE groups
(Supplemental Fig. S17), they generally followed the global cCRE
group proportions, with most binding to regions characterized as
enhancer-like sequences. MECP2 was the exception: The overlap
of peaks dropped to an average of 19% for human and 3% for
mouse, even thoughMECP2 experiments had a comparable num-
ber of peaks to the other experiments (Supplemental Fig. S1C).
This lack of overlapmay reflectMECP2’s differentialmode of bind-
ing relative to the TFs (Shah and Bird 2017).We also found that fil-
tering peaks for cCRE overlap did not change the similarity
structure between ChIP-seq experiments (Supplemental Fig. S21).

As discussed earlier, the concordance of binding across exper-
iments for a TRwas limited, but by focusing on areas of agreement,
we hope to uncovermeaningful biology. In the locus-specific anal-
ysis, there aremany cases of highly reproducible sites. For example,
for human ASCL1, we found 29 regions bound across all 16 exper-
iments and 405 regions bound in at least 14, many of which were
infrequently bound by the other TRs (Supplemental Fig. S6). A no-
table example is a ∼330-bp sequence in an intronic region of SHB,
annotated as an enhancer-like cCRE, which had a peak called in all
ASCL1 experiments but only twice in non-ASCL1 experiments
(two of 113).

We take such patterns of reproducibility and specificity as an
indication of biological relevance. However, not all binding,
even if reproducible, is expected to result in significant regulatory
activity (Wasserman and Sandelin 2004; Teytelman et al. 2013;
Cusanovich et al. 2014), hence the importance of considering or-
thogonal data (Garcia-Alonso et al. 2019). This brings us to the
introduction of the TR perturbation experiments, which pro-
vides evidence of TR regulation at the RNA level. For example,
the candidate ASCL1 target SHB we identified in the above bind-
ing analysis is differentially expressed (DE) in seven of eight hu-
man ASCL1 perturbation experiments, raising our confidence in
its relevance. In the next sections, we describe the systematic
analysis of TR perturbation experiments for integration with
the ChIP data.

Acquisition and summarization of TR perturbation data sets

TR perturbation data were predominantly identified using a
screen of GEO experiments and supplemented with existing re-
sources (Methods) (Fig. 1A). All were processed in the Gemma da-
tabase (Lim et al. 2021), and a total of 242 experiments were
considered for downstream analysis (Supplemental Table S2). Se-
quencing platforms were slightly more represented thanmicroar-
rays (Supplemental Fig. S7F). Unlike the ChIP-seq collection, in
which there were similar amounts of mouse and human data,
the TR perturbation corpus was heavily skewed toward the
mouse, with just over twice as many experiments in the mouse
than human (Fig. 1C), although the breakdown by TR was broad-
ly similar. Gene knockouts were the most common perturbation
strategy, making up nearly half of all experiments (Supplemental
Fig. S7E). Overexpression and knockdowns followed with near
equal representation. The remainder we classified as “mutants,”
following the original investigators’ descriptions. These are
somewhat distinct from knockouts, typically (but not always) in-
volving loss of function-inducing point mutations rather than
larger deletions.

TR perturbation experiments show modest DE effect sizes

We first explored the properties of the collected perturbation data
before any aggregation. Consistent with the findings of Cusano-
vich et al. (2014), we found that the perturbation effect sizes tend-
ed to be modest. Given the distribution of FC across all
experiments (Fig. 4A), we did not apply FC thresholding and clas-
sified genes as differentially expressed (DEGs) at a relaxed FDR<
0.1. This framework resulted in a median count of 216 DEGs per
experiment (adding a constraint of a minimum absolute FC of
one would result in a median of 26).

Also in line with the findings of Cusanovich et al. (2014), we
found that the number of genes affected by a TR perturbation was
poorly predicted by the FC magnitude of the perturbed TR
(Supplemental Fig. S9B,C). For example, there was an appreciable
number of experiments that had no DEGs despite substantial
changes in the TR’s expression level. Otherwise, there was a spread
inDEG counts for each TR, withNEUROD1 having themost on av-
erage andHES1 the least (Fig. 4B). Although biological characteris-
tics may explain these extremes (e.g., pioneering activity of
NEUROD1 vs. a more repressive role for HES1), the variety of de-
signs, contexts, and sample sizes complicate these comparisons.
Still, we noted a difference in the count of DEGs associated with
perturbation type, with knockdowns having the highest median
(1975) and knockouts the lowest (73) (Supplemental Fig. S10A,B).

Despite select examples, intra-TR perturbation experiments

show weak similarity

As with the ChIP-seq collection, we explored the similarity of intra-
TR versus inter-TR perturbation experiments. Because there was un-
equal gene coverage across experiments owing to platform differ-
ences (Supplemental Fig. S7), we calculated Pearson’s correlations
of log2 FCs (as well as their absolute values) for the genes commonly
measured between pairs of experiments. For the top 500 overlap
comparison, we separately considered up- and down-regulated
genes, as well as sorted by P-values from the DE analysis.

