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Abstract

Background: Presence of circulating tumor DNA (ctDNA) is prognostic in solid tumors treated with curative intent. Studies have
evaluated ctDNA at specific “landmark” or multiple “surveillance” time points. However, variable results have led to uncertainty
about its clinical validity.

Methods: A PubMed search identified relevant studies evaluating ctDNA monitoring in solid tumors after curative intent therapy.
Odds ratios for recurrence at both landmark and surveillance time points for each study were calculated and pooled in a
meta-analysis using the Peto method. Pooled sensitivity and specificity weighted by individual study inverse variance were
estimated and meta-regression using linear regression weighted by inverse variance was performed to explore associations between
patient and tumor characteristics and the odds ratio for disease recurrence.

Results: Of 39 studies identified, 30 (1924 patients) and 24 studies (1516 patients) reported on landmark and surveillance time points,
respectively. The pooled odds ratio for recurrence at landmark was 15.47 (95% confidence interval ¼ 11.84 to 20.22) and at surveillance
was 31.0 (95% confidence interval ¼ 23.9 to 40.2). The pooled sensitivity for ctDNA at landmark and surveillance analyses was 58.3%
and 82.2%, respectively. The corresponding specificities were 92% and 94.1%, respectively. Prognostic accuracy was lower with tumor
agnostic panels and higher with longer time to landmark analysis, number of surveillance draws, and smoking history. Adjuvant
chemotherapy negatively affected landmark specificity.

Conclusions: Although prognostic accuracy of ctDNA is high, it has low sensitivity, borderline high specificity, and therefore modest
discriminatory accuracy, especially for landmark analyses. Adequately designed clinical trials with appropriate testing strategies and
assay parameters are required to demonstrate clinical utility.

Adjuvant systemic therapy (chemotherapy; radiation; and, more

recently, immunotherapy) improves outcomes for solid tumors;

however, absolute incremental benefits of various therapies in

many tumor types are modest (1-4). A large proportion of

patients may be cured with surgical removal of the primary

tumor alone. For most solid tumors, the decisions for adjuvant

therapy are based on conventional clinical factors associated

with risk of recurrence (1,5,6). In recent years, pathological

response to neoadjuvant therapy and gene expression profiling

assays (eg, Oncotype DX and MammaPrint in breast cancer) have

been incorporated in standard adjuvant treatment decision mak-

ing (7-10). However, these tools are based on population-based

estimates of risk and remain imperfect, such that treatment deci-

sions continue to rely on clinical risk factors and shared decision

making between patients and clinicians (11,12).
To detect relapse after curative therapy, oncologists have

relied on clinical, imaging, and blood-based tumor biomarkers;

however, these are limited by their sensitivity and specificity and

their ability to detect a recurrence before the development of

incurable metastatic disease (13,14). Furthermore, studies that

have tried to initiate systemic therapy preemptively based on

tumor markers have failed to observe improved overall survival

(15). Therefore, improved biomarkers are needed to identify

patients who are at greater risk of recurrence in whom early

intervention may improve outcomes.
For several hematologic malignancies, detection of minimal or

measurable residual disease (MRD) in blood or bone marrow

using flow cytometry, digital droplet polymerase chain reaction,

or next-generation sequencing (NGS) has been established as a

poor prognostic factor following induction therapy (16).

Modification of therapy based on MRD detection is standard of

care in acute lymphoblastic leukemia, acute promyelocytic

leukemia, and chronic myelogenous leukemia and is under

active investigation in acute myeloid leukemia and multiple

myeloma. Given such actionability of MRD in hematological

malignancies, biomarkers that could identify patients with solid

tumors who harbor MRD might have utility in personalizing

adjuvant therapy or preemptively treating patients in an

effort to prevent or “intercept” the development of metastatic

disease (17-19).
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Circulating tumor DNA (ctDNA) is being extensively evaluated
as a potential MRD marker in solid tumors. Since the first report
of ctDNA detection in solid tumors in 1994 (20), major technologi-
cal advancements have been made in the field, enabling a variety
of new methods with improved analytical sensitivity and specif-
icity. Several observational studies have identified the adverse
prognostic impact of ctDNA detection following completion of
curative intent therapy. These have variously employed single
time point “landmark” analyses or strategies for repeated
“surveillance” testing at defined intervals. Although these reports
have contributed to an increasing understanding of MRD detec-
tion in the context of solid tumors, multiple questions remain
unanswered. Importantly, test performance of ctDNA platforms
across various solid tumors (as measured by sensitivity and spe-
cificity) is uncertain. Additionally, the magnitude of prognostic
information is not well established.

