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OBJECTIVES: Most biomarker studies of sepsis originate from high-income coun-
tries, whereas mortality risk is higher in low- and middle-income countries. The 
second version of the Pediatric Sepsis Biomarker Risk Model (PERSEVERE-II) 
has been validated in multiple North American PICUs for prognosis. Given differ-
ences in epidemiology, we assessed the performance of PERSEVERE-II in septic 
children from Pakistan, a low-middle income country. Due to uncertainty regarding 
how well PERSEVERE-II would perform, we also assessed the utility of other se-
lect biomarkers reflecting endotheliopathy, coagulopathy, and lung injury.

DESIGN: Prospective cohort study.

SETTING: PICU in Aga Khan University Hospital in Karachi, Pakistan.

PATIENTS: Children (< 18 yr old) meeting pediatric modifications of adult 
Sepsis-3 criteria between November 2020 and February 2022 were eligible.

INTERVENTIONS: None.

MEASUREMENTS AND MAIN RESULTS: Plasma was collected within 24 
hours of admission and biomarkers quantified. The area under the receiver op-
erating characteristic curve for PERSEVERE-II to discriminate 28-day mortality 
was determined. Additional biomarkers were compared between survivors and 
nonsurvivors and between subjects with and without acute respiratory distress 
syndrome. In 86 subjects (20 nonsurvivors, 23%), PERSEVERE-II discriminated 
mortality (area under the receiver operating characteristic curve, 0.83; 95% CI, 
0.72–0.94) and stratified the cohort into low-, medium-, and high-risk of mortality. 
Biomarkers reflecting endotheliopathy (angiopoietin 2, intracellular adhesion mol-
ecule 1) increased across worsening risk strata. Angiopoietin 2, soluble thrombo-
modulin, and plasminogen activator inhibitor 1 were higher in nonsurvivors, and 
soluble receptor for advanced glycation end-products and surfactant protein D 
were higher in children meeting acute respiratory distress syndrome criteria.

CONCLUSIONS: PERSEVERE-II performs well in septic children from Aga 
Khan University Hospital, representing the first validation of PERSEVERE-II in a 
low-middle income country. Patients possessed a biomarker profile comparable 
to that of sepsis from high-income countries, suggesting that biomarker-based 
enrichment strategies may be effective in this setting.

KEY WORDS: biomarker; children; low- and middle-income countries; prognostic 
enrichment; sepsis

Sepsis, defined as a dysregulated host response to infection causing organ 
failure (1), is responsible for 11 million deaths worldwide every year 
(2). However, this burden is not spread equally across the globe, with 

Southeast Asia, sub-Saharan Africa, and Oceania over-represented for both 
sepsis incidence and mortality (2–5). Additionally, the impact is not constant 
across age groups, with children under 18 years old being approximately twice 

*See also p. 619.
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as likely to die from sepsis as adults (2). The etiolo-
gies for geo-economic discrepancies are multifactorial, 
including fewer resources in low- and middle-income 
countries (LMICs), different infectious etiologies, 
lower vaccination rates for preventable infections, and 
different baseline comorbidities, including nutritional 
status (2–6). The biochemical ramifications of these 
differences, however, is unknown, as most translational 
investigations of sepsis use samples from patients in 
high-income Western countries (7–9). Given these 
differences in epidemiology, there is a disconnect be-
tween the existing translational knowledge of sepsis 
derived from children in high-income countries and 
those in the developing world most at risk.

In both adults and children, sepsis is heteroge-
neous, with patients having distinct comorbidities 
and inciting etiologies (6, 10, 11). This heterogeneity 
has contributed to negative trial results, as therapies 
effective in some patients are ineffective in others 
(12, 13). To mitigate this heterogeneity, biomarkers 
have been used to identify high-risk subgroups (14, 
15) as well as subtypes with shared biochemical pro-
files (16–19). Accurate risk stratification is essential 
for prognostic enrichment in clinical trials, as sev-
eral interventions studied in sepsis may only demon-
strate benefit in patients at higher risk of mortality 
(12, 20). In the United States, the Pediatric Sepsis 
Biomarker Risk Model (PERSEVERE) is a validated 