Consistent with expectations, the most similar experiments
were intra-TR comparisons from the same research group, led by a
pair of ASCL1 overexpression experiments (r=0.95, 410/500 by up-
regulated) (for GEO GSE153823, see Ali et al. 2020). As for ChIP-
seq, experiments from different groups but comparable contexts
showed elevated similarity, such as two experiments overexpressing
mouse Ascl1 in astrocyte-to-neuron conversions (r=0.60, 222/500
overlap of up-regulated genes) (for GEO GSE174238, see Kempf
et al. 2021; for GEO GSE132674, see Rao et al. 2021). We also found
examples of anticorrelative patterns that aligned with the opposing
roles of the perturbations, typically involving a MECP2 overex-
pression versus a MECP2 loss of function (e.g., r=−0.66, 49/500 by
P-value) (for GEO GSE126640, see Cholewa-Waclaw et al. 2019).

However, intra-TR similarities as a group were only marginal-
ly different from inter-TR comparisons (Fig. 4C; Supplemental
Figs. S8, S18). Focusing on the top 500 overlaps by P-values, an av-
erage human intra-TR pair shared 32/500 genes to the 28/500 of
inter-TR pairs; mouse intra-TR pairs had 29/500 compared with
21/500 in inter-TR pairs. These trends extended to the orthologous
gene comparison between species. The strongest correlation was
between NEUROD1 overexpression studies in the mouse and hu-
man that both looked to generate neuronal populations (r=0.32,
135/500 by up-regulated) (for GEO GSE104435 see Matsuda
et al. 2019; for GEO GSE149599, see Pomeshchik et al. 2020),
whereas the strongest negative correlation was between a human
MECP2 overexpression in a neuronal cell line and a mouse Mecp2

TR aggregation
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knockout in cortical neurons (r=−0.24, 39/500 by P-value) (for
GEO GSE126640, see Cholewa-Waclaw et al. 2019; for GEO
GSE124521, see Keidar et al. 2019). However, a typical intra-TR
& cross-species comparison shared only three more genes in a
top 500 comparison relative to the average inter-TR pair.

Aggregating perturbation data sets reveals repeatedly DE genes

We next used an aggregation approach to identify consistent pat-
terns across perturbation experiments for each of the TRs. This is in

keeping with our overall philosophy of taking advantage of com-
monalities while being cognizant of the issues noted above. To
rank genes for each TR, we used a simple tally of the count of times
a gene was DE across intra-TR experiments (Count DE), breaking
ties with the average absolute FC.

Despite the weak experiment similarities, we identified many
genes that were frequentlyDE for a givenTR’s set of perturbation ex-
periments (Fig. 5C). The exception was HES1, which had fewer data
overall andhad fewDEGs inboth species (Fig. 4B).MouseMecp2had
the most perturbation data and, correspondingly, had the genes

A

B

Figure 3. Overlap of ChIP-seq peaks with annotated regulatory elements. (A, left) The proportion of peaks for each human ChIP-seq experiment,
grouped by TR, that overlapped with a candidate cis-regulatory element (cCRE). (PLS) Promoter-like sequence, (ELS) enhancer-like sequence, (p) TSS prox-
imal, (d) TSS distal. (Right) The proportional breakdown of all cCRE groups. (B) Same as in A, except for mouse ChIP-seq experiments.
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with the highest Count DE, led by Irak1
with 23/69 in mouse Mecp2 experiments
and six of 19 in human. This NF-κB path-
way gene has previously been associated
with Mecp2 (Supplemental Material,
“Overview of TR-targets”; Urdinguio
et al. 2008; Kishi et al. 2016). However,
we were unable to find literature support
for other highly rankedMecp2 candidates,
such as the brain-enriched estrogen-relat-
ed receptor gamma Esrrg (21/69 mouse,
eight of 19 human) which also had strong
MECP2 binding scores in our ChIP-seq
analysis, suggesting that further investiga-
tion into this interaction is warranted.

We also observed many orthologous
genes with recurring DE in both species,
such as the neurogenic growth factor
BMP7 for ASCL1 (six of eight human, six
of 12 mouse). Human NEUROD1 had the
fewest perturbation experiments (n=2),
yet we identified seven genes that were
DE inbothhuman studies aswell as in sev-
en of eight for mouse Neurod1 (nine of
10 of all NEUROD1 experiments): PTPRK,
UGCG, TRIM9, SFT2D2, SLC35F1,
ADGRL3, and SOGA1. SLC35F1 was re-
cently identified as an understudied neu-
rodevelopmental gene implicated in
epileptic encephalopathies (Di Fede et al.
2021); our work thus connects
NEUROD1 to the regulation of this pre-
sumed synaptic plasticity gene. On the
other hand, there were also many exam-
ples of orthologous genes thatwere repeat-
edly measured as DE in one species but
rarely in the other, such as MECP2 candi-
date targets SLC6A7 (15/69 mouse, zero
of 19 human) and the proneural NRG2
(one of 69 mouse, eight of 19 human),
but ruling these as species-specific targets
requires further consideration beyond
the scope of this study.

Additional considerations for

perturbation data aggregation

We highlight two final considerations
for aggregating the perturbation data. First, akin to the “generic”
signals observed in the ChIP-seq collection, we observed genes
that were frequently DE across TR studies (Supplemental Figs.
S10B,C, S11). We compared these counts with a previous metric
that ranks genes by their predictability of being DE (DE prior)
(Crow et al. 2019), finding a weak but significant trend in both hu-
man (r=0.09, P-value<2.2 ×10−16) and mouse (r=0.18, P-value<
2.2 ×10−16) (Fig. 5A,B). This trend could reflect biological under-
pinnings of the observations of Crow et al. (2019), but the weak-
ness of the signal precluded making strong conclusions. Second,
we observed genes could have discordant directions of change
(up- vs. down-expressed) across the same type of perturbation for
a given TR. We quantified this by adapting the metric of Purity
(Supplemental Material), scoring the consistency of a gene’s FC

direction across loss- and gain-of-function experiments
(Supplemental Fig. S12). As we do not assume that frequently DE
genes are not true targets and that a given TR can be activating
or repressive in different contexts (Lambert et al. 2018), we elected
not to incorporate Purity or the DE prior into our final rankings
(Fig. 5D,E). Still, we believe these metrics provide additional con-
text, such as for identifying candidate interactions that are pre-
dominantly activating or repressive.