The primary objective of our study was to quantify the prog-
nostic value of ctDNA and determine the pooled sensitivity and
specificity of ctDNA at both “landmark” and “surveillance” time
points to inform the ongoing investigation of these different
strategies. Secondarily, we aimed to explore sources of heteroge-
neity across different solid tumors and performed subgroup anal-
yses to identify specific clinical characteristics or tumor types
where ctDNA monitoring for relapse prediction may have differ-
ential evidence of clinical validity.

Methods
Literature review and study identification
The review and meta-analysis was conducted in accordance with
Meta-Analysis of Observational studies in Epidemiology guide-
lines (21) (see Supplementary Table 1, available online). Two
independent reviewers (A.M. and C.M.) searched MEDLINE (host:
PubMed) to identify studies published between January 1, 2000,
and May 7, 2022, and that evaluated the test performance and/or
prognostic value of ctDNA measurement in solid tumors after
curative intent therapy at landmark and/or surveillance time
points. The following MeSH terms were used for the search:
“circulating tumor DNA” and “cancer.” We restricted our search
to studies performed in adults and reported in English. When
multiple reports of 1 study were published, the most recent ver-
sion with the longest follow-up was included in the analysis. We
only included studies that reported the absolute number of
patients with and without recurrence and their ctDNA status at
the time of or before detection of recurrence. Risk of bias assess-
ment was performed using the Newcastle Ottawa Scale (NOS) for
observational studies (Supplementary Table 2, available online)
(22). This validated scale assesses studies on the basis of selec-
tion, comparability, and outcomes of included studies and ranks
studies as good, fair, or poor quality based on these parameters.

Data extraction
Data were independently collected by 2 reviewers (A.M. and
C.M.). Discrepancies were resolved by a third reviewer (E.A.). All
data were extracted from primary publications and their associ-
ated online appendices. Collected data for all studies included
summary study characteristics such as number of patients (N),
tumor type, methodology for ctDNA testing (type of tests includ-
ing NGS or polymerase chain reaction, number of genes and var-
iants tracked, and limit of detection [when available]), type of
panel used (tumor informed [if it used mutational information
from a patient’s primary tumor to create a personalized assay] vs
tumor agnostic [if a general panel was used without

consideration of patient-specific tumor mutations]), median age,
proportion of male sex, proportion of patients with advanced-
stage disease at presentation, proportion of patients receiving
neoadjuvant or adjuvant chemotherapy, proportion of patients
with smoking history, median follow-up time, and lead time
(time interval between ctDNA detection and radiological and/or
clinical recurrence). We also extracted the number of patients
with and without radiological or symptomatic recurrence and
their corresponding ctDNA status as reported in the studies. For
studies reporting on landmark analysis, time to landmark blood
draw and timing of blood draw with respect to adjuvant chemo-
therapy were also noted. When reported, we also extracted the
number of surveillance draws for studies reporting on surveil-
lance time points. Sensitivity of ctDNA was defined as the per-
centage of patients who were ctDNA positive (either at landmark
time point for landmark analyses or at any time point during sur-
veillance analyses) before or at the time of recurrence among
those who eventually had recurrent disease. Specificity was
defined as percentage of patients who remained ctDNA negative
and free of recurrence until last follow-up on the study.