biomarker-based risk stratification tool to estimate 
baseline mortality risk (14). An updated version, 
PERSEVERE-II, leverages five protein biomarkers and 
platelets collected within 24 hours of PICU admission 
in septic children to estimate 28-day mortality risk, 
with area under the receiver operating characteristic 
(AUROC) curves greater than 0.80 in multiple PICUs 
(15, 21). However, the utility of PERSEVERE-II in 
resource-limited settings is unknown. Therefore, 
given differences in sepsis epidemiology, we assessed 
the performance of PERSEVERE-II in septic children 
from Pakistan, a low-middle-income country. Due 
to uncertainty regarding how well PERSEVERE-II 
would perform in this cohort, we assessed the prog-
nostic utility of other select biomarkers reflecting en-
dothelial dysfunction and dysregulated coagulation 
(22). Finally, given the prognostic impact of acute res-
piratory distress syndrome (ARDS) in sepsis (23), we 
also measured biomarkers reflecting lung epithelial 
injury (24, 25). We hypothesized that PERSEVERE-II 
would discriminate mortality with AUROC of at least 
0.80 in this cohort, with an intent to revise the model 
with additional biomarkers if needed to improve 
discrimination.

METHODS

Study Design

This is an ongoing prospective cohort study conducted 
at the Aga Khan University Hospital (AKUH) PICU 
between November 2020 and February 2022 and re-
ported according to STAndards for the Reporting of 
Diagnostic accuracy studies guidance. The study was 
approved by the AKUH Ethics Review Committee (ERC 
2020-5291-14343; Linking Endotypes and Outcomes 
in Sepsis Induced Pediatric ARDS; approved October 
9, 2020), with consent obtained prior to research pro-
cedures, consistent with the Helsinki Declaration of 
1975.

Patient Selection

Eligible subjects met pediatric modifications of adult 
Sepsis-3 criteria (1, 26). Briefly, subjects were eligible 
if they were: 1) aged older than 44 weeks corrected 
gestational age and younger than 18 years, 2) pre-
sumed infection, 3) pediatric Sequential Organ Failure 
Assessment (pSOFA) score of at least 2, and 4) lactate 

 
RESEARCH IN CONTEXT

	 •	 Most translational investigations of sepsis use 
blood samples from patients in high-income 
Western countries, whereas the human and fi-
nancial cost of sepsis is higher in low- and mid-
dle-income countries.

	 •	 As biomarker-based prognostic and predictive 
enrichment strategies gain favor, it is important 
to determine their utility in low- and middle-
income countries.

	 •	 We validated the Pediatric Sepsis Biomarker 
Risk Model (PERSEVERE)-II, a biomarker-based 
risk stratification tool for pediatric sepsis devel-
oped in North America, in a cohort of septic 
children from Aga Khan University Hospital in 
Karachi, Pakistan.
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greater than 2 mmol/L. Exclusion criteria were: 1) 
weight less than 3 kilograms, 2) not expected to sur-
vive longer than 72 hours, 3) limitations of care at time 
of screening, or 4) previous enrollment in this study.

Sample Collection and Measurements

Clinical data were prospectively collected prospec-
tively at AKUH. After informed consent, plasma was 
collected in citrated tubes within 24 hours of PICU 
admission, centrifuged (2,000g for 20 min at 20°C), 
aliquoted, and frozen at –80°C. Samples were shipped 
on dry ice to the Children’s Hospital of Philadelphia 
(CHOP) and to Cincinnati Children’s Hospital Medical 
Center (CCHMC) for biomarker assays (transit times 
of 7 and 10 d on dry ice). Biomarkers at CHOP were 
measured using singleplex enzyme-linked immuno-
sorbent assays (R & D Systems) and included angio-
poietin 2 (ANG2), the soluble receptor for advanced 
glycation end-products (sRAGE), soluble thrombo-
modulin (sTM), and surfactant protein D (SPD), plas-
minogen activator inhibitor 1 (PAI1), and intracellular 
adhesion molecule 1 (ICAM1). The PERSEVERE-II 
biomarkers of granzyme B, heat shock protein 70, in-
terleukin-8, C-C motif chemokine ligand 3 (CCL3)/
macrophage inflammatory protein-1α, and matrix 
metalloproteinase 8 (MMP8) were measured on a 
Luminex platform at CCHMC (15). Biomarkers were 
measured in duplicate. Platelets were recorded as part 
of clinical data collection at AKUH.

