
Next Generation Gold Drugs and Probes: Chemistry and 
Biomedical Applications

R. Tyler Mertens,
Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States

Sailajah Gukathasan,
Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States

Adedamola S. Arojojoye,
Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States

Chibuzor Olelewe,
Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States

Samuel G. Awuah
Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States

Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, 
Kentucky 40536, United States

University of Kentucky Markey Cancer Center, Lexington, Kentucky 40536, United States

Abstract

The gold drugs, gold sodium thiomalate (Myocrisin), aurothioglucose (Solganal), and the 

orally administered auranofin (Ridaura), are utilized in modern medicine for the treatment of 

inflammatory arthritis including rheumatoid and juvenile arthritis; however, new gold agents have 

been slow to enter the clinic. Repurposing of auranofin in different disease indications such as 

cancer, parasitic, and microbial infections in the clinic has provided impetus for the development 

of new gold complexes for biomedical applications based on unique mechanistic insights 

differentiated from auranofin. Various chemical methods for the preparation of physiologically 

stable gold complexes and associated mechanisms have been explored in biomedicine such as 

therapeutics or chemical probes. In this Review, we discuss the chemistry of next generation gold 

drugs, which encompasses oxidation states, geometry, ligands, coordination, and organometallic 

compounds for infectious diseases, cancer, inflammation, and as tools for chemical biology 
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via gold–protein interactions. We will focus on the development of gold agents in biomedicine 

within the past decade. The Review provides readers with an accessible overview of the utility, 

development, and mechanism of action of gold-based small molecules to establish context and 

basis for the thriving resurgence of gold in medicine.

Graphical Abstract

1. INTRODUCTION

Gold (Au)-containing compounds represent an attractive class of therapeutic agents and 

probes in chemical biology. The clinically approved Au agents for the treatment of 

rheumatoid arthritis and the rich history of Au in medicine, spanning several millennia, 

continue to ignite new research avenues toward the development of biologically relevant 

Au-based compounds. Major developments of Au-based therapeutic agents were reviewed 

in this Journal in 1999 by Frank Shaw,1 who highlighted key milestones achieved by the 

development of Au agents. Other significant contributions summarizing specific areas of 

Au-based biological reagents or mode of action have also been reported.1–11 Over the 

past two decades, essential aspects of the mechanism of action and new therapeutic Au 

compounds for different diseases have been unraveled, which will be the focus of this 

Chemical Review.

Au is characterized by unique chemical and physical properties that influence its reactivity 

and biocompatibility. Unusual relativistic effects of Au distinguish it from other transition 
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metals including neighboring Group 11 Cu and Ag atoms.12,13 Consequently, Au possesses 

high ionization potential of ~2 eV due to a large 6s-orbital contraction.14,15 This direct 

relativistic contraction effect is orchestrated by relativistic perturbation operators that impact 

the regions of the nucleus and simultaneously affect the density of s-electrons within the 

valence shell, leading to an increase in the square of the nuclear charge (Z). Although 

s-contraction and stabilization factors lead to an increased first ionization potential (IP) and 

electron affinity (EA) for all Group 11 elements, relativistic effects substantially elevate 

the overall electronegativity (i.e., λIP + λEA) of Au close to that of iodine (EN = 2.2).15 

Au is therefore an electronegative transition metal and often referred to as a pseudohalide. 

The relativistic effects described have implications on atomic, molecular, bonding, and 

electrochemical behavior of Au that result in its broad utility in biology and medicine. For a 

more focused work on the relativistic effects of Au in catalysis16 and materials, readers may 

refer to ref 17.

Over the course of history, dating back to ancient Egypt,18,19 the medicinal value of Au 

has gained enormous traction, evolved in its synthetic development, and biological utility 

(Figure 1).20–24 Advanced gold-containing prescriptions in Zixue dan and Zhibao dan 

exhibit activity to treat high body temperature and measles within the Han and Qing Dynasty 

of China.23

Arnald of Villanova’s discovery of the Aurum potabile recipe to treat melancholy, although 

imaginary, shed light on gold therapy in the 1300s.25 Further use of this concoction 

continued through the 17th century, as many proclaimed alchemists fancied the use of 

Aurum potabile.26–28 One such medical skeptic, Paracelsus, prescribed this gold-based 

mixture again for the use of melancholy, as it “made one’s heart happy”.29 As the 17th 

century approached, many medical iconoclasts became skeptical of chemically prepared 

medicines and touted the use of gold for medicinal applications as dangerous. Nevertheless, 

gold entered the “Pharmacopeia Londinensis” drug compendia in the 17th century.30,31 

Keeley’s proposition to cure alcoholism by gold therapy was not effective. Using sodium 

salt of gold chloride for the treatment of syphilis advanced development of gold-based 

therapeutics beyond alchemy in the late 19th century.32 Rational gold therapy came to light 

with the demonstration of antibacterial activity of gold cyanide K[Au(CN)2] by the German 

Robert Koch in 1895. Further, Forestier’s discovery that gold complexes exhibit antiarthritic 

activity brought renewed interest in gold medicine.33–36 All these scientific innovations led 

to the development of gold thiolate compounds that were developed along with myochrysin, 

allochrysin, solganal, and sanochrysin (Chart 1).1,37–42 Since then, numerous developments 

in synthetic strategies have been employed to establish novel gold complexes for a plethora 

of disease treatments.1,4,5,22,43–49

For improved chrysotherapy (the use of gold salt for treatment of diseases) that is 

specific for rheumatoid arthritis (RA), Sutton and co-workers first reported the synthesis 

of 2,3,4,6-tetra-O-acetyl-1-thio-β-D-glucopyranosato-S-(triethylphosphine) gold (auranofin) 

in 1972.50,51 The efficacious antiarthritic properties and the oral administration of auranofin 

led to its approval in 1985 by the FDA.10,52,53 Despite its current use as a second-line 

therapy for RA, the well-established safety profile in humans makes auranofin a useful 

candidate for other common and rare diseases in the context of drug repurposing.54–58 
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Drug repurposing leverages new knowledge from unraveled molecular basis of diseases 

and FDA approved medication for translational therapeutic benefit.59 Auranofin is a viable 

drug for repurposing due to its ability to potentiate thiol-related redox homeostasis and 

lower inflammation. Recent clinical trials outline 14 studies that involve auranofin for the 

treatment of different diseases including HIV, cancer, pain syndrome, Giardia Protozoa, 

tuberculosis, and combination therapy for rheumatoid arthritis.10,36,50,53,60–62 These studies 

cover different clinical phases and across multiple continents (Figure 2). In addition to 

emphasizing the wide range of therapeutic benefits, auranofin offers decreased costs for 

discovery of novel medicine, a faster pace of drug discovery and development, and lower 

attrition rate. Inspired by auranofin’s success, gold-based drug discovery has garnered 

enormous attention with important contributions, but challenges remain. In this Review, we 

present recent developments of gold-based therapeutics and probes, mechanisms-of-action, 

and challenges that need to be addressed as well as innovative chemical strategies to 

circumvent these challenges toward a fuller biomedical potential.

2. SCOPE OF REVIEW AND ORGANIZATION

The high proliferation of gold-based reagents has led to important biomedical discoveries 

with diverse mechanisms and those yet to be unraveled. Our discussion will begin with 

a brief assessment of the mechanism-of-action of gold agents for disease treatment. The 

goal is to articulate fundamental mechanistic insights for in-depth descriptions during this 

Review. Au(I) complexes such as auranofin are soft and polarizable with affinity for soft 

nucleophilic amino acid side chains in proteins. Therefore, stable, and irreversible adducts 

are a result of Au(I)–protein interactions. We expand this discussion to other gold complexes 

that interact with proteins to form gold–protein adducts that offer structural and biophysical 

insights into gold–protein interactions and can lead to understanding cellular mechanisms 

for disease treatment. Attempts to tune gold compounds to target DNA and DNA-related 

processes are also expounded. This section is followed by target identification strategies to 

address potential biological target(s) of gold complexes. We then discuss the impact of gold 

agents on molecular imaging, radiodiagnostics, and radiotherapy, followed by therapeutic 

gold compounds that elucidates approved drugs, targeted agents, and mechanisms. We 

will cover Au(I) complexes and their utility as potential drugs in different diseases. Here, 

idiosyncratic mechanisms that result in treatment in vitro and preclinical models will be 

addressed. The burgeoning field of Au(III) for disease treatment will also be discussed along 

with potential biological targets that have been elucidated to date. Finally, we will address 

targeting modalities and nanodelivery approaches of biologically active gold compounds.

3. MECHANISM OF ACTION

The main mechanism of gold action has been a subject of scrutiny over many decades by 

scientists of multidisciplinary backgrounds. Recent advances in Cryo-electron microscopy, 

crystallography, bioorthogonal chemistry, affinity labeling, and chemical proteomics have 

led to target identification and an unbiased mode of action,63–69 which is sometimes 

enigmatic. The polarized character of Au(I) complexes renders them highly thio- and seleno-

philic. Thus, enzymes with cysteine and selenocysteine residues within the active site are 
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favorable targets for gold ligation. Readers may refer to other comprehensive reviews and 

perspectives on gold–sulfur interactions.70–73

An earlier report on the uptake of auranofin used the everted sac model of intestinal 

absorption. Auranofin was incubated with the everted sac, and the gold concentration in 

the sac after 2 h of incubation was found to be about 20% of the incubation media 

showing that gold passes through the intestinal wall, although this study suggests that 

it is the deacetylated form of auranofin that passes through the wall and not auranofin 

itself.74 Another study indicates that rather than through a transmucosal absorption, 

auranofin is absorbed via the enteric cell surface.75 The entry of auranofin in cells is by 

interaction with the phospholipid bilayer largely through a passive uptake profile.76 Active 

transport by interrogating ion channels and membrane proteins remains a possibility but 

unexplored. Snyder et al. proposed a ligand exchange shuttle mechanism that is different 

from the traditional active or passive transport for uptake of auranofin and other gold-

based complexes. This model proposes that uptake is dependent on ligand selectivity for 

thiol groups based on their relative affinities, lipophilicity, charge, and steric factors.77 

Within the cell, auranofin interacts with oxidoreductases (redox enzymes) including 

thioredoxin reductase (TrxR) and trypanothione reductase through substitution by cysteine 

or selenocysteine amino acid residues within the enzyme active site.78,79 Structural evidence 

by protein X-ray crystallography demonstrates that the linear geometry of auranofin allows 

for the displacement of the thioglucose and triethylphosphine moieties by the nucleophilic 

sulfhydryl groups (Figure 3).80–83 Whereas active site cysteines have been the generally 

accepted binding site for auranofin to confer its inhibitory activity to TrxR function, X-ray 

structures of Entamoeba histolytica TrxR (EhTrxR) reveal a noncatalytic Au(I) binding site 

at Cys286 with low affinity with no interaction with active site Cys140–Cys143 redox center.80 

This is indicative of a resolute disulfide bond formation that precludes Au(I) binding even 

in the presence of reducing agents. Conceivably, reactivity of cysteines at the active sites 

of TrxR differs based on molecular weight, proximity of cysteines for disulfide formation, 

and the size of the catalytic motif, CXXC for EhTrxR.80 These structural insights point 

to mechanistic differences in the inhibition of TrxR by auranofin and other linear Au(I) 

complexes.

Given the essential role of redox homeostasis in physiological and pathophysiological 

conditions, modulating redox enzymes such as TrxR via the formation of stable and 

irreversible adducts has enormous consequences for several cellular processes and regulating 

intracellular reactive oxygen species (ROS).84–86 In cells that overexpress TrxR, such as 

parasites, cancer cells, and memory T cells, inhibition of the redox enzyme resulting in 

oxidative stress and eventually apoptotic cell death is therapeutically beneficial.

The discovery of relatively stable Au(III) complexes for biological application has allowed 

for variable ligand modification of the d8 Au(III) system, which often takes on a square 

planar geometry.87–92 Recent advances in omics technology, spectroscopy, and chemical 

biology are revolutionizing the target identification toolbox to support Au(III) mechanism 

of action.93,94 It has become obvious that proteins, which are the largest component of 

biomolecular systems in biology, are the primary target of gold-based drugs.95,96 With a 

few exceptions to be discussed, Au(III) complexes target proteins beyond TrxR.93,94,97–99 
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Au(III) complexes are relatively harder than Au(I) complexes, and ligand tuning has direct 

effects on biological target as well as mechanism. Passive diffusion across the plasma 

membrane remains the dominant transport pathway for Au(III) systems. The pathway of 

intracellular uptake of Au(III) complexes can be characterized more broadly under ATP-

independent endocytosis and micropinocytosis processes. Active transport mechanisms of 

Au(III) complexes are yet to be unraveled in detail. Once in cells, Au(III) can remain intact 

until it reaches its biological target or can be reduced by biological nucleophiles such as 

glutathione (L-GSH), ascorbate to Au(I) for biological action in a prodrug format.100–102 

Au(III) complexes with distinct structural scaffolds induce different mechanisms of 

action in cells. Au(III) porphyrins target the mitochondrial heat shock protein 60,103,104 

whereas Au(III) mesoporphyrin IX target cysteine thiol containing proteins, thioredoxin, 

deubiquitinase, and heat shock protein 90 via an arylation of the meso carbon and sulfur 

atom of cysteine in a C–S bond formation (Chart 2).105 The proteasome, endoplasmic 

reticulum, and mitochondria are attractive targets of Au(III) complexes, providing a broad 

range of mechanisms of Au(III) action.89,93,100–102,106–109 The peculiar mechanistic detail 

will be discussed in the context of diseases within the ensuing sections of this Review.

3.1. Structural Basis for Gold–Protein Complexes

Significant progress has been achieved over the past two decades in elucidating gold–protein 

interactions, ranging from EXAFS, Mossbauer, NMR, and ESI-MS to X-ray crystallography 

data.71,73,110–117 New crystallographic information is beginning to shift our understanding 

of the affinity of gold for nitrogen ligands juxtaposed to the conventional sulfur and 

selenium ligands. Here we offer selected examples. A detailed structural analysis of gold–

protein adducts was reviewed by Messori et al.118 Using X-ray crystallography, gold 

adducts at distinct histone sites of nucleosome core particles (NCP) using auranofin can be 

elucidated.119 The NCP-gold adduct reveals two-symmetry-related locations, Au1 and Au1′ 
along the 2-fold axis of the nucleosome and with good proximal distance from the central 

base. Whereas the sugar thiolate groups were substituted by the histone ligand through 

the histidine delta nitrogen side chains, the triethyl phosphine groups make hydrophobic 

interactions with surrounding H3 residues. It must be noted that the requirement for 

NCP-gold adduct formation is the presence of both RAPTA-T and auranofin in the NCP 

treatments that allows for RAPTA-T adducts to promote reactivity of the H3/H3′ H113 

sites (Figure 4).119 This study adds to the knowledge of Au-histidine binding but more 

importantly reveals an allosteric phenomenon upon drug binding to the nucleosome acidic 

patch, which is a chromatin binding hotspot and may be relevant for in vivo genomic 

regulation and histone posttranslational modifications.119

Metallo-β-lactamases (MBL) and mobilized colistin resistance (MCR) expressing Gram-

negative bacteria pose a major threat to human health due their role in antibiotic resistance. 