Combining aggregated ChIP-seq and perturbation evidence

to prioritize gene targets

Having summarized each line of genomic evidence, we turned to
our original goal of ranking gene targets by the combined evidence

A

B

C

Figure 4. Overview of TR perturbation experiments. (A) Distribution of gene log2 fold changes (FCs)
across the 242 mouse and human perturbation experiments. FC was clipped at [−3, 3] for plotting.
(B) Count (log10 scale) of differentially expressed genes grouped by TR; color denotes perturbation strat-
egy, and shape denotes species. (C) Heatmap of correlation values of gene FC between experiments,
grouped by TR. Note that only orthologous genes were calculated here to allow plotting of both species;
the relatively minimal intra-TR correlation holds when considering mouse and human separately.

TR aggregation

Genome Research 769
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.277273.122/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.277273.122/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.277273.122/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.277273.122/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.277273.122/-/DC1


of the two strategies. We first simply examined the degree of over-
lap in their gene lists. Given the generally weak perturbation intra-
TR experiment similarity, it was perhaps unsurprising to see the
same trend when comparing across ChIP-seq and perturbation ex-
periment pairs (Supplemental Figs. S13, S19). A typical intra-TR
ChIP-seq and perturbation experiment pair shared 20/500 top-
ranked genes versus 17/500 for inter-TR pairs.

However, we observed, much like the perturbation compari-
sons, many genes with frequent intra-TR overlaps between the
twomethodsdespite the overall weak groupoverlap. To reach a con-
solidated list for each TR, we extended a popular rank product ap-
proach previously used on individual ChIP-seq and perturbation
experiment pairs (Methods) (Breitling et al. 2004; Tang et al.
2011; Wang et al. 2013). Rank products have been used extensively

A

C

D

E

B

Figure 5. Demonstration of genes with recurrent differential expression (DE). (A) The x-axis is the count of times that a gene was DE across human ex-
periments in the current study (n = 77), and the y-axis is the DE prior rank, where 1.0 represents the gene that wasmost likely found as DE across a large and
diverse corpus of expression experiments. (B) Same as in A but for mouse experiments (n = 165). (C) Histograms of the count of times genes were DE across
each group of TR experiments (top row, human; bottom row, mouse). (D) Demonstration of the top 15 genes by DE evidence for human ASCL1. FCs are
clipped at [−2.5, 2.5] for plotting. The DE prior was binarized so that values above 0.9 (black squares) represent genes that are commonly DE regardless of
design. (E) Same as in D but for mouse ASCL1.
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in genomics and other fields, representing a simplistic yet robust
meta-analytic summarization of noisy data (Koziol 2010). Here,
we used the aggregated perturbation and ChIP-seq gene lists as in-
puts, rather than individual experiments, to avoid biases for TRs
with imbalanced data set counts between the two methods. Thus,
for each TR, we obtained aggregated gene orderings for both geno-
mic lines of evidence and a final combined ranking (integrated).

To evaluate the integrated rankings, we wished to use an or-
thogonal line of experimental evidence for comparison, similar
to a recent benchmark of human TF–target interactions that used
perturbation data as the gold standard (Garcia-Alonso et al.
2019). In contrast to Garcia-Alonso et al. (2019), we cannot use
perturbation data as an evaluation set as we used it to generate
the rankings.We reasoned that the information from TR perturba-
tion data was more important to use for gene prioritization rather
than to hold it out for assessment, particularly given that low over-
lap was already an expectation given our observations and prior
work (Garcia-Alonso et al. 2019; Kang et al. 2020).

We thus turned to resources that curated low-throughput in-
teractions (Supplemental Material, “Low-throughput curated tar-
get resources”; Supplemental Table S6; Han et al. 2018; Chu
et al. 2021). These yielded 483 unique targets for the eight TRs,
ranging from 11 for TCF4 to 156 for PAX6 (median, 51)
(Supplemental Fig. S16A). This collection is not exhaustive, lacks
annotation of negatives (nontarget genes), is diverse in contexts,
and contains evidence from single-locus perturbation and binding
experiments, so we do not consider it a true gold standard.
However, we reasoned that it would still provide at least a sense
of whether the integrated genomics data could help prioritize
known (and, by extension, novel) interactions, relative to the per-
formance of individual data sets or a single data modality.