Definitions and Outcomes

Sepsis was defined using a pediatric modification of 
Sepsis-3 (pSOFA ≥ 2 and lactate > 2) (26). Pediatric 
acute respiratory distress syndrome (PARDS) was 
defined using 2015 Pediatric Acute Lung Injury 
Consensus Conference (PALICC) criteria for intu-
bated subjects (27). Severity of illness was recorded 
using pSOFA (26) and the Pediatric Logistic Organ 
Dysfunction (PELOD)-2 score (28). Degree of shock 
was quantified using the highest vasopressor-inotrope 
score on the day of admission (29). The presumed type 
of infection was determined through a combination of 
clinical suspicion, culture (bacterial, fungal), and pol-
ymerase chain reaction (viral) data. The designation 
“immunocompromised” required an immunocom-
promising diagnosis (oncologic, immunologic, rheu-
matologic, transplant) on active immunosuppressive 

chemotherapy or a congenital immunodeficiency (30). 
The primary outcome was 28-day mortality.

Statistical Analysis

Analyses were conducted in State 14.2 (StataCorp, 
College Station, TX). Our primary aim was to test the 
utility of PERSEVERE-II. Projecting a mortality rate of 
15%, 73 subjects were required to detect an AUROC of at 
least 0.80 with α = 0.05 and power = 0.90. PERSEVERE-II 
was a recalibration of the original PERSEVERE risk pre-
diction model that added platelets as a predictor variable 
(14, 15). Both models were developed using classifica-
tion and regression tree (CART) and provided estimates 
for their terminal nodes corresponding to low, medium, 
and high risk of 28-day mortality. The PERSEVERE-II 
model cutoffs were applied to the AKUH cohort, and 
tested for discrimination of 28-day mortality, reporting 
AUROC. As a sensitivity analysis, we tested the discrim-
inative ability of PERSEVERE-II in the AKUH cohort 
using the exact predicted probabilities of mortality re-
ported in the original publication, which had a 28-day 
mortality rate of 12% (15). Sensitivity, specificity, pos-
itive predictive value (PPV), and negative predictive 
value (NPV) were reported after assigning subjects in 
low-risk nodes as predicted survivors, assigning me-
dium- and high-risk nodes as predicted nonsurvivors, 
and comparing predicted with actual survival. Survival 
curves and biomarker levels were compared between 
subjects in low-, medium-, and high-risk nodes using 
log-rank tests and Cuzick’s test of trend, respectively. 
Additional biomarkers were compared between bacte-
rial and viral sepsis, between survivors and nonsurvi-
vors, between those without and without PARDS, using 
the Wilcoxon rank-sum test. Finally, in an exploratory 
analysis, we rederived a decision tree using all available 
biomarkers (including platelets) as input variables and 
report test characteristics.

RESULTS

Description of the Cohort

There were 86 subjects with sepsis enrolled (Fig. 1), of 
whom 20 died (23%) by day 28 (Table 1). Lung (66%) 
and abdomen (20%) were the most common sites of in-
fection. Bacteria were implicated in the majority of infec-
tions (41%), followed by culture-negative (29%) and viral 
sepsis (27%). PELOD and pSOFA scores were high, and 
88% required vasopressors at admission. Of the cohort, 
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36 (42%) met PARDS criteria by 96 hours, with a me-
dian of 4 hours (interquartile range, 2–12 hr) to onset. 
Mortality was higher in immunocompromised subjects 
(41% vs 19% in immunocompetent), as well higher in 
those with PARDS (31% vs 18% in those without).