To resensitize carbapenem- and colistin-resistant bacteria to antibiotics, auranofin was 

identified as a dual inhibitor of MBLs and MCRs.120 Enzyme activity shows that auranofin 

inhibits the clinically relevant New Delhi metallo-β-lactamase 1 (NDM-1) and MCR-1 

catalysis to boost antibiotic action. Structural insights revealed that Au(I) binds NDM-1 

(PDB: 6LHE) in the active site by Zn(II) displacement with two Au ions. One ion, Au282 

tetrahedrally coordinates Cys208, His250, Asp124 and water molecule (w291), and Au283 
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tetrahedrally coordinates His122, His 120, His 189, and a water molecule (w410) (Figure 5). 

The Au–Au contacts possess a distance of ~3.8 Å. A remote Au ion located at the interface 

of two protein monomers was found to coordinate Asp223, Glu152, water molecule, and a 

Glu227 from a neighboring NDM-1 molecule in a distorted tetrahedral geometry.

Furthermore, the Au-bound MCR-1-S crystal structure (PDB: 6LI6) demonstrates Au ion 

displacement of Zn(II) in the catalytic site by coordinating to Glu246, Asp465, His466, and 

TPO285 in a distorted geometry (Figure 6). Two other Au ions coordinate to His252 or 

His 424 and PEt3 group or water molecule in a linear/quasi-linear geometry, respectively. 

Interestingly, the displacement of metal ions, e.g., Zn within the catalytic core of enzymes 

by Au, is a common phenomenon exhibited for enzyme inhibition.120

Despite the incredible information obtained from X-ray crystallography to elucidate gold–

protein interactions, the ability to design ligands to predict gold complex reactivity, Au 

compound recognition, and potential binding sites in proteins using computational aided 

drug design (CADD) still require dynamic evolution of transition metal parametrization 

in computational software as well as extensive experimentation to obtain guiding rules. 

Whereas this is an existential bottleneck, it presents opportunities for inorganic chemists, 

structural biologists, and computational chemists to work together in addressing the issue to 

advance the field. We predict that the modern era of artificial intelligence (AI) will facilitate 

the rapid identification of Au-based ligands with affinity for specific proteins.

3.2. DNA-Targeting Gold Compounds

DNA is a formidable molecular target for many drugs approved by the Food and 

Drug Administration (FDA), primarily for the treatment of cancer.121–126 Despite the 

nonspecific cytotoxic character of traditional chemotherapeutics, modern drug discovery 

has promoted selective agents that target DNA and associated DNA processes. Alkylating 

agents nondiscriminately interact with DNA and often covalently in the form of cross-links. 

Cisplatin, the platinum(II) antitumor drug that shares isoelectronic similarity with Au(III), 

was the first transition metal-based drug to be approved for the treatment of cancer. 

Following the serendipitous finding by Rosenberg and colleagues during an investigation of 

the effect of electric field on bacteria cell division,127,128 extensive work into the mechanism 

of cisplatin and next generation Pt(II) drugs, carboplatin and oxaliplatin, demonstrate 

formation of Pt-DNA cross-links as lethal complexes that lead to apoptosis.129–134 These 

metal agents have been remarkably transformative in the clinic against several cancers 

including testicular, bladder, lung, ovarian, breast, cervical, and brain tumors.61,135–137 

However, toxic side effects and drug resistance are limiting concerns.138–140 Another 

class of agents target protein–DNA complexes with somewhat precise sequence selectivity. 

Agents designed to target the minor and major grooves of DNA such as polyamides 

and triplex forming compounds showed promise as chemotherapeutic agents. Compounds 

targeting secondary structures such as G-quadruplexes were particularly valuable in 

interrogating telomeres and transcriptional elements.2

3.2.1. Au(I) Complexes Targets Calf Thymus-DNA.—Gold(I) complexes with 

thiosemicarbazones ligands have been reported to interact with DNA (Chart 3). The 
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complexes interact with calf thymus DNA (ctDNA) when incubated at different 

concentrations with changes in electronic transitions observed with UV–vis between 250–

400 nm. The binding constant of gold complexes to ct-DNA was calculated to be within 6.26 

× 104–4.42 × 106 M−1, indicating strong binding. Furthermore, competitive binding assay 

between the complexes at different concentration from 0–100 μM and ethidium bromide/

ctDNA was used to confirm binding. Emission fluorescence shows a decrease in emission 

intensity and displacement of the ethidium/DNA adduct after the addition of the gold(I) 

complex. This is due to competition between the gold(I) derivative and ethidium bromide for 

binding to the DNA groove.141

3.2.2. Au(III) Complexes as DNA Intercalator.—Nuclear enzymes such as the 

monomeric human Topoisomerase IB (TOP1) and Topoisomerase IIα TOP2α  are crucial 

regulators of DNA topology for the orchestration of important cellular processes including 

DNA replication, gene transcription, and cell division.142,143 These enzymes function by 

inducing transient single-strand (type I) or double-strand (type II) breaks in the DNA helical 

structure. Despite the relatively short half-life of these enzyme–DNA complexes in vivo, 

they represent a viable molecular target in cancer drug discovery.144

There are two classifications of compounds targeting TOP1. First, compounds known 

as interfacial poisons (IFPs) interfere with enzyme–DNA complexes to prevent plausible 

religation of DNA. This is achieved by a noncatalytic binding of DNA–intercalating IFPs 

at nicked sites enzyme–DNA cleavage complexes, thereby poisoning the TOP1 enzyme. 

Camptothecin and indenoisoquinolines represent important examples of this class.145–148 

Second, catalytic inhibitor compounds (CICs) block two crucial catalytic steps through 

(i) competitive inhibitor binding to Top1 or competitive binding to DNA and (ii) step 

2 catalytic inhibitors (Figure 7). CICs generally convey reduced genotoxicity but are 

uncommon,149,150 thus raising the need for novel compounds. Au(III) compounds generally 

inhibit TOP1 catalytically; however, it is critical to note that inhibition of supercoiled DNA 

relaxation by TOP1 is not the only parameter to delineate CICs from IFPs. A novel class 

of pyrrole-containing Au(III) macrocycles was identified as CICs of human TOP1 and 

TOP2α (Figure 7). The d8 complexes exist in a square planar geometry with an aromatic 

quinoxaline backbone that facilitate DNA intercalation with binding affinities in the low 

micromolar range using standard competitive displacement of DNA intercalator, ethidium 

bromide assay. These Au(III) macrocycles exhibit cytotoxic potency across National Cancer 

Institute (NCI, USA)-60 human cancer cell lines.151 The Au(III) ion plays a critical role in 

DNA intercalation and concomitant inhibition of TopI and TopIIa using purified DNA and 

enzyme.

3.2.2.1. Au(III) Macrocycles.: Macrocyclic Au(III) compounds containing pyrrolic 

fragments have demonstrated CIC and DNA intercalating properties. Studies with meso-

tetraarylporphyrins (Chart 4) revealed significant interaction with duplex DNA and an 

intrinsic binding constant of Kb = 2.79 + 0.34 × 106 dm3 mol−1 with calf thymus DNA.152 A 

series of tetraarylporphyrin Au(III) complexes were prepared, bearing different substituents 

on the meso-aryl ring including glycosyl and methoxyphenyl groups. The complexes bind 

to DNA in absorption titration assays in the range 4.9 × 105–4.1 × 106 dm3 mol−1 and act 
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as intercalators of DNA. Inhibition of Top1 by these compounds is by inducing supercoiled 

DNA relaxation. Additionally, in a polymerase chain reaction stop assay, Au(III) porphyrins 

inhibit amplification of DNA substrates with G-quadruplex structures.153

3.2.2.2. Au(III)-N-Heterocyclic Carbenes.: Another class of stable organometallic 

Au(III) compounds of the type, [Aun(R–ĈNĈ)n(NHC)]n+ (Chart 5) were synthesized and 

displayed interaction with DNA as well as in vitro and in vivo anticancer activity.154,155 

The complexes interact with DNA with a binding constant of 4.5 × 105–5.3 ± 0.8 × 105 

dm3 mol−1 at 298 K toward ctDNA. Further characterization reveals retardation of 123-bp 

DNA ladder mobility in gel-mobility-shift-assay. The complex inhibits Top1-mediated DNA 

relaxation at lower concentrations than the well characterized CPT. Detailed studies show 

that the complex is a catalytic inhibitor that inhibits the topoisomerase I cleavage reaction by 

preventing DNA substrate binding.

3.2.2.3. Gold(III) Pyridyl and Isoquinolyl Complexes.: Although guiding principles 

for the design of gold-based agents to target DNA-associated elements appear elusive, 

the use of nitrogen-containing heterocycles with sufficient planarity fosters interaction 

with DNA and inhibition of Top1 and Top2 enzymes. The synthesis of pyridyl- and 

isoquinolylamido complexes of Au(III) contributes to our understanding of the affinity 

of gold complexes to DNA and consequent inhibition of topoisomerase (Chart 6).156 We 

briefly noted, with regard to the discussion above, that cationic Au(III) porphyrins revealed 

interaction with DNA, thus variation of multidentate amido complexes of cationic character 

may potentially act as cytotoxic DNA intercalators. Pyridyl or isoquinolyl ligands of the 

type H2Ln react with Au(III) salts to afford neutral pyridyl or isoquinolyl amido-dichloro 

gold(III) complexes. Perhaps the use of a base in the reaction may lead to the formation 

of cationic tetradentate AN2N′2 trischelates of gold toward cytotoxic complexes consistent 

with cationic Au(III) porphyrins. The Au(III) pyridyl- and isoquinolylamido chelates are 

square planar in character with the cis-Cl ions coordinated amido chelating moiety in a trans 

fashion. The soft, polarizable nature of gold157 facilitates covalent interaction with soft thiol 

or selenothiol nucleophiles compared to nitrogen nucleophiles under biological conditions. 

This limits DNA alkylation by gold complexes at the nucleophilic 7N-guanine of DNA. 

Thus, N-donor ligands promote overall gold complex stability and their planarity dictate 

DNA intercalation.

3.2.2.4. Gold(III) Biscarbene Complexes.: Another class of DNA targeted gold(III) 

complexes consist of bis(carbene) pincer type ligand supported by a carbazole framework 

for gold chelation (Chart 7). The complex follows the prototypical [AuIII(CNC)Cl]+ 

archetype with distinct aromatic planarity and redox stability. Although these gold(III) 

pincer complexes form adducts with L-glutathione, their DNA binding affinity is a 

magnitude larger than the well-characterized DNA intercalator psoralen at a KA of 3.7(3) 

× 104 M−1 when ctDNA (37 °C, pH 7.4 Tris-HCl buffer) is used. It is possible that these 

complexes target DNA 3-way junctions, B- and Z-DNA forms. Theoretical insights show 

hydrophobic p-type interaction of T and A bases as well as phosphate O–Au interaction 

underlying B-form DNA binding and Z-DNA binding, respectively.158
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4. TARGET IDENTIFICATION OF GOLD COMPLEXES

Proteins are the main targets of gold-derived bioactive compounds;159–161 however, 

unbiased, system-wide approaches to examine protein activity and function remain 

underexplored in metal-based drug discovery. New molecular biology methods combined 

with recent developments in sequencing and mass spectrometry-based proteomics have 

contributed to deciphering biological target modulation by gold complexes and associated 

disease phenotypes (Figure 8). In this section, we discuss recent advances in chemical 

biology and omics technologies that are and could revolutionize the chemical and analytical 

toolbox available to drive gold-based drug/probe discovery. We also shed light on the 

application of these analytical technologies to identify potential targets of gold complexes 

and mechanism of action.

Classical proteomic tools are available to profile gold complexes in cells. The pipeline 

involves 2-D gel electrophoresis for protein separation of lysed treated or untreated cells on 

an SDS-PAGE gel followed by gel staining and imaging, electrophoretic spot excision, mass 

spectrometry and protein identification, bioinformatic functional analysis to characterize 

differentially expressed genes or proteins, and validation by 2-D Western blot of selected 

targets and subsequent functional assays. This approach was used to characterize the 

potential mechanism of the organometallic Au(III) antiproliferative agent, Aubipyc, in 

ovarian cancer cells (A2780 and A2780 CDDP) following a 24 h incubation with the Au 

complex at a 10 μM concentration.162,163 Inhibition of proteins in the glycolytic pathway 

including GAPDH, ENO1, PKM, PGK1, ALDOC, and LDHB by Aubipyc demonstrates a 

promising approach for gold mechanism of action despite limitations of laborious sample 

preparation, high throughput, and batch-to-batch variability (Figure 9).163

Au probe-based target deconvolution is emerging as an attractive technique for target 

identification of bioactive Au compounds. The strategy is based on derivatization of 

the Au compound with affinity tags such as biotin for affinity enrichment or reactive 

group to facilitate immobilization to a solid support such as Sepharose beads. Combining 

affinity enrichment with mass spectrometry-based proteomics provides improved sensitivity, 

resolution, and specificity for profiling the whole cellular proteome. For details on mass 

spectrometry methods in drug discovery, readers may refer to recent reviews that may be 

applicable to gold-derived bioactive complexes.164–167 The described target identification 

approach is well-known as compound-centric chemoproteomics.168 Specificity can be 

largely enhanced by derivatizing Au compounds with reactive handles such as diazirines, 

aromatic azides, and benzophenones that covalently modify protein targets through 

photoaffinity labeling.93,104,169–172 Modular probe development using click chemistry tools 

can streamline synthetic efforts, whereas providing versatility with regards to tools for 

analyzing Au complex localization, target identification and mechanism of action.

Implementing competition-binding experiments using the parent or unmodified Au agent is 

a robust way to verify candidate pull down targets when using the Au probe-based target 

deconvolution method for Au target identification with integrated scientific rigor.
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Cellular thermal shift assay (CETSA)173 can be used as a profiling tool for gold-based drug 

discovery when coupled with proteome-wide MS. Current use of CETSA in the context of 

gold-derived complexes has been limited to validating identified targets by assessing thermal 

protein stability changes via Western blot. This is achieved by incubating cells with a desired 

Au agent or vehicle, followed by cell lysis and heat across a range of temperatures. After 

centrifugation, the soluble fractions are subjected to gel electrophoresis and incubation with 

intended protein target antibodies. Direct Au complex-target engagement induces thermal 

stability changes to deconvolute protein targets. A major advantage with CETSA is that it 

does not require functionalized bioactive Au complexes, which can be difficult to develop. 

We posit that combining quantitative MS and CETSA in gold-based thermal proteome 

profiling will be a powerful analytical strategy to decipher the MoA of Au drug candidates 

or chemical probes. The ability to integrate 2D thermal proteome profiling will merge 

temperature dependent and isothermal ligand concentration-dependent studies to address 

prevailing false negatives associated with CETSA-MS.

The use of a clickable photoaffinity probe of a Au(III)-porphyrin complex enabled the 

isolation of protein binding partners, notably, heat-shock protein 60 (Hsp60). Synthesis 

of the probe followed tethering a hexaethylene glycol linker, clickable alkyne tag and a 

benzophenone photoaffinity tag to the meso-phenyl rings of the porphyrin ligand of the 

Au(III)-porphyrin complex (Chart 8). Photoaffinity labeling was performed by incubating 

cancer cells with Au(III) Probe-1 followed by UV irradiation, after which click reaction 

with azide-conjugated biotin was carried out. Competition experiments using the parent 

Au(III)-porphyrin complex showed a diminished signal of the photoaffinity-labeled protein. 