Data synthesis and statistical analysis
Sensitivity and specificity of ctDNA at both landmark and surveil-
lance time points were calculated for each individual study. We
calculated the variance of each study and used inverse variance
to weigh the pooled sensitivity and specificity of ctDNA at both
landmark and surveillance time points. We then calculated odds
ratios (ORs) for disease recurrence at both landmark and surveil-
lance time points for each study. Because recurrences were gen-
erally rare events, these were pooled in a meta-analysis using the
Peto method (fixed effects) (23) because this method has been
identified as the least biased and most powerful (24). Magnitude
of heterogeneity was assessed using the I2 test. We performed
multiple subgroup analyses for both landmark and surveillance
time points to define the effect of primary tumor site, type of
panel (tumor informed vs tumor agnostic), and timing of land-
mark sample with respect to adjuvant chemotherapy (pre- vs
postchemotherapy). Differences between subgroups were eval-
uated using Mann-Whitney U test for 2 groups or Kruskal-Wallis
test for more than 2 groups. Meta-regression using linear regres-
sion weighted by inverse variance was performed to explore asso-
ciations between the natural logarithm for the odds ratio for
disease recurrence and study level patient and tumor character-
istics (median age, proportion of males, proportion with smoking
history, proportion with advanced stage, proportion of patients
receiving adjuvant or neoadjuvant chemotherapy, time to land-
mark blood draw [for landmark analysis], and number of surveil-
lance blood draws [for surveillance analysis]). For meta-
regression, statistical power was expected to be very low because
the unit of measurement was individual studies of which fewer
than 50 were expected to be included in the analyzable cohort.
Therefore, we decided to make inference based on quantitative
significance rather than statistical significance. The threshold for
quantitative significance was defined using methods described
by Burnand et al. (25), with a coefficient ß � 0.28 considered
quantitatively significant irrespective of statistical significance.
However, tests for statistical significance were reported nomi-
nally. Meta-regression was also performed for sensitivity and
specificity at both landmark and surveillance points. Sensitivity
analyses were performed excluding studies with poor methodo-
logical quality for both landmark and surveillance analysis. All
analyzes were performed using SPSS version 28.0 (IBM Corp,
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Armonk, NY, USA) and Review Manager v5.4. For meta-analysis,

statistical significance was defined as P less than .05.

Results
Study characteristics
A total of 39 observational studies reporting on 2774 patients met

the inclusion criteria (Figure 1). Of these studies, 30 studies

(N¼ 1924) reported on landmark analyses and 24 studies

(N¼ 1516) reported on surveillance analyses; 15 studies

(N¼ 1161) reported on both landmark and surveillance time

points. The characteristics of the included studies are detailed in

Table 1 and Supplementary Tables 3 and 4 (available online).

Among both landmark and surveillance analysis, much of the

data were derived from studies in colorectal cancer (14 studies

[N¼ 1284] for landmark and 9 studies, N¼ 769 for surveillance).

Most studies used a tumor-informed approach to ctDNA surveil-

lance (25 of 30 studies [83.3%] of landmark studies and 21 of 24

studies [87.5%] of surveillance studies). Further details of ctDNA

testing strategies are provided in Supplementary Table 5 (avail-

able online). Four studies did not provide data on use of adjuvant

chemotherapy (26-29), and 1 study each reported on consolida-

tion (30) and adjuvant immunotherapy (31); hence, they were

excluded from the subgroup analysis of adjuvant chemotherapy.
Mean baseline ctDNA positivity (defined as any measurable
ctDNA) was 69.8% of patients in landmark studies and 72.8% of
patients in surveillance studies. Overall, 12 studies each reporting
on landmark and surveillance analysis were of good methodolog-
ical quality as determined by NOS.

Landmark analysis
The mean sensitivity of ctDNA at landmark time point was 58.3%
with specificity of 92.0%. The sensitivity was lower in a sensitivity
analysis considering studies of only good methodological quality,
whereas specificity was similar (sensitivity 47.9% and specificity
95.1%). The median time to landmark testing after completion of
all definitive therapy was 28 days (range ¼ 3-426 days). At a
median follow-up of 24.7 months (range ¼ 12.5-84 months),
among those with a positive ctDNA test and a clinical or radio-
graphic recurrence, the lead time was 5.1 months (range ¼ 2-
11.5 months). The odds ratio for recurrence for a positive ctDNA
test at landmark time point was 15.47 (95% confidence interval
[CI] ¼ 11.84 to 20.22, I2 ¼ 64%). The odds ratio remained similar
when only studies of good methodological quality were consid-
ered (OR ¼ 22.64, 95% CI ¼ 15.26 to 33.59, P< .001, I2 ¼ 72%).
There was no statistically significant difference in prognostic
accuracy by primary tumor site (P¼ .10) (Figure 2). There was
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Figure 1. Flow diagram for study selection.
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Table 1. Summary of included studiesa