First, we tested the difference in the aggregated gene rankings
by presence in the curated set (Supplemental Figs. S14, S15). All
mouse rankings showed evidence for prioritizing curated targets
(Wilcoxon test P-value<0.05), save for the TCF4 binding, integrat-
ed, andNeurod1perturbation aggregations. This potentiallymaybe
explained by the size of the evaluation set, as these twoTRs had the
fewest curated targets (Supplemental Fig. S16). Some curated
NEUROD1 targets like Insm1 (Breslin et al. 2003) were not highly
ranked (perturbation rank, 1082nd) despite being DE in four of
eight mouse NEUROD1 experiments. Thus, it is possible that the
genes rankedhigher than Insm1 byDE evidence include numerous
real butunidentified targets. For example,Nova2 is a neurodevelop-
mental splicing regulator (Mattioli et al. 2020) that was DE six of
eight times and had enriched mouse NEUROD1 binding, suggest-
ing thismaybea true interaction lacking low-throughputevidence.
Although the human results were more mixed (none of the three
MEF2C differential tests were significant, unlike mouse MEF2C),
the majority of human comparisons still provided evidence that
the rankings prioritized curated targets. In sum, this analysis sup-
ported that our aggregation strategy was able to assign heightened
importance to genes with independent experimental evidence.

Aggregate rankings typically outperform null expectations

and single experiments

The previous analysis considered the difference inmedian ranks by
curation status. To more directly assess the ability of the aggrega-
tion strategies to preferentially rank known interactions, we per-
formed a precision-recall analysis, calculating the area under the
precision-recall curve (AUPRC) to summarize performance (Fig.
6A; Supplemental Fig. S16; Marbach et al. 2012). We first note

the overall low performance of each of these rankings (e.g.,
ASCL1 in Fig. 6B,G), an unsurprising result given factors like the
incomplete nature of the evaluation set (Discussion). The integrat-
ed rankings achieved a higher AUPRC than the single method ag-
gregations for human ASCL1, mouse and human RUNX1, mouse
Pax6, and human TCF4. However, the individual data type aggre-
gations also sometimes outperformed the integrated ranking.

To better contextualize these relative differences in perfor-
mance, we conducted two further comparisons using the preci-
sion-recall framework. First, we created a null distribution of
AUPRCs for each TR, iteratively sampling curated targets from
the entire literature resource and calculating the AUPRC with the
aggregated rankings and sampled targets. This analysis revealed
that, despite the low overall performances, almost every TR had
an aggregate ranking that exceeded the null. Figure 6, C and E,
shows that no null target set outperformed the human ASCL1 in-
tegrated rankings, a trend also seen for rankings like mouse PAX6
and RUNX1. Further, the human MEF2C perturbation and inte-
grated rankings outperformed the null expectation, despite the
lack of MEF2C differential ranking by curation status (Supplemen-
tal Figs. S14, S16). Thus, although aggregation for lesser-represent-
ed TRs may assign curated targets a similar rank to uncurated
targets on average, the top of the aggregated ranking can still be en-
riched for curated targets relative to a null expectation.

Finally, we compared the aggregated AUPRCs to those ob-
tained when calculated from individual ChIP-seq and perturba-
tion experiments, or their individual rank–product pairings. This
provided a direct comparison of the performance of the aggregated
rankings towhat is obtained from the individual experiments con-
stituting the aggregation. Consistent with the previous analyses,
most TRs had an aggregated ranking whose AUPRC exceeded the
expected values from individual experiments, even if this was
not always the integrated aggregation (Fig. 6D,F; Supplemental
Fig. S16). The human ASCL1 integrated ranking, for example, out-
performed every individual ASCL1 experiment, as well as the per-
turbation and binding aggregations, supporting the benefit of
both data aggregation and cross-method integration.

Similarly, both the human and mouse RUNX1 integrated
rankings were in the 98th percentile of RUNX1 AUPRCs, outper-
forming the perturbation and binding aggregations. Although
the integrated ranking also outperformed the vastmajority of indi-
vidual experiments, the top human RUNX1 performances were
typically rank–product pairings conducted in leukemic systems.
As the most represented RUNX1 cell types in the curated resource
were leukemia cell lines, the benchmark may be biased toward
cell type–specific effects compared with the cell type–agnostic ag-
gregations. This may also explain why mouse NEUROD1 had the
least performantaggregations: ThehighestAUPRCsbelonged to in-
dividual genomic experiments (and their rank–product pairings)
conducted in pancreatic tissues. In concordance, pancreatic exper-
iments were among themost represented from the relatively scarce
collection of literature curated NEUROD1 targets, whereas the ge-
nomic NEUROD1 experiments covered a broader range of tissue
(see Supplemental Material, “Commentary on aggregate ranking”).

In conclusion, although the integrated rankings were not al-
ways the most performant, the aggregation strategies presented
are typically still more capable of prioritizing known targets than
null expectations or the individual experiments composing the ag-
gregation. All summarized rankings are found in Supplemental
Data S1 and the contributing data in Supplemental Data S2. In
the Supplemental Material, we show a context-specific analysis
using RUNX1 K-562 experiments (Supplemental Fig. S22); we
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motivate an alternative ranking scheme that places greater impor-
tance on individual experiments (rankings provided in Supple-
mental Data S6); and we discuss a subset of the identified
candidate targets for each TR.

Discussion

In this study, we build upon existing strategies (Tang et al. 2011;
Wang et al. 2013) to create a framework for aggregating genomics

data to rank gene regulatory relationships.We deliberately focused
onmethodologies that directly assess TR activity rather than those
based on inference (e.g., coexpression or DNAmotif footprinting).
Prior studies have similarly ranked TR–target interactions using or-
thogonal lines of evidence (Garcia-Alonso et al. 2019) or aggregat-
ed TR–target libraries (Keenan et al. 2019). Although these studies
are more comprehensive in their TR coverage, they focus only on
human interactions and, in particular, hold out TR perturbation
evidence for benchmarking rather than for gene prioritization.