Subsequent click reaction using azide-conjugated Cy5 in cell lysates followed by 2D gel 

electrophoresis, fluorescence scanning, and MALDI-TOF/TOF MS revealed Hsp60 as the 

potential target. Using quantitative proteomics by stable isotope labeling by amino acids 

in cell culture (SILAC) and subsequent affinity isolation of biotinylated proteins and LC-

MS/MS analysis using orbitrap confirmed Hsp60 identification. Additional validation of 

Hsp60 as the target of Au(III)-porphyrin complex was confirmed by CETSA.103

Leveraging the reactivity of the meso-carbon of mesoporphyrin IX, Che and co-workers 

described the formation of C–S bond formation as a covalent modification strategy to target 

thiol containing proteins in cancer cells. The use of Au(III) mesoporphyrin IX dimethyl ester 

facilitates nucleophilic aromatic substitution with cysteine thiols such as thioredoxin. Other 

targets such as peroxiredoxin III (PRDX3) and deubiquitinase, UCHL3 were identified via 

thermal proteome profiling mass spectrometry and CETSA. This study highlights the value 

of new orthogonal approaches for target identification.174

Recently, Awuah et al. used azide–alkyne functionalization of in Au(III) complex for post-

treatment click modification to enable localization and mechanism of action studies (Figure 

10). Post-treatment fluorescent labeling is achieved by the initial exposure of cancer cells 

to alkyne functionalized P-chirogenic Au(III) followed by the biorthogonal Cu(I)-catalyzed 

azide–alkyne cycloaddition (CuAAC) reaction using an azide-tagged FITC fluorophore. 

Co-localization studies using Mito Tracker red demonstrate predominant mitochondria 

localization.175
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Another class of stable Au(III) complexes used as anticancer agents includes the tridentate 

ĈNĈ, ĈN^N, or NĈ^N carbon donor pincer or NHC ligands.176 Mechanistic studies of 

these complexes have largely been accelerated by the use of photoaffinity, fluorescent, and 

affinity labeling probes of the parent Au complexes (Chart 9) that allow for pull downs, 

chemoproteomics, and fluorescence imaging toward protein target engagement.176

The use of activity-based protein profiling (ABPP) to identify binding sites of Au complexes 

within the proteome is a suitable methodology to identify new druggable targets, uncover 

elusive targets, decipher new mechanisms, and generate broad reactive protein maps in 

different living species. Isotopic tandem orthogonal proteolysis-ABPP (isoTOP-ABPP) 

uses an amino acid residue specific (e.g., cysteine) reactive small-molecule electrophilic 

compound to covalently modify and enrich selective residues within the whole proteome 

using a chemoproteomic approach.177–179 A low-pH isoTOP-ABPP platform was developed 

to screen selenoprotein-targeted inhibitors in a comparative analysis with iodoacetamide 

electrophilic probe. Auranofin treatment of mammalian cells revealed strong sensitivity of 

auranofin to Sec residues of Txnrd1, Gpx4, MsrB1, and Seleno under IA-labeling conditions 

and analyzed by MS.179 Recently, the ligandable cysteines in Staphylococcus aureus 
was profiled with an organogold(III) complex using isoDTB-ABPP (isotopically labeled 

desthiobiotin azide-activity-based protein profiling) platform (Figure 11), which differs 

from the traditional ABPP by using isotopically labeled (light and heavy) desthiobiotin 

azide tags and is compatible with IA competition.180 The unique C–S bond via cysteine 

arylation mediated by [ĈN]-cyclometalated Au(III) allows for an expanded or uncovered 

ligandable cysteines within the proteome. Overall, 108 cysteines were modified by the 

[ĈN]-cyclometalated Au(III); interestingly, 59 cysteines were not liganded by previously 

screened organic electrophilic probes. Indicating a broader reactivity and scope of ligand 

ability by Au-mediated cysteine arylation.180

High-throughput screening with yeast deletions and gene knockdown systems including 

RNA interference (RNAi) and short-hairpin RNA (shRNA) to study drug–target interactions 

was pivotal in advancing chemical genetics.181–186 The discovery of CRISPR-Cas9 has 

emerged as a powerful tool to edit the mammalian genome with ease and is useful for 

biological target identification, unravel mechanism of action, and resistant pathways to 

chemical agents.187–189 The application of CRISPR-Cas9 screens in metallodrug target 

identification will be transformative. In a proof-of-concept study, Vulpe and Awuah et 

al. used a targeted pooled CRISPR approach known as TOXCRISPR to elucidate the 

targets of a chiral gold(I) anticancer agent, JHK-21 (Figure 12).190 JHK-21 largely target 

mitochondrial oxidative processes. In addition, ABCC1 (a gene encoding MRP1 chemical 

exporter) knockout sensitizes cells to JHK-21 and the loss of SPRED2, which negatively 

regulates the Ras-ERK pathway confers resistance to cells exposed to JHK-21.190 This 

work paves the way for a systematic study to identify drug targets in mammalian cells of 

gold-containing compounds using CRISPR-Cas9 screening.

5. GOLD COMPLEXES FOR BIOMEDICAL IMAGING AND SENSING

Au complex localization in cells or whole animals reveals insights into its mechanism 

of action. The use of fluorescent, luminescent, and radiolabeled Au probes can be used 
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to monitor the location of compounds in real time. Tuning the luminescence of gold 

complexes requires stringent conditions. Thermodynamically, the high redox potential of 

gold [E°(Au(III/I) = 1.41 V]191 renders it difficult to oxidize, leading to much elevated 

energy of radiative metal-to-ligand charge transfer (MLCT) states and low-lying HOMO 

levels compared to other third row transition metals such as Ir or Pt. Consequently, the 

photochemistry and photophysics of gold complexes are often detrimentally overwhelmed 

by energetically low-lying states with metal-centered (d-d) and/or ligand-to-metal charge 

transfer (LMCT) character that can be easily populated. Additionally, population of the 

excited state of structurally distorted d-d ligand field in Au(III) systems can lead to 

quenching via nonradiative decay processes.192 This can be circumvented by incorporating 

strong σ-donating ligands to elevate the energy of the ligand field state toward luminescent 

Au(III) complexes in solution and at room temperature beyond solid state or low 

temperature.193,194 In two-coordinate Au(I) complexes with filled d10 configuration, 

nonradiative decay can be avoided. However, examples are dominated by complexes 

with aurophilic interactions of metal–metal states. Two-coordinate, mononuclear Au(I) 

emitters with emission from MLCT states make up an attractive endeavor for biological 

applications.195–197 So far, efforts to develop emissive gold complexes have adopted 

intuitive strategies via unique mechanisms including gold–gold interactions in solution or 

solid state as well as in multinuclear/heteronuclear systems. Multiple strategies employed to 

implement Au complex imaging in cells or whole animals are discussed.

It is worth noting that the use of gold(I) alkynyls in phosphorescence has been widely 

explored in materials research, which is beyond the scope of this Review. The development 

of phosphorescent gold complexes with decreased background fluorescence in biological 

medium has gained traction. We refer readers to comprehensive reviews on luminescent 

metal-based complexes including gold.198–203,194 In this section, we focus on luminescent 

gold complexes used in cell imaging and sensing biomacromolecules such as DNA and 

proteins.

5.1. Au(I) Complexes for Luminescent Cell Imaging

Enhancing sigma donor character at the gold center, extended conjugation, gold–gold 

interaction, or multinuclear systems are a few strategies that facilitate single or triplet 

excited state transitions toward phosphorescence. The use of carbon donors such as NHCs 

and alkynyl ligands provides ready access to Au(I) complexes exhibiting phosphorescence in 

the solid state or in solution. Early demonstration of Au(I) cell imaging, made possible by 

the dinuclear Au(I) complex, [Au2L2]2+, bearing the bidentate cyclophane NHC ligand.204 

The combination of Au–Au interaction204–206 and NHC ligand leads to a red-shifted 

luminescence profile that enables phosphorescence imaging in living cells and is useful for 

biodistribution by fluorescence microscopy. This class of Au(I) luminescent agents defines 

lysosomal localization in cells.

5.1.1. Au(I) Conjugated Fluorophores.—The preparation of luminescent Au(I) 

phosphine naphthalimide complexes enables cellular imaging, nuclei accumulation, 

and demonstrates antiproliferative activity, inhibition of angiogenesis in zebra fish 

embryo, whereas it maintains homogeneous biodistribution in zebra fish embryos 
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by fluorescence microscopy.207 The reaction of mercaptonaphthalic anhydride with 2-

(dimethylamino)ethylamine in ethanol under refluxing conditions affords the N-(N′,N′-

dimethylaminoethyl)-1,8-naphthalimide-4-thiolate ligand and upon metalation with trialkyl/

triphenyl phosphine Au(I) chloride analogs leads to luminescent naphthalimide gold(I) 

phosphine complexes.208

Expansion of luminescent naphthalimide Au(I) complexes introduced the alkynyl 

moiety with tunable photophysical properties and intracellular localization based on the 

naphthalimide substituent (Figure 13).

Multinuclear Au(I) alkynyl phosphanes represent an interesting class of luminescent gold 

complexes both in the solid state or in solution.209 Initial efforts to synthesize water-soluble 

Au(I) acetylides began with the treatment of [AuCl(PR3′)], where PR3′ correspond to 

water-soluble phosphanes such as PTA and DAPTA with terminal alkynes in the presence 

of KOH in methanol to afford mononuclear phosphane Au(I) acetylides.210 In addition, 

dinuclear alkynyl Au(I) compounds can be prepared from bis-alkyne starting materials and 

employing PTA and DAPTA ligands. The use of propargyl amine leads to the formation of 

trinuclear Au(I) complexes under similar reaction conditions using a base and water-soluble 

phosphane ligands. These Au(I) alkynyl derivatives display luminescence in the solid state at 

room temperature with excitation maxima in the range of 356–428 and emissions between 

486 and 555 nm. The photophysical character of Au(I) alkynyl phosphanes is attributed to 

intraligand electronic transitions, gold-centered transitions, Au–P to alkyne transitions, and 

often Au–Au interactions to alkyne transitions. Au-PR3′ may serve as a directing moiety to 

enhance the emission from the triplet states of the alkynyl luminophores.211–218 It must be 

noted for design purposes that the choice of phosphane ligands can influence bathochromic 

shift in the emission spectra of Au(I) akynyl phosphane complexes due to p–p*(C≡C) or 

σ(Au–P) → π*(C≡C) transitions.

Anthraquinones have been used as relevant antibiotics and antitumor agents.219,220 

Functionalization of hydroxy anthraquinones with propargyl bromide generates planar, 

conjugated ligands to form C(sp)–Au bonds, leading to complexes that are luminescent. 

A key optical advantage in the context of metal complexes is the added emissive property 

from the anthraquinone chromophore in the visible region. Mononuclear and dinuclear Au(I) 

complexes bearing alkynyloxy-substituted anthraquinones can be used in cells as fluorescent 

imaging probes toward mechanism of action studies via cellular localization.221 Specifically, 

in MCF7 cells, both mono and dimetallic Au(I) anthraquinones exhibit bright fluorescence 

within 530–580 nm emission following a 405 nm excitation (Figure 14).

To visualize the cellular distribution and intracellular targets of Au(I) therapeutics, 

incorporation of established fluorophores such as acridine,222,223 coumarin,224–226 and 

borondipyromethene (BODIPY)227 into the structural framework of Au(I) complexes makes 

it possible. The development of fluorescent BODIPY-Au(I) trackable probes for bioimaging 

over the past ten years has grown from cell imaging to whole animal imaging. We discuss in 

this section the modifications that have catapulted the translational application of BODIPY-

Au(I) trackable probes (Chart 10). Initial work began with tracking Au complexes in live 

cells; this was quickly followed by research based on targeting cancer cells with sugar 
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ligands for the glucose transporters (GLUTs) or the bombesin receptors overexpressed in 

cancer cells. The relatively short visible light emission of these constructs led to failed 

preclinical evaluation, creating opportunities to explore far-red or NIR conjugates.

The goal to use trackable Au(I) agents in whole animals has been hamstrung by visible light 

emission probes. To overcome this limitation, near-infrared emitting agents for deep tissue 

penetration are required. Recently, Bode and Goze et al. added three NIR aza-BODIPY 

dinuclear Au(I) complexes to the trackable Au toolbox.228 These complexes expand the 

guiding principles for designing fluorescent Au(I) complexes through the incorporation of 

(i) NIR dyes with emission maxima >700 nm and decent fluorescence quantum yields (~25–

36%) in in vitro and in vivo optical imaging; (ii) water-solubilizing groups and disruptors of 

solution aggregation; and (iii) dinuclear Au(I) agents for therapeutic impact. Generally, the 

design possesses theranostic potential in vivo. Specifically, in a CT-26 colon murine mouse 

model, a pronounced anticancer activity was observed when azaBDP-Au1 was administered 

(Figure 15).

5.1.2. Au(I) Conjugated Metal Luminophores.—Improving the optical 

characteristics of trackable Au complexes offers opportunities for the use of luminescent 

metal complexes as luminophores including Ru, Re, and Ir with longer emissive lifetimes 

and high quantum yields of luminescence. Thus, Re(I)/Au(I),203,229–232 Ru(II)/Au(I),233 and 

Ir(III)/Au(I)201,234 heterometallic complexes have been synthesized as trackable probes for 

cell imaging. First, the use of rhenium(I) tricarbonyl [Re(CO)3] scaffold in biomedicine is 

attractive due to its low spin d6 electron configuration, octahedral geometry for variable 

coordination, kinetic inertness as a result of strong-field ligands, and photophysical 

properties that allow for excited triplet state transitions. Leveraging the impressive chemical 

properties of Re with cytotoxic Au complexes leads to theranostic agents and provides 

a framework to assess the mechanism of action of Au anticancer complexes. The use of 

polypyridyl ligands, NHC, phosphine, and alkynyl functionality enable tethering of Au(I) to 

Re(I) without compromising the luminescent properties of Re(I). It is important to note that 

there are several components to designing cell-permeable heteronuclear multimetallic Re(I)/

Au(I) complexes including linker lengths and ligand types. Gimeno’s group has pioneered 

this field with different variations of luminescent Re(I)/Au(I) complexes for cell imaging 

and cancer therapy. Starting with fac-[Re(bipy)(CO)3(CF3SO3)], the displacement of the 

triflato ligand with Au(I) alkynylpyridine, Au(I) alkynylimidazole, or imidazole substituted 

Au(I) gave rise to heteronuclear Re–Au luminescent complexes.230 Strikingly, the complex 

localized in the nucleolus, when compared to the Re(I) species, which localized to the 

cytoplasm. The use of ditopic P,N-donor ligand that double as linkers lead to different Re(I)/

Au(I) heteronuclear complexes of the type, fac-[Re-(bipy)(CO)3(LAuCl)]+ (Re–Au-5 and 

Re–Au-7) and [(fac-[Re(bipy)(CO)3(L)])2Au]3+ (Re–Au-6 and Re–Au-8) with red-shifted 

emission profiles up to 605 nm attributed to a triplet metal-to-ligand charge transfer 

Re dπ bipy π*  transition (Chart 11).229 The quantum yield of fluorescence of these 

complexes is up to 12.5% in polar solvents. Fluorescence microscopy reveals a nonuniform 

cytoplasmic distribution as well as nuclear accumulation. These agents do not display potent 

antiproliferative activity with IC50s in the range of 35–76 μM when tested in A549 cells.
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Analogs of luminescent Re(I)/Au(I) complexes bearing pyridyl N-heterocyclic carbene 

ligands on Re have been synthesized (Re–Au-9–11) to improve (photo)cytotoxicity in 

cancer cells (as low as 2.66 μM).232 The emission of these complexes is slightly blue-shifted 

in the range of 377–514 nm, which could be associated with a mixed MLCT from the 

(Re(dπ) → NHC(π*), LLCT imidazolyl/pyridyl to the NHC ligand, and ligand centered 

transitions. The cellular distribution of these agents reveals cytoplasm localization by 

fluorescence microscopy.