Study
details

Primary
site

Study
design

Panel
type

No of
patients

Baseline
ctDNA

positivity
(%)

Landmark
sensitivity

Landmark
specificity

Surveillance
sensitivity

Surveillance
specificity

Azad et al., 2020 (69) Gastric/esophagus P Tumor agnostic 45 60 77.7% 95.45% NA NA
Yang et al., 2020

(70)
Gastric/esophagus P Tumor agnostic 46 50 41.2% 100% 84.2% 96%

Benhaim et al., 2021
(71)

Colorectal P Tumor agnostic 184 27.5 27.6% 92.9% NA NA

Chen et al., 2021
(72)

Colorectal P Tumor agnostic 240 64.2 60% 96.3% 82.6% 94.1%

Diehl et al., 2008
(27)

Colorectal P Tumor agnostic 18 100 100% 80% NA NA

Henriksen et al.,
2022 (73)

Colorectal P Tumor informed 160 91 42.1% 96.1% 88% 98.8%

Jin et al., 2020 (50) Colorectal P Tumor agnostic 82 89 55% 71.7% NA NA
Khakoo et al., 2019

(74)
Colorectal P Tumor agnostic 23 74 75% 100% NA NA

McDuff et al., 2021
(75)

Colorectal P Tumor informed 29 34.6 66.6% 100% NA NA

Parikh et al., 2021
(76)

Colorectal P Tumor agnostic 84 88 55.6% 95.3% 70.4% 95.7%

Reinert et al., 2019
(51)

Colorectal P Tumor informed 125 88.5 70% 88.1% 87.5% 98.3%

Scholer et al., 2017
(77)

Colorectal P Tumor agnostic 26 74 60% 100% 100% 100%

Tarazona et al.,
2019 (53)

Colorectal P Tumor agnostic 94 63.8 44.4% 89.65% 77.7% 96.5%

Tie et al., 2019a (78) Colorectal P Tumor informed 96 NA 42% 94.4% NA NA
Tie et al., 2019b (79) Colorectal P Tumor informed 159 77 47.8% 94.11% NA NA
Wang et al., 2021

(54)
Colorectal P Tumor agnostic 91 88.7 57.4% 80% NA NA

Fakih et al., 2022
(80)

Colorectal R Tumor agnostic 48 100 NA NA 53.3% 100%

Tie et al., 2016 (81) Colorectal P Tumor informed 178 No NA NA 40.7% 98%
Wang et al., 2019

(82)
Colorectal NGS Tumor informed 58 No NA NA 100% 93.8%

Chaudhuri et al.,
2017 (83)

Lung R Tumor agnostic 40 93 94% 100% 100% 100%

Chen et al., 2019
(49)

Lung P Tumor agnostic 27 83.9 85.7% 70% NA NA

Moding et al., 2020
(30)

Lung R Tumor agnostic 28 75 75% 93% 100% 100%

Waldeck et al., 2022
(57)

Lung P Tumor informed 21 57 50% 100% 55.5% 83.3%

Zviran et al., 2020
(29)

Lung P Tumor informed 22 NA 100% 70.6% NA NA

Abbosh et al., 2017
(55)

Lung P Tumor informed 24 48 NA NA 92.9% 90%

Peng et al., 2020 (32) Lung P Tumor agnostic 77 No NA NA 63.3% 61.9%
Qiu et al., 2021 (84) Lung P Tumor informed 89 No NA NA 79.4% 92.7%
Coombes et al., 2019

(85)
Breast P Tumor informed 49 100 55.6% 100% 88.9% 100%

Garcia Murillas,
2019 (85)