A

C

B

D

E F G

Figure 6. Overview of literature curation evaluation framework. (A) Precision and recall were calculated at every step (k) of the aggregated rankings for
presence in the curated target resource. (TP) True positives called at step k, (P) all curated targets for the current TR. (B) PR curve and the associated areas
under the curves (AUPRC) for human ASCL1. (C) The distribution of AUPRCs when sampling random targets from the curated resource and using the in-
tegrated ASCL1 ranking to calculate the AUPRC. Bars refer to the observed performance when using the curated ASCL1 targets. (D) Distribution of AUPRCs
when using the individual ASCL1 experiments or their rank product pairings to order genes. (E) Proportion of samples in C whose AUPRC exceeded the
observed values. (F ) The percentile of the aggregate AUPRCs relative to the distribution of all individual comparisons in D. (G) Example of ASCL1 targets
with genomics and low-throughput evidence.
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Here, we did a detailed analysis of a subset of TRs to better under-
stand the properties of the contributing genomics experiments
and to identify potential biases of aggregation. Toward this end,
our work also represents a novel meta-analysis of TRs with shown
importance in mammals.

Data reuse and aggregation across diverse studies presents
many challenges. Extending prior observations, we find generally
weak similarities when comparing experiments targeting the same
TR (Hu et al. 2007; Cusanovich et al. 2014; Garcia-Alonso et al.
2019; Kang et al. 2020). Further, the genomics evidence (aggregat-
ed or not) was not highly performant when evaluated using
literature-curated targets. This is unsurprising, given (1) the incom-
plete nature of the evaluation set (true targets lacking curation
would be treated as negatives), (2) the heterogeneity of contexts
and experimental/technical factors in all considered data, and
(3) the inherent difficulty in benchmarking gene regulation
(Marbach et al. 2012; Garcia-Alonso et al. 2019). The first reason
in particular guided our use of the broadly applicable rank product
for data integration (Breitling et al. 2004; Wang et al. 2013). Here,
this is a two-parameter model that gives equal importance to each
genomic line of evidence, whereas training TR-specific models
would require a robust gold standard for each TR. Nevertheless,
our data aggregation revealed numerous candidate TR–target inter-
actions supported by extensive convergent evidence. As we (gener-
ally) see that the aggregated data prioritized curated targets, our
explicit assumption is that the rankings will also be enriched for
unexplored direct interactions.

It is important to discuss caveats of our framework, as some of
these complexities extend to general difficulties in studying gene
regulation. First and foremost, our rankings must be interpreted
as a sorting of existing genomic evidence, rather than one of abso-
lute biological importance. If a developmentally-critical interac-
tion is not assayed in the appropriate biological or temporal
context of the included experiments, it cannot be expected to be
highly ranked, if it can even be captured by the considered strate-
gies. Similarly, a highly context-specific interaction will not be as
highly prioritized as one common to amore abundantly represent-
ed context, because of our approach of aggregating data. Therefore,
researchers interested in benchmarking predictions may wish to
use the aggregated rankings (SupplementalData S1),whereas those
interested in a specific context may refer to the organized experi-
mentmatrices (SupplementalData S2) or to the alternative ranking
scheme presented in the Supplemental Material that prioritizes
genes with a single positive finding in any experiment (Supple-
mental Data S6).

For the binding evidence, our gene-scoring method aligns
with other contemporary studies analyzing ChIP-seq data at scale
(Methods). Although providing more granularity than binarizing
binding events, these formulations still rely on genomic distance
as a measure of relevance to a gene (Chen et al. 2020). Current ev-
idence suggests this to be a useful approximation (Yoshida et al.
2019), but future efforts may benefit from incorporating evidence
from 3D chromosomal interactions, such as in the “activity by
contact”model (Fulco et al. 2019). Additionally, the TSS-based log-
ic of the binding score is likely better suited for TFs than other clas-
ses of regulators likeMECP2. Althoughwewere still able to capture
curated MECP2 targets, researchers may choose to prioritize the
perturbation rankings or focus on specific MECP2-bound coordi-
nates (Supplemental Data S3–S5).

In line with prior reports, we also find that certain loci are fre-
quently associated with a ChIP-seq signal across assays (Supple-
mental Fig. S5). The biological-versus-technical nature of these

regions has been debated (Teytelman et al. 2013; Wreczycka
et al. 2019; Partridge et al. 2020; Ramaker et al. 2020); regardless
of its origin, this phenomenon motivated our analysis of differen-
tial binding activities (Fig. 2). For example, Li et al. (2019a) sub-
tracted a gene-wise background signal when gene scoring a
single ChIP-seq experiment. However, our study was based on a
small and biased selection of TRs; thus, the comparator groups
may participate in common regulatory pathways. For this reason,
we based the final binding rankings on the mean binding score
rather than on differential binding statistics. Nevertheless, we
find evidence for specific binding that aligns with prior described
interactions (e.g., HES1-ATOH1, ASCL1-DLL1).We believe that the
binding score-based linear modeling framework has intriguing po-
tential for forming more sophisticated TR group comparisons,
such as for cobinding partners or TR families.