The incorporation of dinuclear Au(I) into Re(I)/Au(I) conjugates has the potential to 

enhance red-shifting to about 680 nm and maintain potent anticancer activity to 1 μM 

in HeLa cells.231 The design is manifested via a bis-alkynyl framework for Au-NHC 

metalation that is located on the N^N-bidentate ligand coordinated to the Re center. The 

emission profile of these complexes demonstrates a characteristic broad band between 

565 and 680 nm, which can be assigned to 3MLCT transition from the dπ(Re) → π*-

(diimine).235

Recently, the synthesis and antiproliferative activity of a new class of luminescent Au–

Re complexes containing fused imidazo[4,5-f ]-1,10-phenanthroline core were explored 

(Chart 12).236 The heterobimetallic ReI/AuI and trimetallic ReI/AuI/ReI fac-[ReCl 

(CO)3(N^NĈAuR)]0/+ and [(fac-[ReCl (CO)3(N^NĈ)])2Au]+, where R is an iodide 

phenylacetylene, dodecanethiol, or 2,3,4,6-tetra-O-acetyl-1-thio-β-D-glucopyranose display 

long wavelength emission profiles in the range 641–673 nm following a 398 nm excitation. 

Despite the excellent photophysical profile, these complexes are not cytotoxic against cancer 

cells.

Second, the synthesis of luminescent heterobimetallic Au(I)–Ru(II) complexes bearing 

heteroditopic bipyridine-NHC ligands (Chart 13) has prospects for studying cellular 

distribution, uptake mechanisms, and impact on cytotoxicity against cancer cells, 

Leishmania infantum, and Plasmodium falciparum.233,237 The use of Ru(bipy)3 and 

Ru(bipy)2(dipy) as luminophores and Au(I) bearing 1-thio-β-D-glucose 2,3,4,6-tetraacetate 

allows for the generation of auranofin-like imaging agents to study GLUT-1 transporters 

and distribution in cancer cells. Tuning the gold fragment of Au(I)–Ru(II) complexes 

for improved stability and cytotoxicity can take advantage of strong electron donation in 

NHC ligands. Emission spectra of luminescent Au(I)–Ru(II) complexes are in the range of 

615–630 nm with a luminescence quantum yield in water of 0.020–0.026. Whereas these 

photophysical properties are attractive, they are far from ideal. Challenges including longer 

emission wavelength, poor aqueous solubility, and bulky luminophores that obscure precise 

intracellular localization of desired metallodrugs exist.

Third, phosphorescent iridium complexes possess excellent optical properties and have 

found utility in several areas of biomedical, material, energy, and catalytic research.238–241 

Harnessing the remarkable photophysical properties of Ir, including high phosphorescent 

quantum yield, large Stokes shift, and long emission lifetimes and the cytotoxic potential 

of Au represent a synergistic tool for theranostics. The use of emissive cyclometalated 

Ir(III) complexes conjugated to Au(I) fragments does not alter the photophysical properties 

of Ir. The high sensitivity of cancer cells to such complexes could be attributed to the 
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Au(I) unit. Additionally, intracellular accumulation of these luminescent conjugates via 

fluorescence microscopy is often characterized by lysosomal and mitochondrial localization. 

Access to [Ir(ppy)2(dppm)]PF6 as a precursor to Au–Ir complexes can be obtained in a 

single step by reacting dppm and [[Ir(ppy)2(μ-Cl)]2] in anhydrous and degassed methanol 

for 12 h. Metalation with Au(I) bearing ancillary ligands such as chloride, thiocytosine, 

and triphenylphosphine can then be carried to obtain luminescent Au(I)–Ir(III) complexes 

(Chart 14).201 Further, the development of Au–Ir bimetallic peptide conjugates has been 

explored using an enkephalin analog, Tyr-Gly-Gly-Phe-Leu, and a propargyl-substituted 

derivative, Tyr-Gly-Pgl-Phe-Leu, demonstrating a strong proof-of-principle agents for 

theranostic bimetallic peptide bioconjugates.234 Significant work is required to advance 

these phosphorescent heteronuclear complexes for preclinical studies.

5.2. Bioimaging and Sensing of Au(III) Complexes

Optimized probes can be used for cellular imaging. The use of π-extended C-deprotonated 

[ĈNĈ] ligands readily afford organogold(III) complexes that display long-lived emissive 

excited states as biosensors for proteins and DNA with lifetimes and emission quantum 

yields of up to 282 μs (Figure 16). This fluorogenic strategy capitalizes on the low 5dx2-
y2 orbital of the Au(III) metal center, which gives the overall Au(III)-NHC complex a 

nonemissive character in solution but upon reduction to Au(I) by biological reductants 

and the concomitant release of the fluorescent pincer ligand a strong emission is 

observed.242 Other amphiphilic Au(III) complexes that self-assemble into micelles with 

good biocompatibility, high in vivo permeability and retention, and in vitro phototoxicity 

have been developed.243

Derivatives of cationic Au(III) complexes containing highly emissive tridentate 

N^N^N ligands (H2N^N^N ligands, 2,6-bis(imidazol-2-yl)pyridine (H2IPI), and 2,6-

bis(benzimidazol-2-yl)pyridine (H2BPB)) and supported by NHC ligands generate 

fluorogenic probes (Figure 17).101 These Au(III) complexes act as fluorescent thiol “switch-

on” probes following reduction of Au(III) to Au(I) by thiols including glutathione. The 

strategy employed takes advantage of the ability of low energy Au(III) 5dx2-y2 orbital to 

quench intraligand emission; however, reduction activates the high emissive character of the 

ligands.

Transition metal hydrides represent an interesting class of compounds with utility in 

catalysis and materials.244 Following the first evidence of Au hydrides245 by Andrews 

et al.,246–249 these complexes were considered unstable until the first isolable Au(I) 

hydride bearing an NHC ancillary ligand in 2008250 and AuH stabilized by Xanthphos-

phosphole ligand.250,251 Ever since, Bochmann and co-workers pioneered the development 

of Au(III) hydrides of the structural type [(ĈNĈ)AuH] with the hydride ligand trans to the 

N-donors252,253 and subsequent applications in catalytic water–gas shift reactions.252,253 

Variations of this class of complexes possess emission properties with sufficient biological 

stability. It is possible that the Au–H bond gains susceptibility to photolability due to trans 

effect at which stage allows the excited state contribution to be dominated by intraligand 

phenyl to pyridyl transition mixed with a minor metal to ligand charge transfer transition. 

Further, photoinduced thiol reactivity by incubating [(ĈNĈ)AuH] (100 μM) with NAC (10 
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mM) in aqueous solution (H2O:20% DMF, v/v) and subsequent irradiation with 365 nm 

light generates ligated [Au(III)(ĈNĈ)S(NAC)] in >90% conversion in just 30 min (Figure 

18).254

6. RADIOACTIVE AU COMPLEXES FOR RADIOTHERAPY AND 

BIODISTRIBUTION

Incorporation of 198Au and 199Au into the radiopharmaceutical toolbox has been largely 

unexplored until the past decade, largely due to synthetic complexity and stability 

associated with high valent Au(III) complexes. Development of radioactive 198Au and 
199Au uncovers an important new class of radiopharmaceuticals for the treatment of 

cancer and diagnostics. 198Au and 199Au are radioactive β and γ emitters with strong 

penetrating power. 198Au isotope has a t1/2 = 2.7 days, Eβ = 0.97 and Eγ = 411 keV and 
199Au isotope has a t1/2 = 3.14 days, Eβ = 0.46 and Eγ = 158 and 208 keV. The high 

energy γ photons make these Au isotopes suitable for imaging and detection by single-

photon imaging instruments. Additionally, their half-lives are optimal for production, 

shipping, and administration. Beyond the use of colloidal gold radionuclide 198Au 

colloids, which was reported by Sheppard et al. and received US approval in 1950 as 

an antineoplastic and liver imaging agent,255 few gold-derived monomeric radionuclide 

complexes have been developed.256–259 198Au and 199Au radionuclides of Au(III) bis-

thiosemicarbazones bearing diversified dithiosemicarbazone ligands were synthesized and 

their radiochemistry characterized.257 In particular, the radionuclide with (1Z,1′Z)-N′,N″
″-((2E,3E)-pentane-2,3-diylidene)bis(N-ethylcarbamohydrazonothioic acid) ligand, 198Au-

TSC was synthesized with >90% radiochemical yield with good stability in phosphate-

buffered saline (PBS) and mouse/human serum stability. The biodistribution of 198Au-TSC 

demonstrates a >50% accumulation in the bloodstream and 39% ID/g lung distribution in 4 

h following administration. It must be noted that ligand systems must be carefully chosen to 

circumvent existing problems associated with the rapid reduction of Au(III) complexes.

Additionally, the 198Au radiolabeled Au(III) bis(pyrrolide-imine) Schiff base complex was 

synthesized with a high radiochemical purity of >95% and 73% yield (Chart 15).258 

The high energy γ radiation of 198Au allowed for biodistribution of the complex in 

Sprague–Dawley rats using gamma capture, giving insights into blood accumulation of the 

hydrophilic complex and its retention in tissue as evidenced by t1/2 of 24 h in the heart and 

lung and excretion via the kidneys.258 Whereas these studies are of promise, the inability to 

use the described radiolabeled complexes to evaluate Au(III) to Au(I) reduction of drugs in 

animal models present limitations that require alternate radiolabeling approaches. The use of 

iodine (124I) radionuclide labeled Au(III) carbene complexes take advantage of the positron 

emission capability of 124I to monitor the speciation of Au–I-124 ex vivo and in vivo 
using whole body imaging by positron emission tomography (PET) and Au concentration in 

different organs by ICP-MS (Figure 19).259
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7. THERAPEUTIC GOLD COMPLEXES

7.1. Approved Gold Drugs

We would like to draw readers attention to the clinical use and development of gold 

agents (Table 1) as a prelude to the exciting new discoveries of gold-derived compounds 

for therapeutic application in different disease indications. The antituberculosis effect 

of potassium gold cyanide by Koch spurred several therapeutic trials of cationic gold 

complexes across Europe in humans.260,261 The German pharmacologist Adolf Feldt 

introduced sodium (4-amino-2-mercaptobenzoato(2-)-O,S) aurate (Krysolgan) in 1917 for 

the treatment of tuberculosis and aurothioglucose (Solganol), which inhibited streptococcal 

infections in humans.260–263 In 1845, Fordos and Gelis synthesized sodium aurothiosulfate 

(Sanocrysin)264 for the first time and its preparation later refined and characterized 

by McCluskey and Eichelberger in 1926 as an Au(I) complex.265 Despite Mollgaard’s 

mischaracterization of sanocrysin as a Au(III) dimethyl complex, the chemotherapeutic 

investigation of sanocrysin in the context of pulmonary tuberculosis was favorable. Several 

independent studies by physicians and scientists from Sweden, Denmark, Germany, and 

France published findings of the use of cationic gold complexes in polyarthritis and 

rheumatoid arthritis.266 Seminal work by Jacques Forestier in 1932 that utilized sodium 

aurothiopropanol sulfonate (Allochrysine) proved effective against infective and rheumatoid 

arthritis with cases that eliminated symptoms and signs of disease progression toward 

clinical cure.35

Following the introduction of sanocrysin in 1924 by Mollgard as a chemotherapeutic agent, 

the first clinical use of sanocrysin in humans was fostered by Knud Secher for the treatment 

of pulmonary tuberculosis in Denmark.266 Secher reported that 114 patients were tubercle 
bacilli-symptom free and proposed a mechanism that suggests the release of toxins in 

air-passages after sanocrysin administration to fight the infection.266–268 Other studies 

around Europe contested the Mollgard–Secher theory based on unsatisfactory therapeutic 

effect of sanocrysin in treating tuberculosis. The lack of a formidable experimental basis 

of sanocrysin’s mode of action dampened enthusiasm for its use.269–272 However, several 

clinicians continued its use to treat tuberculosis and other indications.

Aurotioprol acid is a racemic gold(I) salt, first prepared by Lumiere and marketed by Solvay 

under the trade name allochrysine for the treatment of rheumatoid arthritis.36,273 This drug 

exists as a polymeric complex with a chiral 2-hydroxy-3-sulfidopropane-1-sulfanto ligand. 

It is administered via intramuscular injection and currently marketed outside the United 

States. In several clinical trials dating back to the 1940s allochrysine showed superior patient 

response to placebo as a disease modifying drug.274

Sodium aurothiomalate exists as a 50 mg injection solution with nitrogen, phenylmercuric 

nitrate, and water. Sanofi markets this drug under the trade name myocrisin as disease 

modifying agent for the management of progressive rheumatoid arthritis and juvenile 

chronic arthritis and administered via deep intramuscular injection. There is widespread use 

of myocrisine in Australia and New Zealand, where it was approved in 1969. Myocrysin was 

discontinued in the United Kingdom due to shortage of the Active Pharmaceutical Ingredient 

(API) and not due to safety concerns in June 2019.275 In The Netherlands, myocrisin was 
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established as an alternative to aurothioglucose (Solganol) in 2001. Out of 120 patients with 

rheumatoid arthritis, 79% overall survival rate was recorded after 12 months. Maximum 

therapeutic benefit is gained in the early stages of disease. In advanced stages of the disease, 

where cartilage and bone damage have occurred, myocrysin is capable of management. 

Weekly injections of 10 mg to 50 mg of active gold until sodium aurothiomalate reaches 1 g 

is the general rheumatoid arthritis therapeutic dose.276

Krysolgan, also referred to as sodium (4-amino-2-mercaptobenzoato(2-)-O,S) aurate is a 

polymeric water-soluble complex introduced by Adolf Feldt for the treatment of tuberculosis 

and leprosy.277 In 1926, the use of Krysolgan in a patient with sarcoid lesions demonstrated 

a positive outcome including softened large nodules, flaccid skin area and disappearance of 

nodules following 14 injections of the drug up to 1.5 g dose.278 Application of Krysolgan 

in treating Lupus Erythematosus quickly emerged.279 Increasing toxicity, lack of potency, 

and lack of a defined mode of action, led to the discontinuation of Krysolgan as first-line 

therapy.280

Aurothioglucose can be viewed as a sugar derived Au(I) polymeric salt, which is often 

administered by intramuscular injection or intragluteally and marketed as Solganol. The 

American Medical Association designated Solganol for the treatment of rheumatoid arthritis, 

particularly for patients that have been unresponsive to conventional therapy. Although 

the mechanism is not fully elucidated, a general mode of action is that the gold agent 

accumulates in macrophages and consequently inhibits lysosomal enzymes as well as 

phagocytosis.276,281

Auranofin is a monomeric gold drug approved by any public health agency. It is an oral 

antiarthritic alkylphosphine gold(I) drug bearing a tetra-O-acetyl-1-thio-B-D-glucopyranose 

ligand. The search for new antiarthritic agents with improved efficacy led Sutton and 

the research team at Smith Kline and French laboratories, Philadelphia to synthesize a 

series of trialkyl-phosphine gold complexes in 1972.51 In the structure–activity relationship 

study that evaluated therapeutic responsiveness by the adjuvant arthritis rat model and 

bioavailability by measuring Au plasma levels, the triethylphosphine gold (AuPEt3) class 

was found to be most effective.51 Following the structural elucidation of auranofin using 

different spectroscopic techniques and X-ray crystallography, detailed pharmacokinetic and 

pharmacological profiling, and clinical trials, auranofin was approved by the US FDA 

in 1985 for the treatment of rheumatoid arthritis. Auranofin is marketed as Ridaura by 

Sebela Ireland Ltd. as a 3 mg capsule for oral administration. Recent repurposing efforts 

in identifying new drugs for different disease indications have positioned auranofin as an 

attractive drug for cancer, microbial, and viral infections beyond arthritis. We discuss the 

current landscape of auranofin in clinical trials around the world.