PERSEVERE-II Performance in Septic Children 
From AKUH

PERSEVERE-II was applied to the cohort using the orig-
inal described cutoffs (Fig. 2) (15). Terminal nodes 7 to 
11 in the original PERSEVERE were pruned to a single 
node (terminal node 7) as there were only two subjects 
with levels of CCL3 greater than 150 pg/mL. With this 
model, PERSEVERE-II discriminated mortality with 
an AUROC of 0.83 (95% CI, 0.72–0.94), a sensitivity of 
0.75, a specificity of 0.79, a PPV of 0.52, and NPV of 0.91. 
Terminal nodes 1, 2, and 5 were low-risk, with mortality 
less than 15%. Terminal nodes 4 and 6 were medium-
risk, with mortality between 25% and 40%. Terminal 
nodes 3 and 7 were high-risk, with mortality ranging 

from 75% to 100%. Figure 3 shows 28-day Kaplan-Meier 
curves for subjects grouped according to their risk strata 
(overall log-rank p < 0.001; all pairwise log-rank p < 
0.01). PERSEVERE-II predicted mortality comparably 
to pSOFA (p = 0.431 for comparison of AUROCs) and 
PELOD-2 (p = 0.397) but significantly better than the 
vasopressor-inotrope score (p = 0.017) (Table 2).

As a sensitivity analysis, we tested the performance 
characteristics of PERSEVERE-II using the exact mor-
tality probabilities reported in the originally described 
model from the United States (mortality ranging 
from 0% in terminal node 1 to 44% in terminal node 
3, 12% in the entire cohort) (15). Using these inputs, 
PERSEVERE-II had an AUROC of 0.80 (95% CI, 0.68–
0.92). Sensitivity, specificity, PPV, and NPV would not 
change with this analysis.

Prognostic Biomarkers in Pediatric Sepsis

Endothelial dysfunction, thrombotic microangiopathy, 
and lung injury are thought to drive organ failure and 

Figure 1. Patient flowchart. ARDS = acute respiratory distress syndrome.
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worse outcomes in sepsis. Therefore, we assessed whether 
select markers of endotheliopathy (ANG2, ICAM1, 

sRAGE), dysregulated coagulation (sTM and PAI1), 
and lung injury (sRAGE and SPD) differed according to 
PERSEVERE risk strata (Supplementary Fig. 1, http://
links.lww.com/PCC/C364). ANG2, ICAM1, sRAGE, 
sTM, and PAI1 were higher in medium- and high-risk 
strata (all Cuzick’s p < 0.05), with stepwise increases 
from low- to high-risk for ANG2 and ICAM1. We tested 
these additional biomarkers for association with mor-
tality, as it was not clear how well PERSEVERE-II would 
perform in this cohort. ANG2, sTM, and PAI1 were all 
elevated in nonsurvivors (all rank-sum p < 0.05) rela-
tive to survivors (Supplementary Fig. 2, http://links.
lww.com/PCC/C364). Biomarker levels were not signif-
icantly different between bacterial and viral sepsis eti-
ologies (Supplementary Fig. 3, http://links.lww.com/
PCC/C364).

SPD and sRAGE Are Elevated in Septic PARDS

We also compared biomarker levels between subjects 
who did (n = 36) and did not (n = 50) meet PALICC 
criteria for PARDS within 96 hours of sepsis onset. 
PARDS onset was rapid, with most PARDS subjects 
meeting concurrently meeting sepsis and PALICC 
criteria. Markers of type I (sRAGE) and type II (SPD) 
alveolar epithelial damage were elevated in subjects 
with PARDS (both rank-sum p < 0.01) relative to those 
without (Supplementary Fig. 4, http://links.lww.com/
PCC/C364).

Exploratory Analysis Using All Biomarkers

To explore the potential added utility of the additional 
biomarkers measured, we rederived a decision tree 
using CART with all available biomarkers (and plate-
lets) as inputs (Supplementary Fig. 5, http://links.
lww.com/PCC/C364). This resulted in a tree with six 
terminal nodes, with PAI1, ANG2, platelets, MMP8, 
and sRAGE retained in the model. The new decision 
tree showed a higher AUROC for mortality discrimi-
nation (AUROC, 0.91; 95% CI, 0.63–1), a sensitivity of 
1, specificity of 0.77, a PPV of 0.57, and NPV of 1. This 
AUROC, while higher, did not significantly differ from 
the AUROC 0.83 for PERSEVERE-II (p = 0.302).