For the perturbation evidence, we tallied independent signif-
icance tests. Finding that genes commonly had variable changes in
FC direction, we ultimately used the absolute FC as a tie-break.
Together, this means that the final rankings are agnostic to the
change of direction, although our inclusion of FC Purity in the
summarized results allows researchers to identify interactions pre-
dominantly measured as activating or repressive. Ideally, a single
model would jointly consider all TR perturbation experiments.
However, this is greatly complicated by the diversity of technolo-
gies, gene coverage (non-uniformity of missing observations),
sample sizes, and designs; thus, we elected for simplicity in this
study. We used the DE prior (Fig. 5A,B) to provide additional con-
text of a gene’s behavior with respect to DE testing, as it can help
identify “generically” DE genes.

Genes with frequent DE evidence showed a range of binding
evidence across TRs. Althoughour primary interest was finding tar-
gets corroborated by both strategies, genes well supported by TR
perturbation alonemaywarrant further investigation. These possi-
bly reflect instances in which the assembled ChIP-seq contexts did
not capture the binding event or in which it occurred at a genomic
distance missed by our scoring scheme. Alternatively, a common
interpretation for individual experiment pairs is that DE genes
lacking in binding are indirectly regulated through an intermedi-
ate regulator. If an absence of binding can be confirmed, it is
strongly suggestive that, even if indirect, the perturbed TR and fre-
quently DEG participate in a tightly controlled regulatory
pathway.

Although TRs are expected to have cell type–specific targets,
our results nominate genes that may be regulated by a TR across
contexts (Gertz et al. 2013; Lambert et al. 2018).While an ultimate
goal of gene regulation research is to establish the specificity of TR–
target interactions, it would still be desirable to characterize the ex-
tent by which each TR can be represented by a set of “core” targets.
ASCL1, for example, appears to commonly regulate Notch path-
way effectors like DLL1, DLL3, and HES6 (Castro et al. 2006,
2011; Nelson et al. 2009). Further examination of these frequent
targets is warranted: if the same regions are bound or if there is
more distributed enhancer usage, the degree to which these inter-
actions are coexpressed across systems/conditions, conservation of
the associated sequence, and the consistency of chromatin fea-
tures or cobinding partners. Our examination of frequently bound
loci is a step in this direction (Supplemental Fig. S6), but a more
comprehensive exploration building on these observations re-
quires further study. Similarly, a more comprehensive examina-
tion of TR–target interactions conserved across species is
warranted, which can be potentiated by the examples provided
by our work.
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Consistent with our low-throughput curation resource (Chu
et al. 2021), we found that the literature coverage of the studied
regulators was greatly uneven, with MECP2 and RUNX1 receiving
the most attention across low-throughput and high-throughput
investigations. This is not surprising but highlights the need for in-
vestigation of less-studied, yet important regulators. Similarly, we
identified multiple examples of genes that had convergent lines
of evidence but are sparsely represented in the literature
(Supplemental Material, “Overview of TR-targets”). Given that
the assembled data are biased toward regulators deemed of interest
by the broader research community, our work suggests that these
understudied candidate targets could be prioritized by gene func-
tionality studies.

In sum, we believe this study will be a useful resource for re-
searchers interested in gene regulation. We present a large collec-
tion of transparently summarized information that catalogs the
current state of the literature while also potentiating novel biolog-
ical discovery. We also have documented many practical issues
and limitations of the considered data and present an analytical
framework that is readily extensible to the ever-growing collection
of TR experimentation.

Methods

Except where noted, analyses were performed in the R statistical
computing environment (R Core Team 2022).

Genomic feature tables

Gene annotations were based on NCBI RefSeq Select (mm10 and
hg38), which assigns one TSS to each gene (https://www.ncbi
.nlm.nih.gov/refseq/refseq_select/). ENCODE cCREs were ob-
tained from https://screen.encodeproject.org/ (V3) (Moore et al.
2020). The DE prior rank information was an updated version for
human and newly generated for mouse, using the same strategy
as that of Crow et al. (2019) but expanded to a greater number of
expression platforms and data sets (Supplemental Tables S4, S5).
High-confidence one-to-one orthologous genes were accessed via
the DIOPT resource (V8) (Hu et al. 2011), keeping only genes
with a score of at least five that were also reciprocally the best score
between mouse and human and excluding genes with more than
one match.

Identification of ChIP-seq data sets

Identification of ChIP-seq data was predominantly facilitated us-
ing the ChIP Atlas database (Zou et al. 2022) owing to its breadth
of mouse and human data and the organization of the associated
metadata. Additional experiments were identified in the literature
and other ChIP-seq resources: GTRD (Kolmykov et al. 2021),
UniBind (Puig et al. 2021), and Cistromedb (Zheng et al. 2019).
Experiments were curated andmatched to their input controls, ap-
plying and extending ChIP Atlas’s metadata framework such that
each row corresponds to a unique SRX ID (https://www.ncbi.nlm
.nih.gov/sra).