7.2. Current State of Gold Drugs in Clinical Trials

The ability for auranofin to perturb redox homeostasis by inhibiting thiol and selenocysteine 

rich oxidoreductases offers a broad mechanism to target for several diseases that have 

oxidative stress and inflammatory underpinnings such as cancer, microbial infections, and 

neurodegeneration.10,55,282–290 Despite the relegation of auranofin as a first line treatment 
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for rheumatoid arthritis, there are several clinical trials that have been conducted and other 

ongoing trials to repurpose the gold drug to treat other diseases as summarized in Table 2.

Investigation into the use of auranofin as an adjunctive host directed tuberculosis therapy 

(TB HDT) is in phase II clinical trials. This study examines the safety and preliminary 

efficacy of auranofin and other drugs including everolimus, vitamin D3, and CC-11050. 

TB treatment is long and often prevents patient medication compliance. Additionally, TB 

disease burden leads to acute lung inflammation. Thus, new treatment options that shorten 

TB treatment and prevent permanent lung damage is of clinical need.

An observational study sponsored by Hoffman-La Roche conducted in 11 countries of 1239 

enrolled participants aimed at assessing the antiarthritic biologic, rituximab, and alternative 

tumor necrosis factor (TNF) inhibitors in patients with rheumatoid arthritis and an 

inadequate response to a single previous TNF-inhibitor. The study recruited participants with 

previous nonbiologic disease-modifying antirheumatic drugs therapy including auranofin, 

aurothioglucose, allochrysine, and gold. Disease activity score-erythrocyte sedimentation 

rate (DAS28-ESR) is used as a measure of disease activity in rheumatoid arthritis and 

is calculated from the number of swollen joint count, tender joint count (TJC, 28 joints 

count) and ESR (millimiters per hour [mm/h]) with a higher score indicating more disease 

activity. This will be applied to the study over a 14-year period. In a recent study by Pfizer 

to examine patients initiating Xeljanz (tofitinib, Janus kinase inhibitor) for the treatment 

of moderate to severe active rheumatoid arthritis in combination with oral methotrexate 

(MTX), patient enrollment comprised those who have received Au treatment in the form of 

auranofin, aurothioglucose, or sodium gold thiomalate during a 1–5.2 years period before 

the index date. These observational models position Au drugs for potential combination 

therapy in the effective treatment of active rheumatoid arthritis in patients.

The use of auranofin to deplete latent viral reservoir in patients with HIV infection was 

supported by the hypothesis that antiretroviral therapy suppress HIV viral load and further 

reduction of viral load may lead to disease cure. In 2014, vaccine and gene therapy institute 

in collaboration with the University of Miami sponsored an interventional trial to investigate 

the reduction of HIV viral reservoir by oral auranofin (3–6 mg). This study was later 

withdrawn. Researchers in Sao Paolo launched a clinical trial toward HIV cure by studying a 

combination therapy involving Maraviroc and/or dolutegravir, dendritic cell vaccination, 

class III histone deacetylases (HDACs), surtuin-1, and auranofin to decrease the ratio 

of long-lived central memory/transitional memory (TTM) CD4+ T-cells.291,292 Although 

results are not yet available, a positive outcome will result in an efficacious combination 

treatment regimen for HIV sterilizing cure.

Auranofin was granted an orphan drug status for the treatment of amebiasis. Amebiasis 

is a parasitic disease caused by the one-celled protozoon called Entamoeba histolytica. 

To monitor the safety of auranofin after 7 days of daily oral administration, the National 

Institute of Allergy and Infectious Diseases (NIAID) completed a Phase I open label study 

to evaluate the pharmacokinetics of auranofin following a daily dose of 6 mg oral dose for 7 

days to healthy individuals. In a separate phase IIa study, the NIAID designed a comparative 
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study to evaluate placebo to once daily doses of 6 mg auranofin for the treatment of 

amebiasis or giardiasis (a diarrheal infection caused by the parasite Giardia duodenalis).

Chemotherapy remains the first line treatment for many cancers, but patients develop 

resistance to drug treatment and can die as a result. There is an unmet medical need 

to develop novel therapies for chemotherapy-resistant disease. The previous regulatory 

approval of auranofin established it as a reasonably safe and effective drug for rheumatoid 

arthritis. Thus, making auranofin attractive for the treatment of cancers. The University of 

Kansas Medical Center, NIH, and the Leukemia and Lymphoma Society identified auranofin 

as a selective inhibitor of the rare blood cancer, CLL. A phase I/II interventional trial was 

initiated at three sites following an IND clearance from the FDA. Due to diminished unmet 

need because of four promising therapies for CLL, the auranofin study was abrogated. The 

University of Ulm, Germany sponsored and proof of concept interventional clinical trials 

that combines Temozolomide with other approved drugs including auranofin for treatment of 

recurrent glioblastoma. The Mayo Clinic through its multiple locations in collaboration with 

the National Cancer Institute initiated several clinical trials to evaluate efficacy and overall 

tumors response rate of auranofin and sirolimus combination in treating serous and recurrent 

ovarian cancer. In the context of nonsmall cell lung cancer (NSCLC), phases I and II studies 

are currently recruiting patients to establish the maximum tolerated dose of auranofin when 

given in combination with sirolimus after a round of platinum-based chemotherapy as well 

as the potential to inhibit lung cancer growth.

7.3. Next Generation Gold Therapeutic Complexes

Ongoing research efforts to generate Au-derived compounds that are safe, efficacious, and 

selective have led to building unique molecular scaffolds with features akin to the FDA 

approved auranofin. New Au complexes have led to the discovery of novel mechanisms, 

potency, and precise target engagement. We describe such developments in subsequent 

sections of this Review. Here we discuss efforts to create novel and efficacious Au(I) and 

Au(III) compounds for different disease indications. Due to the broad utility of Au agents 

for disease treatment we have organized this section by disease indication and provided 

recent advances in gold-based therapeutic development for each disease category. We claim 

that the discussion of individual compounds is beyond the scope of this Review.

7.3.1. Antifungal Gold Complexes.—Only three types of antifungal drugs exist 

for treatment, namely the azoles, which in inhibit the primary fungal sterol, ergosterol; 

polyenes, which interact with the membranes of sterols; and 5-fluorocytosine, which is 

an inhibitor of macromolecular synthesis.305 The growing threat of fungal resistance to 

these drugs poses a major health crisis and further affirms the desperate need for new 

drugs with different mechanism of action. The current excitement surrounding auranofin 

as antimicrobial agent provides impetus for the development of Au-derived antifungal 

agents. Seminal work by Garneau-Tsodikova and Awuah et al. demonstrated that chiral 

and achiral forms of linear and square-planar Au(I) complexes (Chart 16) display broad-

spectrum activity and potent antifungal effects strains of the multidrug resistant fungus, 

Candida auris.306 The reaction of Au(I)Cl(THT) with phosphine ligands in chloroform at 

room temperature give rise to dinuclear Au(I)-phosphines with a linear geometry as well as 
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distorted tetrahedral (based on the τ4 parameter)307 counterparts, which can be separated 

by column chromatography to obtain highly pure complexes. Notably, the distorted 

tetrahedral complexes bearing chiral 1,2-bis[(2R,5R)-2,5-dimethylphospholano]benzene or 

1,2-bis[(2S,5S)-2,5-dimethylphospholano]benzene display excellent antifungal activity with 

MIC < 1.95 μg/mL. Notably, AuFun-4 and AuFun-6 prevent biofilm formation and decrease 

metabolic activity of fungal biofilms.

Incorporating Au(III) into clinically approved antifungal azoles have been achieved via 

metalation of the imidazole (Chart 17).308 These Au(III) complexes display antifungal 

activity in multiple Candida strains including albicans, glabrata, kusei, and auris in the 

submicromolar range. An asexual fungus, Microsporum canis, is highly prevalent worldwide 

that has high relapse rates and treatment failures could benefit from more efficacious 

antifungal agents such as gold-based antifungals.

A major drawback in antifungal metallodrug discovery is the lack of target discovery and a 

clear mechanism of fungal inhibition. The ability to harness some of the target identification 

strategies expounded in the earlier sections of this Review in the context of fungus has 

the potential to revolutionize gold-based antifungal discovery from oral agents to topical 

formulations.

7.3.2. Antibacterial Gold Complexes.—The continuous rise of antibiotic resistance 

possesses a major health threat to society with increasing treatment challenges.309–311 

Bacteria multidrug resistance mechanism against antibiotics arise through the production 

of enzymes that degrade antibiotics, overexpression of efflux pumps that drive antibiotics 

out of the bacterium, and alteration of target proteins through mutation.311,312 Most of 

the new set of antibacterial drugs are derivatives of existing drugs and have also shown 

resistance to some strains of bacteria, hence the search for more efficacious drugs. Auranofin 

and other gold-based complexes have been studied as potential antibacterial agents. In a 

report by Cassetta et al., auranofin was shown to be potent against Staphylococcus spp. in a 

concentration dependent manner.313 Auranofin also showed moderate bactericidal activity in 

Staphylococcus aureus and Pseudomonas aeruginosa biofilms.314,315 Despite auranofin’s 

potency against Gram-positive bacteria, its activity against Gram-negative bacteria has 

been suboptimal. The outer membrane of Gram-negative bacteria may create a barrier that 

prevents auranofin permeability. To mitigate this drawback, coadministration of auranofin 

with polymyxin B and E, antibiotics used for Gram-negative bacteria, has been shown as an 

effective way to improve auranofin activity.287

Wu et al. carried out structure activity relationship (SAR) on auranofin by modulating 

the thiol and phosphine ligands to create auranofin-like molecules. Forty compounds were 

screened for their activity against the notorious ESKAPE bacteria (Enterococcus faecium, 

Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas 
aeruginosa, and Enterobacter cloacae) and noted that compounds with trimethylphosphine 

ligands have improved activity against Gram-negative bacteria (Table 3). Their study also 

revealed that the thiol ligand is necessary for the bactericidal activity of both Gram-positive 

and Gram-negative bacteria.316 Other reports from this lab have also shown that auranofin 
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and its derivatives are active against Helicobacter pylori and bacteria from the Burkholderia 
genus.317,318

Another study has also shown that auranofin inhibited, in a concentration-dependent manner, 

the growth of Helicobacter pylori TrxR (Gram-negative bacteria) and showed synergistic 

or additive effect with known H. pylori antibiotics such as amoxicillin or metronidazole 

and clarithromycin. Also, when the phosphane ligand on auranofin was replaced by N-

heterocyclic carbene as shown in Figure 20, stability and inhibitory activity of the complexes 

were not altered greatly, and they show reduced in vitro toxicity.319

Schmidt et al. evaluated the activity of eight Au(I)-NHC complexes against ESKAPE 

bacteria, the bactericidal activity of the complexes Au(I)-NHC 1–8 (Chart 18) was in 

the lower micromolar range for Gram-positive bacteria and Gram-negative bacteria showed 

resistance to drug treatment, this results compared to earlier works suggest that the nature 

of the NHC used can be a factor in determining the activity of this class of compound 

and the lack of glutathione in many Gram-positive bacteria resulted in greater dependence 

on the thioredoxin/thioredoxin reductase system.320 Thus, sensitizing such cells to these 

gold compounds that inhibit TrxR. Pyrazine functionalized Au(I)-NHC complexes have 

also been studied as potential antibiotics. These stable neutral (Au-NHC 9) and cationic 

(Au-NHC 10) complexes inhibit biofilm formation, and are potent against pathogens that 

showed resistance to antibiotics with MIC of 2–16 μg/mL, and are nontoxic to the red 

blood cells with docking studies suggesting affinity for the Dap-type peptidoglycan thereby 

inhibiting the synthesis of cell wall.321 Another report incorporating derivatives of estrogen, 

ethinylestradiol (Au-NHC 12) and ethisterone (Au-NHC 13) to carbenes was shown to have 

lower in vitro antibacterial activity compared to the precursor carbenes in both S.aureus and 

E. coli strain and the complexes were nontoxic in an in vivo experiment.322

Bussing et al. also reported Au(I)-NHC complexes and their Au(III) counterpart and 

examined their antibacterial and thioredoxin inhibition (Chart 19). The oxidation state 

of the gold complexes did not affect the cytotoxicity as both classes of compounds are 

similar in activity with higher bactericidal activity in Gram-positive bacteria (E. faecium, 

methicillin-resistant S. aureus, MRSA) compared to Gram-negative bacteria (A. baumannii, 
E. coli, K. pneumoniae, P. aeruginosa) studied. Using an enzymatic assay, the inhibition of 

thioredoxin was studied in isolated E. coli TrxR. All complexes inhibited TrxR with an IC50 

of 0.2–0.6 μM suggesting its mechanism of action to be inhibition of thioredoxin.323

Recent studies on Au(I) selenium NHC complexes by Chen et al. showed potent 

antibacterial activity on multidrug-resistant bacterial strains both in vitro and in vivo 
comparable to auranofin. The antibacterial mechanism of action of these Au(I) selenium 

complexes were related to cellular DNA degradation and irreversible inhibition of the 

bacterial TrxR via targeting the redox-active motif.324

Cationic Au(I) benzothiazoles (Chart 20) complexes have been shown to inhibit the spread 

of A. baumannii in skin and soft tissue infection (SSTI) model experiment. The inhibition of 
A. baumannii, a Gram-negative bacterium by Au-BTZ 1 and Au-BTZ 2 compared to neutral 
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AuCl(PPh3) was attributed to the ability of the cationic complexes to move through the cell 

wall and interfere with biological processes in the cell.325

Alkynyl gold(I) complex is another class of compound that has been studied for their 

bactericidal activity (Chart 21). Novel alkynyl chromone or flavone complexes bearing 

Au(I)PPh3 were synthesized in good yields and compared with Au(I)PPh3 against 

both Gram-positive and Gram-negative bacteria strains. The complexes exhibited high 

bactericidal activity with a MIC between 1 and 4 μg/mL for Au-chromone-1 and Au-
chromone-2 comparable to Au(I) TPP in strains of Gram-positive bacteria S. aureus but 

were not effective in Gram-negative bacteria E. coli.326

Pintus et al. synthesized Au(III) dithiolate complexes (Chart 22) and evaluated their 

antimicrobial activity against 10 strains of Gram-positive and Gram-negative bacteria using 

the agar diffusion method. The compounds were selective in their action as it inhibited 

growth from the 2 strains of Staphylococcus tested, this could be because of permeable cell 

surface structure of cocci Gram-positive bacteria compared to other strains examined. The 

difference in metabolism of Staphylococcus compared to Streptococcus strains may account 

for the disparity in sensitivity of Au(III)-dithiolate-1 to both strains. Au(III)-dithiolate-1 
also interfered with biofilm formation in strains Staphylococcus at a concentration of 

3.125 μg/mL.327 Fontinha and co-workers (Chart 22) further synthesized and tested 6 

Au(III) bis(dithiolate) and evaluated their antibacterial and anticancer activity. Antibacterial 

activity of S. aureus Newman, and E. coli was determined using the microdilution 

method. Only Au(III)-dithiolate-2 inhibited the growth of S. aureus Newman with MIC 

value of 12.5 μg/mL, while other compounds had MIC values greater than 125 μg/mL 

indicating no inhibition. Although the MICs of these Au(III) dithiolate complexes are higher 

than auranofin, they provide a new structural class in expanding the library of Au(III) 

antibacterial agents.328

To understand the mechanism of action of Au(III) complexes, Chakraborty et al. synthesized 

several cyclometalated Au(III) complexes. All complexes studied were inactive against E. 
coli and B. subtilis bacteria strains except Au(III)ĈN–Cl2 and [Au(III)ĈN^NŜ]PF6 (Chart 

23) that inhibited B. subtilis colonies comparable to kanamycin, a potent antibiotic. Further 

experiment to decipher the mode of action of Au(III)ĈN–Cl2 on B.subtilis reveals that the 

compound has no effect on bacterial membrane permeability, membrane potential and there 

was no generation of reactive oxygen species, but a decrease in overall energy levels of 

the cells. RNA sequencing result shows that several metal transporters, oxidoreductases, 

and proteases were upregulated while genes involved in cell wall formation and ABC 

transporter genes were downregulated. Overall, a multimodal mechanism of action was 

proposed involving various cellular stress response pathways.329

7.3.3. Antileishmanial Gold Complexes.—The disease burden imposed by 

leishmania parasites remains a major public health concern, particularly in the tropics. 