Breast P Tumor informed 101 51 NA NA 79% 91.7%

Garcia Murillas
et al., 2015 (86)

Breast P Tumor informed 55 78 50% 96% 80% 96.4%

Parsons et al., 2020 Breast R Tumor informed 142 Yes NA NA
Olsson et al., 2015

(87)
Breast P Tumor agnostic 20 No NA NA 92.8% 100%

Groot et al., 2019
(56)

Pancreas P Tumor informed 59 49 37% 92.8% 90% 88%

Jiang et al., 2020 (28) Pancreas P Tumor informed 27 66.7 57.1% 96.3% NA NA
Lee et al., 2019 (88) Pancreas P Tumor agnostic 42 62 56.5% 100% NA NA
Sausen et al., 2015

(52)
Pancreas P Tumor agnostic 24 43 57.1% 75% NA NA

Tan et al., 2019 (31) Melanoma P Tumor informed 68 36 44.8% 100% 66.6% 92.1%
Christensen et al.,

2019 (89)
Bladder P Tumor informed 66 NA 45.8% 97.1% NA NA

Flach et al., 2022
(26)

Head and neck P Tumor informed 17 93 NA NA 100% 100%

a NA ¼ not available; NGS ¼ next-generation sequencing; P ¼ prospective; PCR ¼ polymerase chain reaction; R ¼ retrospective.
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higher prognostic accuracy for tumor-informed panels compared
with tumor agnostic panels, which approached but did not meet
statistical significance (OR ¼ 17.84 [95% CI ¼ 13.12 to 24.27] vs
9.87 [95% CI ¼ 5.73 to 17.03, P¼ .06]; Figure 3). Landmark samples

taken after adjuvant chemotherapy showed higher prognostic
accuracy compared with samples analyzed before adjuvant che-
motherapy, which again approached but did not meet statistical
significance (OR ¼ 24.48 [95% CI ¼ 10.61 to 56.46] vs 10.94 [95% CI

Figure 2. Landmark time analysis by disease site.
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¼ 7.90 to 16.39], P¼ .09; Supplementary Figure 1, available
online). Subgroup analysis for pooled sensitivity and specificity
did not show any significant differences (Supplementary Table 6,
available online). In meta-regression analysis, higher stage
(b¼ 0.38, P¼ .07) and longer time to landmark (b¼ 0.45, P¼ .02)
were associated with quantitatively better prognostic accuracy,
whereas prognostic accuracy was quantitatively lower in older
patients (b¼�0.41, P¼ .03) and those receiving neoadjuvant che-
motherapy (b¼�0.51, P¼ .24; see Table 2). Meta-regression
results were similar if only colorectal cancer studies were consid-
ered; however, time to landmark analysis lost quantitative signif-
icance (b¼ 0.17, P¼ .58) (Supplementary Table 7, available
online). Meta regression results for sensitivity and specificity are
shown in Supplementary Table 8 (available online). Visual
inspection of funnel plot did not reveal any publication bias
(Supplementary Figure 2, available online).

Surveillance analysis
The mean pooled sensitivity for surveillance analysis was 82.2%,

with a corresponding specificity of 94.1%. These estimates were

slightly lower in a sensitivity analysis of studies with good meth-

odological quality on NOS (sensitivity, 77.4%; specificity, 92.6%).

The median lead time between ctDNA positivity and clinical or

radiologic recurrence among those with recurrence was

5.5 months (range ¼ 0.7-12.6 months, median follow-up ¼
29.1 months). The median number of surveillance draws was 8