DISCUSSION

We report the first validation of PERSEVERE-II, an 
established risk prediction model for pediatric sepsis, 

TABLE 1.
Demographics of the Cohort (n = 86)

Variable Values 

Demographics  

 � Age (yr), median (IQR) 2.7 (0.4–12)

 � Assigned female sex (%) 33 (39)

 � Stunted (height < 5%ile) (%) 18 (21)

 � Weight for length < 5%ile (%) 9 (10)

Comorbid conditions (%)  

 � Chronic kidney disease 3 (3)

 � Chronic liver disease 6 (7)

 � Immunocompromised 17 (20)

 � Oncologic 13 (15)

 � Stem cell transplant 2 (2)

Site of infection (%)  

 � Lung 57 (66)

 � Abdomen 20 (23)

 � Other 9 (10)

Presumed type of infection (%)  

 � Bacterial 35 (41)

 � Viral 23 (27)

 � Fungal 3 (3)

 � Culture negative 25 (29)

Severity of illness  

 � P�ediatric Logistic Organ Dysfunction-2, 
median (IQR)

6 (4–8)

 � P�ediatric Sequential Organ Failure 
Assessment, median (IQR)

8 (6–11)

 � Vasopressors (%) 76 (88)

 � V�asopressor-inotrope score (n = 76), 
median (IQR)

8 (5–11)

 � Lactate (mmol/L), median (IQR) 3.1 (2.4–4.8)

Ancillary therapies, n (%)  

  Corticosteroids 38 (44)

  IV immunoglobulin 10 (13)

  Renal replacement therapy 10 (13)

PARDS  

 � PARDS within 96 hr of sepsis, n (%) 36 (42)

 � Time to PARDS (hr), median (IQR) 4 (2–12)

28-d mortality, n (%) 20 (23)

IQR = interquartile range, PARDS = pediatric acute respiratory 
distress syndrome.

http://links.lww.com/PCC/C364
http://links.lww.com/PCC/C364
http://links.lww.com/PCC/C364
http://links.lww.com/PCC/C364
http://links.lww.com/PCC/C364
http://links.lww.com/PCC/C364
http://links.lww.com/PCC/C364
http://links.lww.com/PCC/C364
http://links.lww.com/PCC/C364
http://links.lww.com/PCC/C364
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in a low-middle income country. In this cohort, with 
twice the mortality rate of comparable cohorts from 
high-income countries (15, 21), PERSEVERE-II had 
similar performance, with AUROC near 0.80. We addi-
tionally demonstrated preliminary evidence for added 
prognostic utility for biomarkers of endotheliopathy 
and coagulation in pediatric sepsis, as well as the utility 
of lung-associated biomarkers to identify PARDS in 
septic children. Overall, the molecular phenotype of 
sepsis from AKUH reflected in these biomarkers par-
allels what has been reported in cohorts from high-
income countries, suggesting that biomarker-based 
risk stratification and subphenotyping strategies may 
generalize to LMICs.

The major utility of risk stratification models such 
as PERSEVERE-II is for identifying subjects at low 
risk, who potentially should be excluded from trials 
of aggressive intervention, and at very high risk, who 
may have limited ability to modify their outcome with 
a trial intervention (20, 21). While the utility of any 
risk stratification model requires rigorous prospective 
assessment in the setting of a trial, the first step is de-
velopment and testing of a reliable risk stratification 
tool. Our results support the use of PERSEVERE-II for 
this purpose in pediatric sepsis. As in other reports of 
PERSEVERE-II (15, 21), NPV was higher than PPV, al-
though not quite as high as in cohorts from the United 
States due to higher mortality at AKUH, which may 

limit its utility for excluding low-risk subjects from tri-
als. The higher mortality at AKUH also resulted in a 
higher PPV than other reports of PERSEVERE-II in 
the United States. Overall, PERSEVERE-II stratified 
the cohort into low-, medium-, and high-risk sub-
groups, confirming prognostic utility. In exploratory 
analysis, the addition of endothelial, coagulation, and 
lung injury biomarkers improved the sensitivity and 
NPV of the mortality prediction model, suggesting 
potential value for better identifying low-risk subjects.