Current treatment approaches for visceral and cutaneous forms of leishmaniasis include 

miltefosine, pentamidine, paromomycin, amphotericin B, and the antimonates (urea 

stibamine, sodium stibogluconate, meglumine antimoniate). Whereas these agents have 

been employed for decades, effectiveness is a challenge in several cases, prompting 
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resistance and requiring higher doses of drugs. New agents such as auranofin display strong 

leishmanicidal activity, thus uncovering an untapped chemical space for gold complexes in 

the treatment of leishmaniasis. The premise for the use of Au(I) complexes is derived from 

the established interaction of Au(I) with the thioredoxin machinery in humans that is akin to 

the trypanothione system in leishmania parasites for redox homeostasis.330 Establishment of 

auranofin as an antileishmanial agent was through a high-throughput screening campaign to 

identify novel antileishmanial chemotypes using a library of 2,157 bioactive compounds. 

Auranofin showed prominent growth inhibition of L. amazonensis promastigote and 

dose–response assays with EC50 comparable to the established antileishmanial drug, 

amphotericin B (Chart 24). In a Balb/c mouse model inoculated with 106 metacyclic L. 
major promastigotes, auranofin dosed 20 mg/kg/d × 10 d, or liposomal amphotericin B 

at 12.5 mg/kg/d × 10 d, showed comparable lesion suppression. These impressive results 

expanded. An expanded structural study of the gold pharmacophore against leishmaniasis 

provides impetus for antileishmanial drug discovery.331 For a discussion into the potential 

mechanisms and biological targets of leishmaniasis, we refer readers to a recent review by 

Abbehausen et al.332

Structure–activity relationship studies using neutral Au(I) complexes of the type Cl–Au-

L, where L represent different monodentate phosphine ligands of electronic and steric 

variability, significant modulation of antileishamanial activity was observed.331 As shown in 

Table 4, water-soluble phosphines showed attenuated antileishmanial response, implicating 

lipophilicity as an important descriptor.

Benzimidazole-ligated Au(I) and Au(III) complexes (Chart 25) represent another class 

of antileishmanial agents with activity against promastigotes of L. amazonensis, L. 
braziliensis, and L. major.333 The condensation of o-phenylenediamine with benzaldehyde 

or p-anisaldehyde generated ligands in respectable yields for Au(I) or Au(III) metalation. 

Although the antileishmanial effects of these complexes are modest in the range of (1–54 

μM), it provides a framework to expand this class of compounds.

Gold-derived antileishmanial complexes bearing NHC ligands have shown encouraging 

results. The NHC ligands enable the formation of Au–C bonds for stabilization and 

demonstrates potential for diversification. Beginning with the synthesis of imidazolium salts, 

metalation to form carbene Au complexes could be either through transmetalation with Ag 

or direct metalation with Au in the presence of a base. Both monofunctionalized carbene 

and bis-carbene Au complexes have been achieved through the process (Chart 26).334,335 

The antileishmanial activity of Au(I)-NHC complexes are in the sub micromolar range in 

promastigotes of L. major or L. infantum and Leishmania intracellular amastigotes. Notably, 

mononuclear neutral Au(I)-NHC complexes with asymmetric imidazole substitution achieve 

nanomolar inhibitory concentrations in L. infantum axenic amastigotes with selectivity 

index of >40.336 Encouraging results demonstrated the ease of functionalizing NHCs 

and the broad tunable characteristics imparted on biological response by NHC ligands 

make them attractive for exploration in leishmaniasis drug discovery. Recently Nolan et 

al. reported Au(III) bis-carbene complexes that act as potent inhibitors of α-glucosidase 

and β-glucuronidase and antileishmanial activity of 0.11–1.62 μM in Leishmania major 
promastigotes.

Mertens et al. Page 26

Chem Rev. Author manuscript; available in PMC 2024 May 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A new class of Au(I)-oxadiazole complexes (Chart 27) with antileishmanial activity was 

synthesized by the reaction of Au(PEt3)Cl or Au(PPh3)Cl and 5-phenyl-1,3,4-oxadiazole-2-

thione ligands.337 The aromatic ring of the ligand accommodates different substituent 

groups, ranging from gluconolactone,338 electron withdrawing NO2, F, and Cl groups to 

electron donating, OCH3 groups that affect the electronic character of the complex and 

contribute to diversity. The antileishmanial activity did not discriminate against chemical 

modification.

In a more elaborate study with translational potential, Monte-Neto and co-workers 

synthesized a new class of adamantane substituted oxadiazole or thiazolidine Au(I) 

phosphines as antileishmanial agents.339 The complexes inhibit thioredoxin reductase in 

mammalian cells and trypanothione reductase in parasites, eliciting potent antileishmanial 

activity in the low micromolar range across multiple leishmania species via oxidative stress. 

In vivo efficacy demonstrates that combination of the Au agents with Miltefosine reduces 

lesions by up to 65% and parasitic load of up to 80% by luminescence measurements 

(Figure 21). Taken together, these studies set the stage for clinical development of AdT Et 
as a monotherapy or in combination with existing drugs for the elimination of leishmaniasis.

7.3.4. Anticancer Gold Complexes.—Several research groups have capitalized on the 

hopeful clinical development of auranofin for cancer therapy to develop new Au(I) and 

Au(III) anticancer complexes with the goal of uncovering novel mechanisms and targets, 

improve in vivo potency and minimize potential side effects. We describe such endeavors in 

subsequent sections of this Review. It is important to note that perturbations made to Au(I) 

and Au(III) scaffolds through ligand modification remain at their peak. Here, we discuss 

efforts to create novel gold complexes that are structurally distinct and have potential for 

targeted therapy. Given that recent reviews on gold in biology have focused on the anticancer 

action, we pivot this section to recent developments toward new anticancer scaffold and 

targeting strategies to achieve highly efficacious Au agents. Specifically, we have chosen 

to focus on organelle-specific targeting, tumor targeting using ligands or antibodies, and 

immunochemotherapy involving gold complexes.

7.3.4.1. Mitochondrial Targeting of Gold Complexes.: Mitochondria is commonly 

referred to as the powerhouse of the cell due to its abundant production of ATP through 

the redox driven oxidative phosphorylation process.340–344 In addition to being an energy 

hub, mitochondria are involved in anabolic and catabolic biological processes that facilitate 

cell signaling, differentiation, immune signaling, growth and cell death pathways.95,345–351 

The mitochondria structure is defined by an outer membrane, which protects the protein-

rich matrix of the organelle and the inner mitochondria membrane that is home to the 

electron transport chain responsible for mitochondria respiration. Intrinsic functions of 

the organelle include mitochondrial respiration/bioenergetics, dynamics (fusion/fission), 

morphology, fatty acid oxidation, and superoxide-mediated signaling to mention a few. 

Increasing evidence implicates mitochondria dysfunction in cancer, representing a viable 

target. Although many examples of gold complexes that modulate mitochondria function are 

known, uncovering direct targets beyond thioredoxin have been underexplored.
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Early reports by Berners Price demonstrated that cationic Au(I) analogs bearing 

bis-phosphine or bis-carbene ligands could induce mitochondrial dysfunction through 

mitochondrial uncoupling activity and the disruption of thioredoxin system.95,352,353 Recent 

developments in omics technology have contributed to gold drug discovery in ways that 

uncover new mitochondrial pathways or targets. The negative inner membrane potential 

of the mitochondria serves as a driving force for the accumulation of lipophilic cationic 

structures. This phenomenon has been well studied and selective mitochondria targeting via 

cationic ligands has been recently reviewed.109 The Lewis acidic character of gold as earlier 

described coupled with the lipophilic ligands can often generate cationic Au complexes with 

degrees of lipophilicity >2. This structural feature makes such complexes innately attracted 

to the redox active mitochondria. Awuah and co-workers have exploited this feature to 

uncover novel mitochondria pathways impacted by rationally designed Au(I) and Au(III) 

complexes.

An interesting discovery of Au complexes that perturb mitochondria structure offers 

new tools and potential therapeutics for the treatment of diseases.336,354 Phosphine and 

arsine supported Au(I) complexes ligated by N^N-bidentate ligands afford unsymmetrical 

cationic structures in three-coordinate geometry, referred to as AuTri (Figure 22).355,356 The 

different Au–N bonds of the metal center to the bidentate ligand dictates the asymmetry. 

The rational was to rely on the labile Au–N bond for binding to macromolecules 

under physiological conditions. Using transmission emission tomography (TEM), the 

AuTri compounds induced distortions of the mitochondria structure with concomitant time-

dependent depletion of mitochondria membrane proteins including, OPA1, MFN1, MFF, 

and TOM20 by Western blot. A global proteomics study of AuTri-9 treated in comparison 

to untreated breast cancer cells showed that differentially expressed proteins were largely 

mitochondria membrane proteins. Overall, this work highlights the potential to identify 

new Au complexes that target novel biological targets and further supports the report that 

disruption of mitochondrial structure proteins may overcome cancer drug resistance.

Derivatives of Au(III) dithiocarbamate (AuDTC) have been prepared with strong 

proteosome inhibition and anticancer activity against breast and prostate cancer.357–360 

These complexes possessed dibromido ligands and peptide ligands ligated to the Au center 

via a thiolate moiety. Modifications to AuDTC by incorporating ĈN-cyclometalated ligands 

and tuning the ancillary ligands with different dialkyl dithiocarbamate ligands generate 

highly potent Au(III) complexes with selective mitochondria targeting (Chart 28).361 Using 

transcriptomics, bioenergetics, and function mitochondrial assays the lead AuDTC complex 

displayed cancer cell selective inhibition of mitochondrial respiration. The impact of ligand 

tuning cannot be underestimated in the design of Au(III) anticancer agents, particularly in 

the context of mechanism of action and potency.

A new class of organogold(III) complexes was synthesized by the reaction of ĈN-

cyclometalated Au(III) complexes with bis-phosphine ligands under mild conditions, herein 

referred to as AuPhos (Chart 29).362 The geometry of the complexes could be square 

planar or square pyramidal depending on the ligand. Whereas the varying geometry is an 

interesting finding, more work is required to provide guiding principles and insights into 

the structural phenomenon. Interestingly, AuPhos modulates mitochondria activity with high 
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potency across the NCI-60 panel and in vivo tumor inhibition in the aggressive 4T1 TNBC 

mouse model. Combined transcriptomics and proteomics reveal the mitochondrial electron 

transport chain as a potential target for the lead AuPhos-89 complex.362 A chiral form of 

AuPhos, using the chiral QuinoxP ligand gave rise to AuPhos-19363 which induces ATF4 

activation and inhibits mitochondria respiration acutely with potent in vivo activity.175 A 

careful examination of the speciation of this class of compounds supports stability under 

physiological conditions with minor Au(I) species and concomitant reductively eliminated 

aryl(C)–S bond formation under reducing glutathione conditions. Expanding the chemical 

library of AuPhos has enormous potential for therapeutic discovery.

Independent studies by Ang and Awuah developed Au(III)-metformin complexes, herein 

3met or auraformin (Chart 30) with significant efficacy against TNBC.364,365 Coordination 

of the N-donor ligands from the FDA approved metformin to the ĈN-cyclometalated Au(III) 

center afford square planar prodrugs with superior potency to metformin up to 6000-fold. 

Auraformin-1 (Chart 30) reportedly accumulates significantly in the mitochondria of MDA-

MB-468 cells to efficiently impair mitochondria respiration and depolarize the mitochondria 

membrane. Similarly, the 3met (Auraformin-2) was reported to disrupt energy metabolism 

in MDA-MB-231 cells and induce ER stress and autophagy.365 In vivo efficacy of 3met 
(Auraformin-2) was demonstrated in athymic nude mice with orthotopic implantation of 

MDA-MB231 cells in the mammary fat pad. Significant tumor reduction was noted at 15 

mg/kg after 3 weeks. The promising in vivo activity of this class of compounds establishes a 

platform for translational application in the treatment of aggressive cancer.

7.3.4.2. Gold Conjugated Cancer Targeting Ligands.: Direct interaction of anticancer 

agents with tumors can be greatly enriched by selective targeting of overexpressing 

proteins or receptors in cancer that often act as biomarkers. Gold complexes conjugated 

to cell adhesion molecules (e.g., integrins), epidermal growth factor receptors, G-protein 

coupled receptors (e.g., bombesin), hormone receptors and glucose transporters have 

been explored (Chart 31).366 The use of cancer targeting ligands and peptides, either 

linear or cyclic have been demonstrated in vitro. For example, integrins overexpressed 

in multiple sold tumors such as breast cancer are heterodimeric transmembrane receptors 

composed of an α- and β- subunit noncovalently associated with each other. Conjugation 

of RGD peptides to Au(III)ĈN–Cl2 complexes via a dithiolate moiety led to Au(III)-

RGD constructs A and A′ with improved efficacy in breast cancer.367 Additionally, 

the conjugation of pyrazine supported pincer Au(III) complex [Au(bbfpz)(acbim)]+ 

(bbfpz = 2,6-bis(4-(tert-butyl)phenyl)-pyrazine; acbim = 1-methyl-3-(4-(6-aminohexyl)-

carboxamido)benzylbenzimidazol-2-ylidene) to a derivative of 17α-ethinylestradiol afforded 

Au(III)-ER conjugates, B with potent cytotoxicity and uptake in ER(+) breast cancer 

cells than ER(−) cells.368 Moreover, linear Au(I) complexes can be tethered to EGFR 

inhibitors such as erlotinib, C to improve anticancer action by ~68-fold in EGFR 

positive breast cancer, MDA-MB-231.369 Conjugating the human epidermal growth 

factor receptor (HER2) antibody, Trastuzumab or otherwise known as Herceptin to 

Au(PPh3)(DPTP) (DPTP = 2,5-dioxopyrrolidinyl-3-(1H-1,2,3-triazol-4-yl)propanoate) or 

Au-(PPh3)(MBANHS) (MBANHS = 4-mercapto-benzylmaleimido propionamide) via N-

hydroxysuccinimide or maleimide groups respectively achieved constructs D and E with 
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enhanced cytotoxicity in breast cancer cells expressing HER2 compared to the parent 

Au(I) complexes.370 Au(III) biotin complexes F have also been developed to target cancers 

that overexpress biotin receptors (BR). Selectivity of these constructs were achieved in 

BR(+) MCF7 compared to BR(−) HCT-116 cells.368 Despite the promising results of these 

targeting constructs, the lack of validation in isogenic cell lines or in vivo is a major 

bottleneck.