(range ¼ 5-12). The odds for recurrence were significantly higher

if ctDNA was positive during any surveillance time point (OR ¼
31.04, 95% CI ¼ 23.95 to 40.23, I2¼ 71%). Excluding studies of poor

quality did not change the odds ratio substantially (OR ¼ 32.29,

95% CI ¼ 22.85 to 45.64, P< .001). Prognostic accuracy was lower

for lung cancer and better for colorectal cancer compared with

Figure 3. Landmark time analysis by type of panel.
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breast or other tumor sites (lung: OR ¼ 13.29, 95% CI ¼ 8.15 to
21.65; breast: OR ¼ 27.76, 95% CI ¼ 13.53 to 56.95; colorectal: OR
¼ 72.19, 95% CI ¼ 46.06 to 113.15; other: OR ¼ 28.33, 95% CI ¼
16.10 to 49.86, Pdifference < .001; Figure 4). Excluding the study by
Peng et al. (32), which had the worst prognostic accuracy among
lung cancer studies, the within-group differences remained sig-
nificant, with highest accuracy for colorectal cancer (P¼ .03;
Supplementary Figure 3, available online). Tumor-informed pan-
els were associated with better prognostic accuracy than tumor
agnostic panels, as observed in a landmark analysis (OR ¼ 42.84,
95% CI ¼ 32 to 57.36 vs 7.04, 95% CI ¼ 3.73 to 13.31, P � .001;
Figure 5). Meta-regression showed quantitatively better prognos-
tic accuracy with smoking (b¼ 0.55, P¼ .26), greater number of
surveillance draws (b¼ 0.36, P¼ .18), and in patients receiving
adjuvant chemotherapy (b¼ 0.41, P¼ .09; Table 2). No significant
differences were observed in subgroup analysis for sensitivity
and specificity (Supplementary Table 6, available online). Meta-
regression for pooled sensitivity and specificity at surveillance
time points is shown in Supplementary Table 9 (available online).
No publication bias was observed by visual inspection of the fun-
nel plot (Supplementary Figure 4, available online).

Discussion
The value of ctDNA as a biomarker for tumor burden, treat-
ment response, and prognosis has been established in patients
with advanced solid tumors (33). In an attempt to integrate this
promising biomarker into clinical decision making for solid
tumors treated with curative intent, various observational stud-
ies have been performed to evaluate test performance and clin-
ical validity for the detection of MRD in predicting future
relapse. Because these studies have been limited individually
by small sample sizes, event rates, and heterogeneity, we per-
formed a pooled analysis to synthesize the evidence for the use
of ctDNA surveillance in patients with solid tumors treated
with curative intent therapy. We observed that positive ctDNA
is prognostic for recurrence after curative treatment when
tested either once or serially. Although sensitivity for predicting
relapse was generally low, especially when tested at a single
time point, specificity was higher albeit at a level in which clin-
ical utility may be marginal. Generally, specificity of cancer sur-
veillance tests needs to be very high so as to not expose
patients who are unlikely to have recurrence to the substantial
toxicity of anticancer therapy. It could be argued that specific-
ity in the lower 90% range is borderline. However, specificity
data need to be interpreted in the context of limitations of test-
ing methodology, use of adjuvant chemotherapy, and variable
follow-up duration. Furthermore, with most studies performed

in colorectal cancer, caution is suggested in generalization of
these data to other tumor sites. Of note, these estimates did
not significantly change in a sensitivity analysis based on
methodological quality of individual studies. Of interest, prog-
nostic accuracy was better for tumor informed compared with
tumor agnostic approaches, especially for surveillance time
point. Furthermore, chemotherapy delivered either in the adju-
vant or neoadjuvant setting affected specificity of landmark
testing. Finally, the timing of ctDNA analysis with respect to
adjuvant chemotherapy appeared important when landmark
testing was used.

ctDNA detection at any time point after curative therapy was
a strong predictor for relapse across solid tumor sites with a mag-
nitude of effect greater than has been demonstrated for individ-
ual clinical and pathological prognostic factors (34-36). In this
study, we also provide pooled estimates for magnitude of prog-
nostic effect that can be used to counsel patients enrolled in clin-
ical trials about optimizing adjuvant therapy based on ctDNA
(37-39). On the basis of data reported in this analysis, randomiza-
tion of ctDNA-positive patients who do not have symptoms or
imaging evidence of recurrence to placebo in the presence of
such high odds of recurrence presents a considerable challenge
and may present a hurdle for recruitment to these trials.
Alternative strategies including treatment escalation in ctDNA-
positive patients and deescalation in those who are negative are
being evaluated (40-42). However, given the low sensitivity
(58.3%) in the landmark setting, which was further compromised
with neoadjuvant chemotherapy, such approaches appear gener-
ally insufficient to support treatment deescalation in scenarios
where a well-established role for adjuvant therapy exists
(1,43,44).