While the vast majority of biomarker-based studies 
for prognostic and predictive enrichment in critical ill-
ness syndromes like sepsis and ARDS have occurred in 
high-income countries, the mortality burden of these 
conditions is disproportionately carried by lower in-
come countries (2). This cohort from AKUH, for ex-
ample, has twice the mortality rate of comparable 
pediatric sepsis cohorts (14, 15), despite a similar dis-
tribution of age, primary site of infection, and comor-
bidity profile. With few biomarker studies in septic 
subjects from LMICs, adult or pediatric, it is unclear 
whether their molecular phenotypes are similar or 
not to what has been reported in the literature. Our 
results demonstrate that this cohort has a biomarker 
profile consistent with what has been reported and 
that existing biomarker-based strategies would likely 
be applicable.

There is a paucity of studies measuring biomarkers 
in pediatric sepsis from Pakistan, and none identify-
ing prognostically useful proteins (31). In our study, 
in addition to the prognostic utility of the inflamma-
tory biomarkers comprising PERSEVERE-II, we found 
higher levels of ANG2, a marker of endothelial dam-
age, and of sTM and PAI1, markers of dysregulated 
coagulation, in nonsurvivors. These three biomarkers 
have predicted mortality in other sepsis cohorts (32–
34) and mechanistically could plausibly contribute to 
worsening organ failures and death. Indeed, the re-
spective implicated pathways of the endothelium and 
coagulation systems are linked, with damage in one 
contributing to dysregulation in the other (35). A 
very recent revision of PERSEVERE-II incorporating 
ANG2, its antagonist ANG1, and their shared receptor 
(tyrosine kinase with immunoglobin and EGF ho-
mology domains 2) was shown to improve prognostic 
performance in a large cohort of septic children from 
the United States (22). Thus, interventions to stabilize 
the endothelium and target the coagulopathy of sepsis 

 
AT THE BEDSIDE

	 •	 PERSEVERE-II performs equally well in pe-
diatric sepsis subjects from Pakistan for risk 
stratification.

	 •	 Biomarkers reflecting innate immune activity 
and endotheliopathy were associated with 
worse prognosis, and biomarkers reflecting 
lung damage were associated with develop-
ment of acute respiratory distress syndrome.

	 •	 Pediatric sepsis from Pakistan, a low-middle-
income country, has a biomarker profile similar 
to what has been reported in adult and pediatric 
sepsis from high-income countries, suggesting 
that biomarker-based enrichment strategies 
may be applicable to this population.
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Figure 2. Classification and regression tree-based Pediatric Sepsis Biomarker Risk Model (PERSEVERE)-II model stratifying septic 
children into one of seven terminal nodes (TNs). All subjects start at the root node at the top and subsequently stratified according 
to biomarker levels into TNs. TNs 1, 2, and 5 (green) are low-risk of 28-d mortality. TNs 4 and 6 (blue) are medium-risk. TNs 3 and 
7 (red) are high-risk). For comparison, the color-coded low-, medium-, and high-risk TNs are identical to those identified using the 
PERSEVERE-II model in children from the United States, albeit with lower mortality rates in the original cohort (low-risk < 2%, medium-
risk 15–20%, high-risk > 40% predicted mortality risk). TN7 in this cohort from Aga Khan University Hospital is pruned from the original 
PERSEVERE-II due to only having two subjects. CCL3 = C-C motif chemokine ligand 3, GI = gastrointestinal, HSPA1B = heat shock 
protein 72, IL8 = interleukin-8, MMP8 = matrix metalloproteinase 8.
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may also be translatable to septic children in Pakistan. 
Our data also suggest the potential to further improve 
the performance of future sepsis prognostic models 
in this cohort, particularly with an incorporation of 
markers of endothelial dysfunction.