7.3.4.3. Immunogenic Cell Death (ICD) Induction by Gold Complexes.: Other metal 

complexes and several gold complexes have been shown to induce immune-potentiating 

effects.371,372 Gold(I) compounds not only act on tumor cells and immune cells directly, 

but also affect the expression of cell adhesion molecules on endothelial cells.373 Despite 

chemotherapy commonly increasing the risk of secondary infections via myelosuppression 

and lymphocytopenia, indicating that it may lead to immune suppression, an appropriate 

combination of cytotoxic chemotherapy and immunotherapy may exert a highly synergistic 

anticancer activity.373–375 Innate immunity forms the first line of defense in the human 

immune system. For example, NK cells are natural immune effector cells with a direct 

killing function that plays a key role in the clearance of tumor cells. Metal drugs have been 

shown to upregulate signals on cancer cells that are perceptible to the NK cell compartment, 

such as the NKp30 ligand B7–H6F.376 Gold compounds such as [Au(C–C-2-NC5H4)(PTA)] 

induce colorectal carcinoma cell death via ROS-mediated necroptosis by activating TNF − α
and NF − κB signaling and also have been shown to exert an immunosuppressive role 

by inhibiting IB kinase activation and promoting cell apoptosis.377–379 Au(I) can oxidize 

inside phagocyte lysosomal compartments, resulting in Au(III), which plays the role of a 

major hapten that acts synergistically in innate immunity.380 Elie et al. investigated the 

antimetastatic effects of gold compounds in renal cancer cells and revealed strong inhibition 

of several cytokines (IL17A, IL-8, IL-6, and IL-5) by gold compounds.377–379,381 Various 

studies have shown that gold compounds can elicit an innate immune response, which can 

be ascribed to the triggering of TLR3 rather than TLR4.382 Additionally, to innate immunity, 

adaptive immunity presents another unique angle to approach gold-based immunotherapy. 

Although not thoroughly researched, a seminal study suggested that gold compounds 

contribute to the frequent development of adaptive immunity by directly triggering TLR3 

and increasing the expression of downstream mediators.383

Immunogenic cell death is a form of cell death that can stimulate the immune response 

to antideath cell antigens, especially those derived from tumor cells.384 Gold compounds 

in combination with CRISPR/Cas9-mediated disruption of PD-L1 and mild hyperthermia 

induce the activation of immunogenic cell death.384,385 Additionally, gold compounds 

eliminate primary tumors and induce immunogenic cell death via the release of damage-

associated molecular patterns (DAMPs), activation of effector cells, and induction of 

dendritic cell maturation. These phenomena, in a coordinated manner, eventually evoke 

systematic anticancer immune responses.386,387

Recently, Sessler and Arambula et al. reported Au(I) bis N-heterocyclic carbene (NHC) that 

induce ICD in vitro and in vivo (Figure 23).387 A potential mechanism for this phenomenon 

is the inhibition of thioredoxin system and promotion of ER stress to promote type II 

ICD as evidenced by CRT translocation and the release of ATP and HMGB1. Further, 
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Balb/c mice were subcutaneous injected with CT26 cells pretreated with Au-ICD (5, 10, 

and 100 μM) and subsequently challenged with na>ve, live CT26 cells on the other flank. 

Strikingly, delayed or no tumors developed on the challenged in a manner consistent with 

the concentration of Au-ICD dosed. Demonstrably, gold compounds can induce ICD in vivo 
and have potential for cancer vaccine development.

7.3.4.4. Gold Compounds Targeting Cancer Stem Cells.: Eradication of cancer stem 

cells (CSCs) represents a difficult challenge in the effective treatment of cancer patients. 

Given the capacity of CSCs for self-renewal, differentiation and secondary tumor formation, 

CSCs can evade conventional chemotherapy regimen and drive tumor relapse in treated 

patients.388,389 Current standard of care chemotherapy agents for treatment of patients and 

many reported organometallic complexes are ineffective in removing CSCs.390 Hence, the 

need for improved treatment options effective against both bulk tumor cells as well as CSCs.

Zou et al. reported binucleargold(I) complex with mixed bridging diphosphine and bis(N-

heterocyclic carbene) ligands that inhibited self-renewal ability in HeLa and U-87 MG 

human glioblastoma cells in vivo with 79% tumor volume inhibition in nude mice bearing 

HeLa xenografts.391 Roeseh et al. synthesized 6-membered phosphorus heterocycles Au(I) 

compounds and examined their anticancer activity in both glioblastoma cancer cells 

(GCC) and glioblastoma stem-like cells (GSC). The compounds were potent in GCC and 

demonstrated observable decrease in wound closure in glioblastoma stem-like cells.392

Suntharalingam and co-workers developed gold(I) complexes bearing nonsteroidal anti-

inflammatory drugs (NSAID) to target breast cancer stem-cells (Figure 24).393 Lead 

complex containing indomethacin moiety showed greater inhibitory effect (80-fold) against 

breast CSCs than the bulk breast cancer cell population. An inquiry into the mechanism of 

action of the lead complex revealed cytoplasmic accumulation of the complex, inhibition of 

cyclooxygenase-2 (COX-2) and increased levels of intracellular ROS. In vivo efficacy for 

the gold(I)-indomethacin complex was demonstrated in 4T1 tumor-bearing mice; tumor was 

significantly reduced without affecting mice body weight. This work further demonstrates 

that targeting CSCs is an effective strategy for cancer treatment.393

Sun et al. also reported a gold(III) meso-tetraphenylporphyrin complex that inhibit formation 

of spheroids from single cell suspension in U-87 glioblastoma cancer cells. The porphyrin 

complex demonstrated potent in vitro and in vivo toxicity in a panel of cancer cells and 

high physiological stability in glutathione and serum albumen. Furthermore, there was a 

reduction in NANOG expression (stemness marker), while deregulating 16 microRNAs 

linked to glioblastoma stem cell function.394

7.3.5. Antiviral Gold Complexes.—Given the timing of the review coinciding with the 

latter half of the pandemic, it is important to highlight the potential antiviral properties of a 

few gold complexes. The current outbreak of SARS-CoV-2 has resulted in an unprecedented 

health crisis with the number of infected well into the millions.395 The lack of an effective 

antiviral drug for the treatment has triggered a major surge in drug-development, specifically 

transition metal complexes given their success in the past. The urgent development of an 

effective therapeutic is an utmost priority for medicinal chemists across the globe.
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Despite the long-standing history of gold complexes in medicine, it was without question 

that chemists would turn to gold-based complexes by either (a) repurposing old drug 

candidates and (b) developing new innovative scaffolds. The application of gold complexes 

as antiviral drugs has not been studied very intensively, although some promising results 

suggest a possible future use as human immunodeficiency virus (HIV) therapeutics.41,396,397 

Gil-Moles et al. reported a pilot study in which select gold complexes were investigated to 

determine their activity against two coronavirus targets (spike protein, papain like protease, 

and PLpro) (Figure 25).159

An enzymatic FRET assay was used to determine the antiviral activity of gold compounds 

against PLpro from SARS-CoV-1 and SARS-CoV-2. The IC50 for Au-1, Au-2, and Au-5 

against PLpro from SARS-CoV-1 was determined to be within the range of 5–7 μm. This 

range is similar to the inhibitory concentration of Disulfiran, which was used as a reference 

for comparison. The gold complexes Au-3 and Au-4 showed less antiviral effect with an 

IC50 of 14 μm, while Auranofin had the least inhibitory effect with with IC50 of 25.5 μm as 

represented in Table 5.159

A recent review profiled inhibition of SARS-CoV-2 by structurally diverse metal complexes 

including 36 gold(I)/(III) complexes.398 Inhibition of SARS-CoV-2 can occur either by the 

interaction of spike protein with the ACE2 receptor or by the papain-like protease PLpro. 

For instance, chloroauric acid showed a moderate inhibition (about 47% inhibitory activity) 

while the other gold compounds were poorly active or inactive.398

Also, structure–activity relationship studies reveals a preference for complexes with good 

leaving groups (e.g., chloride) compared to complexes with firmly coordinated ligands such 

as dicarbene gold complexes of the type [(NHC)2Au]+, which were inactive. Gold(III) 

dithiocarbamate glycoconjugates showed strong selectivity against SARS-CoV-2 PLpro.398 

The gold complexes studied showed strong toxicity against Caco-2 cell line except for four 

complexes which were then selected and tested for SARS-CoV-2 antiviral assay, with the 

[Au(I)-NHC] complex showing excellent activity at micromolar range.

Auranofin has also been shown to inhibit SARS-CoV-2 replication in human cells (Huh7 

cells) at a low concentration (EC50 1.4 μM)52 with about 95% reduction in the viral RNA at 

48 h after infection. Treatment with auranofin showed a reduction of SARS-CoV-2-induced 

cytokines expression levels in human cells. These results indicate that auranofin could 

be potent to limit SARS-CoV-2 infection and associated lung injury due to its antiviral, 

anti-inflammatory and antireactive oxygen species (ROS) properties. Further in vivo study 

is required to establish the safety and efficacy of auranofin for the management of SARS-

CoV-2 associated disease.399,400

Furthermore, highly active antiretroviral therapy (HAART) has caused decreased death rate 

from acquired immune deficiency syndrome due to human immunodeficiency virus.401 

However, acquired drug resistance has hindered the success of current HAART, therefore the 

need for improved therapeutics.402–404 In addition, reports exist on gold-based inhibitors of 

reverse transcriptase (RT), protease (PR) and viral entry of host cells.339,405–409
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Taken together, the antiviral properties of gold complexes prove to be a critical field of 

study for medicinal chemists to tackle as approaches to develop therapeutics remains to be 

confined to simply repurposing old drugs such as auranofin. Given the success auranofin has 

had and promising characteristics, it is up to current day medicinal chemists to explore more 

innovative avenues in developing new gold-based therapeutics for antiviral therapies.

7.3.6. Gold in Inflammatory Bowel Diseases.—Gold compounds (in this case 

auranofin) have been shown to decrease the expression of inflammatory cytokines (IL-1β, 

IL-6 and TNF) in rheumatoid arthritis patients as well as inhibits the expression of nuclear 

factor kappa beta (NF-kB) which has been associated with chronic inflammatory diseases 

e.g., IBD.378,410–413 Given this finding, to date there have been scarce attempts at purposing 

gold-based complexes for IBD therapy.

In 2012, seminal work by Travnicek et al. reported the synthesis of a class of AuPPh3 

complexes with anti-inflammatory activity (Chart 32).414 These complexes exhibited a 

strong ability to reduce the production of pro-inflammatory cytokines such as TNF-a, IL-1β, 

and HMGB1 without effecting secretion of anti-inflammatory cytokines from LPS activated 

macrophages. The complexes significantly influenced the formation of edema induced by 

polysaccharide carrageenan in vivo. Notably, these compounds were significantly less toxic 

than auranofin in culture.

Several Au(I) complexes bearing O-substituted 9-deazahypoxanthine derivatives (1–5; Chart 

33) have been reported for their antitumor and anti-inflammatory activity. The compounds 

show potent anticancer activity in a panel of cancer cell lines (MCF7, HOS, A549, 

G361, A2780, A2780R, 22Rv1, and THP-1) with IC50s in the range of 0.6–22.8 μM. In 

addition, the complexes show no cross-resistance to cisplatin and are more efficacious than 

cisplatin in the cell lines tested. The complexes show significant selectivity for cancer cells 

compared to normal HEP220 cell lines. Furthermore, results from the anti-inflammatory 

activity of 1–5 (Chart 33) revealed that the complexes significantly decreased the production 

of TNF − α and IL − 1β, attenuating the production of pro-inflammatory cytokines by 

blocking NF- κB signaling and inhibiting IκB degradation similar to auranofin. Also, 

in vivo anti-inflammatory activity of 2 (Chart 33) in a carrageenan-induced hind paw 

edema model reveals a pronounced antiedematous effect comparable to the FDA approved 

Indomethacin.415

Another recent report by Bodio et al. developed BODIPY tagged gold(I)-imidazole 

bimetallic complexes (as seen in section 5.1.1), which exhibited anti-inflammatory 

effects.227 Although these complexes were designed with anticancer therapies in mind the 

researchers discovered that BDP-Au7 is far less toxic: viability of PBMC is slightly superior 

to 60% at 10 μM. Interestingly, at 1 μM, BDP-Au7 inhibits more than 30% of the production 

of IL-1β without displaying any toxicity, and at 3 μM, BDP-Au7 inhibits almost all the 

production of IL-1β with low toxicity.

Recently, work by Wempe et al. utilized a novel gold(III) complex, termed AuPhos 

developed by Awuah and co-workers for the treatment of ulcerative colitis.416 Initial 

pharmacokinetics and biodistribution studies revealed that oral administration of AuPhos 
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demonstrated high rates of adsorption into the small intestine and colon compared to 

systemic adsorption while displaying a dose-dependent uptake in IEC mitochondria. In 
vivo studies revealed that mice treated with AuPhos showed lower disease activity index 

(DAI), histology score, and FITC-dextran compared to vehicle control. Mechanistically, oral 

administration of AuPhos increased crypt fissioning near the mucosa while simultaneously 

reducing mRNA expression of pro-inflammatory cytokines.416 Further studies by the group 

in a piroxicam-accelerated (Px) knockout mice (an accelerated colitis model) showed that 

administration of AuPhos led to reduced DAI, weight loss and less crypt ablation and 

hyperplasia evidenced by HE sectioning.417 Mice administered with AuPhos had decreased 

DAI, reduction in weight loss, and resulted in less crypt ablation and hyperplasia evidenced 

by HE sectioning. RT-qPCR of tissue from Px-IL10 KO mice treated with AuPhos revealed 

significant increases in mitochondrial complex I genes (Ndufa1, Ndufa4, Ndufb6), complex 

IV gene (Cox5B), and stem cell markers (Lgr4, Lgr5, and Lrig1), with corresponding 

decreases in pro-inflammatory markers (IL-1β, MCP1, and RankL).417,418 These new 

promising findings suggest that gold complexes can be tuned to modulate bioenergetics and 

metabolism to prevent inflammation-associated barrier damage when subjected to chronic 

colitis conditions.

8. TARGETING MODALITIES AND NANODELIVERY OF BIOACTIVE GOLD 

COMPLEXES

Nanobased constructs for the delivery of therapeutic agents have been clinically 

transformative. The ability to control the size, chemical, magnetic, and biological properties 

of nanocarriers and their drug cargo make nanoconstructs an excellent platform for drug 

delivery. Also, their enhanced bioavailability and controlled drug release profiles offer 

advantages for targeted delivery that minimize toxic side effects or improve efficacy.419–424 

Nanodrug delivery can occur either by active or passive targeting. In active targeting, 

the surface of the nanocarrier is coated with ligands such as peptides and antibodies 

that promote recognition of specific receptors or proteins overexpressed at the target site 

whereas in passive targeting, the physicochemical properties of the nanocarrier such as size, 

shape, pH, dictate affinity, internalization and enhances permeability and retention (EPR) 

at target sites.423,425–427 Development of nanodelivery constructs for gold complexes have 

been described, employing different nanocarriers, such as liposomes, polymeric, apoferritin, 

albumen, collagen, and mesoporous silica materials. These have recently been reviewed by 

different authors,428–430 thus we refrain from giving a detailed narrative here. Nevertheless, 

in a review of next generation gold drugs and probes, it is imperative that we provide an 

overview of the significant scientific and preclinical advances made in the nanodelivery of 

defined gold-based complexes.