Uniform processing of ChIP-seq data

As there was heterogeneity across each resource’s processing pipe-
lines and how sets of samples were organized within an experi-
ment unit (e.g., the pooling of replicates or inputs), we
uniformly reprocessed all data. Using SRX IDs, sample library in-
formation was obtained using NCBI’s ESearch utility (version
13.8), and FASTQ files were downloaded using fasterq-dump (ver-
sion 2.10.8) before read trimming and quality control were per-

formed using Trim Galore! (version 0.6.6) (https://www
.bioinformatics.babraham.ac.uk/projects/trim_galore/), keeping
reads that were at least 30 bp. Processed FASTQ files were then sub-
mitted for processing in the comparatively stringent ENCODE
ChIP-seq pipeline (version 1.3.6) (Landt et al. 2012; https
://github.com/ENCODE-DCC/chip-seq-pipeline2) with the fol-
lowing considerations: First, samples were grouped into units
based upon the replicate status of the experimental design, and
the identified input controls for each experimental unit were
pooled. We note that many experiments consisted of a single rep-
licate (meaning that the reproducibility process operated on pseu-
doreplicates rather than true replicates) and that input controls
could be shared across distinct experimental units. Second, we
fixed the peak caller to MACS2 (Zhang et al. 2008), as the
ENCODE default method SPP cannot be used for runs with no in-
put controls. Finally, all samples were submitted to the TF pipeline
procedure, save for MECP2 experiments, which were submitted to
both the TF and histone procedures. Given MECP2’s binding pro-
file, prior studies have used broad peak-calling parameterization
(Gabel et al. 2015; Ito-Ishida et al. 2018; Xiang et al. 2020).
Correspondingly, moreMECP2 experiments succeeded processing
with the histone parameterization, and thus, we used this strategy
for all MECP2 samples. We followed the advice of Marinov et al.
(2014) to avoid applying flat QC cut-offs for heterogeneous
ChIP-seq collections, with two exceptions: Experiments marked
as “fail” in the reproducibility analysis (IDR for TF, Overlap for
MECP2) in the generated QC report were excluded, and only ex-
periments with at least 100 peaks were retained to avoid overly
sparse binding vectors during analysis. We further note that these
excluded experiments typically also had outlier ENCODE QC
metrics.

ChIP-seq gene binding scores and normalization

The ENCODE pipeline produces a set of output files, amongwhich
is a single “optimal reproducible” peak set table of genomic coor-
dinates (via the IDR procedure for TF and Overlap procedure for
histone/MECP2) for each experimental unit; we focused on these
tables for most analyses. We considered multiple approaches to
score gene binding for each experiment. The most common strat-
egy is binary assignment, in which genes are scored as one if a peak
summit is found within a distance threshold to the TSS, and zero
otherwise. Following the advice of Sikora-Wohlfeld et al. (2013),
we focused on quantitative binding scores, in particular a slight
modification to the exponential decay function introduced by
Ouyang et al. (2009):

Sg =
∑K
k=1

e
−
dk
d0 , (1)

where S is the binding score for a gene (g) in one TR experiment, K
is the number of peak summits within 1 Mbp of the gene TSS, dk
represents the absolute distance in base pairs between the TSS
and the peak summit, and d0 is the decay constant, set to 5000
as in the original publication. The original formulation scaled
each element by the MACS2 intensity score, which we omitted
as these scores no longer retained their original interpretation after
the ENCODE reproducibility process. The omission of this scaling
factor is consistent with other work that adopts an exponential de-
cay formulation to score genes using ChIP-seq peaks (Wang et al.
2013; Garcia-Alonso et al. 2019; Chen et al. 2020). Thus, all
ChIP-seq experimental units can be represented as a gene-by-ex-
periment matrix of binding scores. We added one and applied
a log10 transformation followed by quantile normalization
(preprocessCore R package version 1.48) to these bind score
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matrices, finding that this strategy helped alleviate batch/techni-
cal considerations, and used these matrices for the similarity anal-
yses and the final gene rankings.

Binding specificity analysis

To find genes with enriched binding scores for the same TR, we
adopted the limma-voom framework (version 3.42.2) (Law et al.
2014), a common strategy for applying linear models to genomics
data with a positive mean-variance relationship, as observed here.
The raw binding score matrices were submitted to the voom trans-
formation with quantile normalization specified, using limma’s
duplicateCorrelation function with laboratory identity as a blocking
variable to account for expected elevated correlations among ex-
periments submitted by the same research group. The following
model was then fit to every gene:

Sj = b1TRj + b2Ij + b3Rj + b4log10(Cj) + 1j, (2)

where S is the same as in Equation 1, j indexes TR experiments, the
main effect TR represents the ChIP’d protein, binary variables I
and R capture if experiment j has at least one input control and
at least one replicate, and C is the count of peaks for experiment
j, with the residual (ε) having the covariance matrix as estimated
by duplicateCorrelation, as well as regression weights provided
by voom. Finally, for each TR, a “one-versus-rest” contrast was ex-
tracted from this model, which estimates for each gene the differ-
ence in mean binding scores (S) for the current TR’s set of
experiments relative to all other experiments, after using informa-
tion from all experiments to account for the specified experimen-
tal structure/technical variables.

ChIP-seq peak region overlap

All overlap procedures were performed using the GenomicRanges
R package (version 1.38) (Lawrence et al. 2013). For the cCRE re-
gion analysis, only the peak summit was used to detect overlap
across any part of a cCRE region (which ranged from 150–350
bp). For the frequently bound region analysis, as the original peaks
were variable in length, we resized each such that 150 bp was add-
ed in each direction from the summit and then merged those that
overlapped. Ourmain conclusions were robust tominor variations
of these processing steps.