We also showed higher levels of sRAGE and SPD 
in subjects with PARDS, suggesting that markers of 
alveolar epithelial damage can identify subjects with 
significant lung injury in this cohort. While sRAGE 
expression is ubiquitous (36–38), levels are highest in 

TABLE 2.
Comparison of Area Under the Receiver Operating Characteristic Curves

Model 
Area Under the Receiver Operating 

Characteristic (95% CI) p vs PERSEVERE-II 

PERSEVERE-II 0.83 (0.72–0.94) —

Pediatric Sequential Organ Failure Assessment 0.72 (0.60–0.85) 0.431

Pediatric Logistic Organ Dysfunction-2 0.72 (0.61–0.94) 0.397

Vasopressor-inotrope score 0.58 (0.43–0.73) 0.017

PERSEVERE-II = Pediatric Sepsis Biomarker Risk Model-II.

Low

Medium

High

0.00

0.25

0.50

0.75

1.00

S
ur

vi
va

l

0 10 20 30

Days after sepsis onset

Figure 3. Kaplan-Meier survival curves for subjects stratified into low- (green), medium- (blue), and high-risk (red) Pediatric Sepsis 
Biomarker Risk Model-II strata. Overall log-rank p < 0.001. Pairwise comparisons (low-risk vs medium-risk p = 0.003; medium-risk vs 
high-risk p = 0.008; low-risk vs high-risk p < 0.001) are also significant.
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type I alveolar epithelia (24, 39), and elevated sRAGE 
has been reported in adult and pediatric ARDS, with 
higher levels in nonsurvivors. SPD is expressed in 
type II alveolar epithelia (25, 40), with elevated levels 
in direct ARDS reflecting epithelial barrier disrup-
tion. Overall, our results preliminarily suggest that 
the molecular phenotype of PARDS, a syndrome re-
lated to sepsis, may also be similar to what has been 
reported in pediatric and adult ARDS cohorts from 
high-income countries. Thus, biomarker-based risk 
stratification and endotyping strategies in PARDS de-
veloped in high-income countries may also generalize 
to children in lower income countries.

Our study has several limitations. Subjects were 
recruited from a single center, and generalizability 
to other centers in Pakistan, Southeast Asia, or other 
LMICs cannot be assumed. The intrinsic heterogeneity 
of sepsis, and treatments specific to AKUH, could 
plausibly impact biomarker levels and thus affect per-
formance of any biomarker-based risk prediction tool. 
The overall sample size was small, although the larg-
est reported to date in pediatric sepsis from Pakistan. 
Samples were collected only at a single time point and 
the longitudinal trajectory of these biomarkers, or the 
longitudinal stability of PERSEVERE-II, remains un-
known. While we used a modified definition for sepsis 
and an established definition for PARDS, clinical syn-
dromes subjects to misclassification when making 
assignments in real-time. Biomarkers were measured 
after being shipped to the opposite side of the globe 
without comparison of biomarker levels before and 
after shipping, and we cannot exclude any errors during 
handling. However, we would expect this to bias results 
toward the null. Our study also has several strengths. 
We prospectively enrolled subjects with in order to test 
a specific risk stratification tool. Blood was collected 
within 24 hours of PICU admission, minimizing the 
impact of interventions on biomarker levels, and thus 
ensuring that plasma was reflective primarily of un-
derlying mortality risk. Biomarkers were measured by 
institutions familiar with these assays, and this study 
represents a strong and ongoing collaboration between 
lower and higher income countries to advance pedi-
atric critical care.

PERSEVERE-II, a biomarker-based risk strati-
fication tool for pediatric sepsis developed in the 
United States, performs well in a cohort from AKUH 
in Pakistan, with an AUROC for discriminating 

28-day mortality of 0.83. This is the first validation 
of PERSEVERE-II in a low-middle-income country. 
ANG2, sTM, and PAI1 were elevated in sepsis nonsur-
vivors, and sRAGE and SPD elevated in subjects with 
PARDS, suggesting a biomarker profile comparable to 
that of sepsis and PARDS from high-income countries. 
Biomarker-based risk stratification and subphenotyp-
ing strategies for critical illness syndromes developed 
in high-income countries may generalize to lower in-
come countries with higher mortality.
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