Adjuvant chemotherapy affected specificity of ctDNA testing
at a landmark time point. This is expected given the efficacy of
adjuvant chemotherapy in eliminating residual disease in a pro-
portion of patients. This has important implications for trials
evaluating treatment escalation based on ctDNA positivity
(40,45), which may result in overtreatment of a fraction of
patients who otherwise would have been cured with standard of
care alone. This also questions the optimal timing of ctDNA test-
ing after curative intent surgery. We observed that the odds ratio
for detecting relapse was better in patients who had “delayed
landmark testing” (after adjuvant chemotherapy) with better
prognostic accuracy as more time from curative surgery elapsed
and all upfront standard therapy had been completed. Similar
findings were observed for serial testing, where both sensitivity
and specificity were improved with greater number of surveil-
lance draws and in patients who had received chemotherapy in
the adjuvant setting. It is plausible that patients having

Table 2. Meta regression for odds ratio at landmark and surveillance

Landmark Surveillance

Variable Beta coefficient P No. of studies Beta coefficient P No. of studies

Median age �0.41 .035 26 0.065 .697 21
Proportion of males �0.23 .24 27 �0.276 .225 24
Smoking 0.25 .68 5 0.549 .259 6
�Stage III 0.38 .07 23 0.201 .438 17
Time to landmark 0.45 .02 26 � � �
No. of surveillance draws � � � 0.362 .184 15
% Receiving adjuvant chemotherapy �0.18 .4 21 0.411 .090 15
% Receiving neoadjuvant chemotherapy �0.51 .24 7 0.188 .722 6
Baseline ctDNA positivity 0.14 .48 26 0.241 .293 21
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detectable ctDNA after adjuvant chemotherapy (at 1 or multiple
time points) represent a population at highest risk of relapse and
may be most suited for treatment escalation in the adjuvant set-
ting. This group may also be most appropriate for trials of pre-
emptive treatment for metastatic disease before detection of
overt relapse (39,46).

Considering both landmark and serial surveillance testing,
between 6% and 8% of patients may have a false-positive ctDNA
result. Previous studies have shown that detection of variants
related to clonal hematopoiesis could lead to false-positive
results, especially at lower variant allele fractions typically
detected in MRD setting (47,48). In our meta-analysis, for studies

Figure 4. Surveillance analysis by disease site.
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having limited specificity at landmark and surveillance time
points (<90%) (27,29,32,49-57), only 5 definitely excluded clonal
hematopoiesis of indeterminate potential (CHIP) by paired analy-
sis of peripheral mononuclear cells. Moreover, among the land-
mark studies, median follow-up times for studies not exploring
CHIP were shorter than the median for the entire cohort. This
could have further affected specificity and led to false-positive
results. In most of these studies (5 of 9 landmark studies), adju-
vant chemotherapy was delivered after landmark testing, which
could have further compromised specificity. Repeat testing to
confirm a positive ctDNA result before clinical decision making
could represent a potential strategy to improve specificity but
may not account for false positives because of poor assay design,
incomplete clinical follow-up, or elimination of residual disease
with treatment.

To improve sensitivity and specificity of ctDNA detection,
there has been a gradual shift toward using tumor-informed
compared with tumor-agnostic approaches (58,59). In our

analysis, we observed that prognostic accuracy of ctDNA was sig-
nificantly better in studies that used a tumor-informed approach,
an observation consistent in both landmark and surveillance
analyses. The higher sensitivity and specificity of the tumor-
informed approach and in turn higher prognostic accuracy are
likely driven by the ability to track a larger number of specific
cancer-derived variants in the plasma and better ability to
exclude variants related to CHIP (55). Although such tumor-
informed panels are promising, potential limitations include the
requirement for tumor tissue for bespoke panel design and longer
turnaround times, which may be particularly important when
adjuvant therapy decisions need to be made. Interestingly, in the
recently published DYNAMIC phase 2 randomized trial of ctDNA-
guided adjuvant therapy in stage II colon cancer where a tumor-
informed approach was used (61), ctDNA results were available
to clinicians only 8-10 weeks after surgery. Previous studies have
demonstrated that delaying initiation of adjuvant chemotherapy
beyond 6-8 weeks in colorectal cancer can result in worse survival