Identification of TF perturbation high-throughput expression

data sets

Perturbation strategies can be coarsely grouped by if they reduce
the available pool of TR gene transcripts (knockdowns), if one or
both TR alleles are functionally eliminated (knockouts), if a trans-
genic construct results in elevated levels of the TR (overexpres-
sion), or if sequence variations critically disrupt the function of
the TR (mutants). We first queried existing resources that have ag-
gregated TF perturbation experiments: Gene Perturbation Atlas
(Xiao et al. 2015), ChEA3 (Keenan et al. 2019), and KnockTF
(Feng et al. 2020). Most experiments were identified by extending
strategies used by our group for the Gemma database (Lim et al.
2021). Briefly, this involves human curation of experiment suit-
ability after programmatically searching the GEO database for
co-occurrence of TR gene symbols and a list of perturbation terms
(e.g., “siRNA,” “overexpression”). All identified experiments were
checked for accurate curation by at least two individuals.
Selected experiments were required to have at least two control
and treatment samples and to have samples that perturbed only
the single TR of interest and were of an appropriate technical strat-
egy (single-cell sequencing, sorting by expression, and run-on se-
quencing were excluded).

We found that multiple experiments showed minimal or
even “unexpected” expression changes in the perturbed TF (e.g.,
overexpression of TR yielding an apparent decrease in RNA levels
for the TR) (Supplemental Fig. S9A). We inspected all such exam-
ples, finding that the perturbed TR was often among the top-
ranked genes by absolute FC (median, 81st percentile). Although
we cannot exclude the possibility of sample mislabeling on GEO,
it is possible that temporal or biological factors such as proposed
genetic compensatory mechanisms (El-Brolosy and Stainier
2017; El-Brolosy et al. 2019) may explain the measured TR tran-
script levels postperturbation. Given that the associated studies
typically validated the perturbation independent of the microar-
ray or RNA sequencing experiment, we chose to keep all such
experiments.

Obtaining summarized TR perturbation results from Gemma

The selected expression studies were submitted to the Gemma
framework for uniform processing (Lim et al. 2021). This entails
human curation of the experimental design using controlled ter-
minology, paired with automated handling of batch information,
platform-specific support, and differential expression analysis
(DEA). Gemma fits generalized linear models using the curated ex-
perimental factors, producing a table of summarized results for
each factor (t-statistics, log2 FCs, and P-values). We note that
some studies had experimental factors beyond the TF perturbation
(e.g., “± LPS treatment”). When distinct cell types/tissues were one
of these factors (e.g., a knockout in hypothalamus as well as cere-
bellum), a separate perturbation DEA was performed for each cell
type/tissue. Otherwise, a single model was fit for all experimental
factors, and the perturbation contrast effect sizes (controlling for
the other factors) were extracted. Microarray probes that did not
map to a single gene were excluded, and when multiple probes
or sequencing elementsmapped to a single gene, only the element
with the maximum absolute t-statistic was kept. The FDR was con-
trolled using the Benjamini–Hochberg procedure (p.adjust R, ver-
sion 4.2.1) on the P-values after this filtering. Genes were
binarized as DE at FDR<0.1. In this manner, all experiments can
be represented as gene-by-experiment matrices of the various ef-
fect sizes. Because microarrays vary in which genes are assayed,
their inclusion resulted in variable gene coverage in the final cor-
pus (Supplemental Fig. S7).

Ranking gene targets

For perturbation data, we ranked genes by the count of times that
they were DE across experiments (Count DE), using the absolute
log2 FC as a tie-break (D), and for ChIP-seq, weused themeanbind-
ing score (S). We considered multiple strategies to reach a single
ranking from both data types. A popular approach for individual
experiment pairs is the BETA algorithm,which takes the rank prod-
uct (RP) of a DE gene list and binding scores from an exponential
decay function based on distance from the TSS (as in this study)
(Wang et al. 2013). However, we wished to rank targets using all
the intra-TR data sets, not just pairs. Two options are to tally the
count of times a gene was in a “top overlap” or to average a gene’s
RP across every intra-TR comparison. However, each requires mak-
ing numerous nonindependent comparisons (each experiment is
paired multiple times). Alternatively, rank aggregation strategies
have a long history of use in genomics (e.g., Keenan et al. 2019 av-
erages rankings across different TR–target libraries), with strategies
extended to cases involving unevenly sized rankings (Kolde et al.
2012; Li et al. 2019b). Yet, the final ranking will be influenced if
there are imbalanced experiment counts between the two genomic
methods, and adjusting for this would require calibration against a
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known standard. Consequently, we applied a simplistic hybrid ap-
proach, calculating the RP, as in the BETA algorithm, but using the
aggregated rankings as inputs:

RPg,j =
rank Sg,j

( )
N1

( )
× rank Dg,j

( )
N2

( )
, (3)

whereN are the number of genes for the respective lists. The RP re-
turns a unitless value, whichwe in turn convert to a rank such that
one represents the most prioritized gene g for TR j.

Data access

The code used for analysis in this study can be found at
GitHub (https://github.com/PavlidisLab/TR_aggregation) and as
Supplemental Code. The metadata of the analyzed experiments
and their associated GEO accession identifiers can be found in
Supplemental Tables S1 (ChIP-seq) and S2 (perturbation). The
summarized gene rankings (Supplemental Data S1), data matrices
(Supplemental Data S2), and bound regions (Supplemental Data
S3–S5) used for analysis can additionally be found as RDS objects
in the Borealis data repository (https://doi.org/10.5683/SP3/
MAFGFL).
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