Figure 5. Surveillance analysis by type of panel.
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(62,63). Therefore, efforts to minimize turnaround time when a
tumor-informed approach is pursued should be prioritized, and
using presurgical biopsy material to design assays is a potential
solution (64). This could also eliminate the noise introduced by
neoadjuvant chemotherapy–induced clonal variations and may
help design more homogenous assays. Immediate postsurgical
specimen collection could also be an alternative because time to
landmark testing did not seem to influence prognostic accuracy
for colorectal cancer in our analysis. Newer approaches incorpo-
rating DNA methylation or whole-genome sequencing are also
being developed for detection and measurement of ctDNA and
may complement the assessment of MRD (60,65).

We observed that pooled estimates for prognostic accuracy
were lower in studies evaluating ctDNA in lung cancer and higher
for colorectal cancer compared with other tumor sites, especially
when tested serially. This could have been driven by lower sensi-
tivity and specificity seen in the study by Peng et al. (32), which
used a tumor-agnostic approach and included a higher propor-
tion of early-stage lung cancer patients. Excluding data from this
study resulted in better prognostic accuracy for patients with
lung cancer. The more aggressive biology and higher recurrence
risk seen with lung cancer compared with colon cancer could
account for these differences; however, heterogeneity in testing
strategies and lower sensitivity of testing platforms in different
studies limit definitive tumor-specific conclusions. More prospec-
tive data from larger cohort studies will be required to elucidate
whether any true site-specific differences exist.

A higher prognostic accuracy was observed for patients with
smoking, especially for surveillance testing. Of 6 studies that
reported data on smoking status in the surveillance setting, 5
were performed in patients with lung cancer. Pivotal studies have
shown that smoking is associated with a 10-fold higher muta-
tional load compared with nonsmokers in lung cancer (66,67),
which might account for higher probability of detection by NGS
panels. This could also be driven by the association between
smoking and adverse oncogenic mutations (eg, K-RAS) and sub-
sequent higher risk of recurrence (49). However, given the small
number of studies reporting on smoking status, the power of the
analysis is limited to draw any definitive conclusions.

Our study has some limitations. All the studies included in the
meta-analysis were observational studies with heterogenous
study designs, ctDNA testing platforms, and varying definitions
for ctDNA positivity both presurgery and for detection of MRD
after curative therapy. This could potentially affect pooled analy-
ses. Additionally, most of the data were derived from studies per-
formed in colorectal cancer, with few studies and small number
of patients in other tumor types (melanoma, bladder, gastroeso-
phageal cancer, head and neck), thus limiting any disease site–
specific conclusions.

In summary, sensitivity of ctDNA as a biomarker for MRD
appears to be low, especially if measured at a single landmark
time point. Although newer methods may partially address this
issue, the phenomenon persists even in most recent studies that
were published after our search was completed (68). In the stud-
ies included in our analysis, the tumor-informed approach
improved prognostic accuracy but may be limited by issues of tis-
sue availability and turn-around time. Whether emerging tumor
agnostic approaches can improve sensitivity remains to be deter-
mined. Although sensitivity is improved with repeated surveil-
lance measurements, it is unlikely to influence adjuvant
chemotherapy decisions, which are currently made in a short
time frame after locoregional therapy. However, ctDNA surveil-
lance may enable future strategies for delayed systemic therapy.

The impact of preemptive therapy based on ctDNA detected
relapse in absence of radiological or clinical relapse on long-term
cancer outcomes needs to be demonstrated in clinical trials
before it can become standard of care. Additionally, specific
methods and approaches for any interventional studies need to
be carefully described, and the oncology community needs to be
educated that different ctDNA assays cannot be used inter-
changeably.
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