8.1. Polymeric Nanoparticles

Au(I)-loaded poly(β-amino ester) micelle-like nanoparticles have been reported by Wang 

et al. This pH-sensitive Au(I) polymeric nanoparticle triggers cancer cell death by 

autophagy. Evidence for lysosomal accumulation via endocytosis and consequent pH-driven 

nanoparticle degradation is the likely mechanism of the Au(I) cargo (Figure 26). The 

Mertens et al. Page 34

Chem Rev. Author manuscript; available in PMC 2024 May 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



released Au(I) agent subsequently inhibits TrxR activity to increase intracellular ROS, 

enhance oxidative stress and induce cell death.431

The in vivo anticancer potency of auranofin is limited by rapid ligand displacement upon 

interaction with serum albumin in circulation.432,433 To circumvent this limitation, Stenzel 

et al. developed micellar analogs of auranofin using glycopolymer-based self-assembled 

micelles (Figure 27). The reported analogs were cytotoxic to OVCAR-3 ovarian cancer cells 

(in both serum-containing media and serum-free media) and less liable to deactivation by 

serum proteins compared to free auranofin, possibly due to the protection offered by the 

micelle system. However, the micellar analogs accumulate in the lysosomes unlike free 

auranofin, which interacts with TrxR. This suggests that the micellar nanoconstructs may 

have a mechanism of action distinct from auranofin.434

The triblock polymer, Pluronic F127 in combination with the amphiphilic peptide of 

the type (C18)2-PEG1000-G-CCK8, was used by Fregona and co-workers to form 

supramolecular aggregates that deliver Au(III) dithiocarbamate to enhance bioavailability. 

The functionalization of this aggregate system with cholecystokinin octapeptide (CCK8) act 

as a targeting moiety to improve tumor specificity. The resulting nanoconstruct demonstrated 

stability in saline solution up to 72 h and the CCK8 targeting moiety contributed to 

improved cytotoxicity and selectivity between A431 cells and CCK2-R-transfected A431 

cells.435

Owing to the excellent physiological stability, anticancer activity, and the ability of Au(III) 

porphyrins (AuP) to form nanostructure, other approaches have also been utilized to 

deliver Au(III) porphyrin selectively to target cells. Che et al. developed Au(III) porphyrin–

PEG conjugates [Au(TPP–COO–PEG5000–OCH3)]Cl and [Au(TPP–CONH– PEG5000– 

OCH3)]Cl that self-assemble into nanostructures.436 The conjugates feature an ester linkage 

that is easily hydrolyzed, leading to release of the chemotherapeutic Au(III) porphyrin 

[Au(TPP–COOH)]+ in vitro and in vivo. The nanostructures showed selective cytotoxicity 

in cancer cells ((HeLa, NCI-H460, HCT116, A2780) compared to normal cells. The lead 

Au(III) porphyrin–PEG conjugate [Au(TPP–COO–PEG5000–OCH3)]Cl (Au–P–P in Figure 

28) significantly inhibited tumor growth in HCT116 xenografts tumor bearing mice.436 

These studies highlight the potential for polymer-based self-assembled nanoparticles to 

facilitate the delivery of gold-derived therapeutics.

Recently, Kao and Che et al. utilized a multifunctional hydrogel and microparticle system 

to deliver AuP in a lung cancer xenograft.437,438 AuP was loaded into polyethylene 

glycol (PEG)-diacrylate (PEGdA) or an interpenetrating network system (IPN) composed 

of PEGdA and gelatin conjugated with PEG-cysteine (Gel-PEG-Cys). Results showed that 

increasing the mole ratio of PEG-400 to AuP from 636:1, 1270:1, 2540:1, 5650:1, 11,300:1, 

25,400:1, to 67,800:1 led to the corresponding decrease in size of the AuP-PEG-400 

constructs from 12.07 ± 1.40 μm, 5.61 ± 0.91 μm, 4.68 ± 1.28 μm, 3.37 ± 1.95 μm, 2.80 ± 

0.36 μm, 1.03 ± 0.71 μm, to 0.23 ± 0.03 μm, respectively. The cumulative release profile of 

AuP-loaded IPN reached about 65% after 7 days following an initial burst within the first 

24 h compared to the AuP-loaded PEGdA that showed about 30% release of AuP after 7 

days. Cell cytotoxicity studies showed that AuP-loaded IPN exhibited significantly higher 
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cytotoxicity in A549 and NCI-H460 lung cancer cells compared to IPN control in vitro and 

inhibited tumor growth in mice.437

8.2. Lipid-Based Micelles

Sterically stabilized micelles (SSM) of DSPE-PEG2000, and sterically stabilized mixed 

micelles (SSMM) composed of egg l-α-phosphatidylcholine (PC) or 1,2-dioleoyl-sn-

glycero-3-phosphocholine (DOPC) phospholipids (with different DSPE-PEG2000 mol 

ratio) as delivery systems for Au(III)-dithiocarbamate complexes have been reported. 

Bombesin peptide derivatives were incorporated into the micelles to improve targeting. 

The liposomal constructs enabled Au(III) dithiocarbamate stability, selective uptake and 

anticancer potential in PC-3 cells overexpressing GRP/bombesin receptors (an autocrine 

growth factor receptor in tumor cells).439

8.3. Apoferritin Nanoparticles

Some protein-based molecules have been used as drug delivery constructs. These 

macromolecules are naturally assembled protein subunits of the same protein with reduced 

toxicity.440 Ferritin is a blood protein for iron storage.441,442 Apoferritin can be loaded 

with different drugs for delivery into target cells. Merlino and co-workers developed Au(III) 

oxo-apoferritin complex(Apt-Auoxo) (Figure 29).443 The encapsulation of Auoxo into the 

ferritin core was confirmed by ICP-MS. Of note, Auoxo is capable binding histidine and 

cysteine side chains of proteins, which may offer insights into the mode of interaction 

between Auoxo and apoferritin.444,445 The Apt-Auoxo nanoparticles showed significant 

cytotoxicity in cancer cells compared to normal cell.443

Recently, apoferritin encapsulated Au(III) thiosemicarbazones were synthesized by Zhang 

et al. and demonstrates high potency in glioma cancer cells with the ability to cross the 

blood brain barrier (Figure 30). Apoferritin-AuNPs are taken up via lysosome-mediated 

endocytosis in U87MG glioma cells with selective accumulation in tumors as well as 

promising in vivo tumor inhibition.446 Taken together, these are encouraging studies that 

highlight the potential of apoferritin nanoparticles for efficacious gold-based therapy.

8.4. Silica-Based Nanoparticles

Silica-based materials such as mesoporous silica nanocarrier (MSN) have also been used 

as carriers for bioactive gold compounds. Silica is considered safe by the FDA and has 

unique properties such as excellent encapsulation efficiency, facile large-scale production, 

large surface area and adjustable uniform pore size, which makes MSN a good delivery 

system.447–451 Che et al. reported AuP (Au-1@MSN(R)), an RGD-functionalized MSN 

nanoparticle carrying gold(III) porphyrin complex as cargo. The nanoparticle displayed 

higher anticancer activity and selectivity to normal cells compared to the free Au(III) 

porphyrin complex and inhibited thioredoxin reductase as a mode of apoptotic cancer cell 

death.452

8.5. Peptide-Based Nanoparticles

Peptides are gaining attention as promising nanosized drug delivery systems.453–455 

Among several properties of peptide delivery systems, are that they undergo proteolytic 
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degradation by proteases overexpressed by recalcitrant TNBC and renal cancer cells.456,457 

Therefore, an interesting approach to increase the potency of cytotoxic gold agents is by 

utilizing peptide-based nanoparticle delivery systems to improve cancer cell selectivity. 

Recently, Contel, Ulijn, and colleagues reported the encapsulation of Au(I) N-heterocyclic 

carbene compounds in amphiphilic decapeptides (Figure 31). Peptide self-assembly of gold 

compounds, 1 or 2 and subsequent free gold precipitation and centrifugation resulted in 

the peptide nanostructures, which were characterized by AFM, TEM, FTIR, and zeta 

potential analysis. Varying encapsulation efficiency of the different peptides at 1 mM 

and two stock concentrations (10 μM or 500 μM) of gold compounds 1 or 2 was 

observed. The combination of compound 1 at 10 μM and the AD peptide yielded an 

encapsulation efficiency of >60%. The gold-loaded nanostructures displayed significant 

cytotoxicity in MDA-MB-231 and Caki-1 (renal carcinoma) cells with selectivity compared 

to noncancerous cells, IMR-90 (lung fibroblast). It is assumed that the proteolytic 

degradation of peptide filament encapsulating the drug facilitate the drug uptake by the 

cancer cells.458 Hence, this highlights an interesting approach to improve drug selectivity for 

cancer cells and consequently its cytotoxic effect.

8.6. Noncovalent Self-Assembled Nanoparticles

Gold(III) porphyrins (AuP) display superior anticancer efficacy and with structural 

modifications can self-assemble to nanostructures without responsive nanocarriers. This 

noncovalent self-assembly strategy has been previously employed in other Sn-, Zn-, and Gd-

based porphyrin systems for photocatalytic and photodynamic therapy applications.459–461 

In applying this approach to gold, an Au(III) tetra-(4-pyridyl) porphyrin (AuTPyP) 

nanosphere (AuPNS) capable of generating intracellular ROS, and thioredoxin inhibition 

for synergistic chemo-photothermal therapy of tumors (Figure 32) was recently described 

by Bai and Shi et al.462 Full characterization of AuPNS by FTIR, XPS, and TEM support 

the development of spherical nanostructures with an average diameter of ~65 nm. Further 

functionalization of AuPNSs with cRGD produced cRGD-AuPNS, which showed improved 

overall pharmacokinetic behavior than free AuPNSs. Treatment of HeLa tumor-bearing mice 

with cRGD-AuPNS (10 mg/kg) and light irradiation (635 nm, 0.8W/cm2) for 5 min resulted 

in 100% tumor inhibition rate. The approach represents a new paradigm for efficacious 

gold-based cancer therapy.

9. CONCLUSION AND FUTURE OUTLOOK

This Review highlights research to develop next generation gold-based drugs to treat 

diseases and chemical probes to interrogate human physiology. As summarized throughout 

this Review, we articulate the rich history of gold and its relevance throughout medicinal 

breakthroughs and bring to prominence efforts to elucidate the mechanism of novel gold 

complexes. As outlined in the Review, a great deal of effort has been invested in repurposing 

old gold-based drugs as well as the development of novel gold complexes, notably 

stable Au(III) complexes, which were previously challenging to develop. To energize the 

scientific and medical communities, we stringed together fundamental discoveries of gold 

chemistry considering its applicability in basic biology such as diagnostics; radiotherapy; 

and preclinical studies in several disease indications as well as translational clinical trials. 
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Subsequently, the pursuit of a more mechanistic investigation on how Au(I) and Au(III) 

complexes function in model systems received a boost from new omics technologies. What 

was a long-antiquated field in medicinal applications has now emerged as a burgeoning 

area of scientific rigor. As scientists have revisited the field of gold chemistry in medicine, 

more compound libraries have been made and have been examined to understand their true 

mechanism(s) of action. Furthermore, we describe novel mechanistic insights that have been 

published by experts all over the globe. From DNA targeting to covalent modification of 

proteins, and metabolic regulation just to highlight a few. Gold-derived complexes display 

immense potential in modulating diseases and offer new chemical tools for researchers 

to elucidate elusive biological processes and targets. The long history of gold in humans 

including FDA approved agents and current clinical trials emboldens the rationale to pursue 

gold drug/probe discovery. Therefore, it is critical to revisit gold-based therapeutics with a 

fresh sense of innovation that builds on the progress made thus far. This Review not only 

highlights the new classes of gold agents synthesized but further touches on the vast number 

of diseases in which gold has found success within the past decade. Moreover, we detail 

the application of gold compounds in a plethora of diseases including cancer, bacterial, 

leishmaniasis, microbial infections, and inflammation (e.g., RA and IBD). We posit that 

gold-derived agents are of therapeutic value to numerous disease indications.

Though impressive strides have been made, the stability of gold complexes remains a 

bottleneck toward the development of new libraries and scaffolds. This Review highlights 

complexes prepared by novel synthetic strategies. We must mention that detailed synthetic 

methodologies for the preparation of gold complexes are out of the scope of this Review. 

However, readers are encouraged to visit the articles cited at the end of the Review to peruse 

creative synthetic strategies outlined as well as a recently reviewed strategies to preparing 

gold anticancer complexes.463 Despite the drawbacks, new possibilities have arisen within 

the past decade to developing next generation gold agents beyond auranofin, the “gold 

standard.” Progressively, evidence of (i) the importance of gold in medicine, (ii) the success 

of gold in clinical trials (14 to date), (iii) the determination and creativity of scientists, and 

(iv) state-of-the-art technologies will propel next generation gold agents into clinical use. 

Leveraging the development of new gold-based libraries and high-throughput screens has the 

potential to accelerate first-in-class gold-based drugs/probes.

Overall, this Review highlights how fundamental discoveries of gold chemistry and 

mechanisms of gold action in biology have become cornerstones for researchers across the 

globe to unlock tool compounds and therapeutic agents that were unthinkable even 10 years 

ago. With the advancement of cutting-edge molecular biology tools, omic technologies, and 

preclinical/translational science, furthering the potential of gold-derived complexes into the 

clinic has never been more attainable.
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Figure 1. 
Timeline of gold in medicine highlighting key steps toward the development of gold in the 

clinical setting.
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Figure 2. 
Global map of auranofin clinical trial sites.
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Figure 3. 
Crystal structure of Au(I)–protein adduct: (a) Au(I)–EhTrxR adduct (PDB code: 4A65, gold 

source: AuCN), (b) Au(I)–EhTrxR adduct (PDB code: 4CBQ, gold source: auranofin).80
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Figure 4. 
X-ray crystal structure of RAPTA-T/auranofin-nucleosome core particle (NCP). Structure 

reveals auranofin and RAPTA-T adduct sites. NCP is depicted on the left and zoomed adduct 

site displayed on the right. Gold atom (gold) bearing triethylphosphine (PEt3) bound to 

His113 (PDB: 5DNN, gold source: auranofin).
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Figure 5. 
Crystal structure of the active site of Au-NDM-1 (PDB ID: 6LHE, gold source: auranofin) 

displaying Au ions as yellow spheres and omitting water molecules that contribute to a 

tetrahedral geometry. Annotated amino acid side chains within the protein active site are 

depicted in cyan with distinctly colored heteroatoms (N, blue; O, red; S, yellow).
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Figure 6. 
Crystal structure of the active site of Au-MCR-1 (PDB ID: 6LI6, gold source: PEt3AuCl) 

displaying Au ions as yellow spheres. Annotated amino acid side chains within the protein 

active site is depicted in cyan with distinctly colored heteroatoms (N, blue; O, red; S, 

yellow). Triethylphosphine ligand is shown as green (C atoms) and orange (P atom).
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Figure 7. 
(A) Schematic representation showing the important events in the catalytic cycle of the 

human Topoisomerase IB (TOP1) enzyme. Detailed step by step description of the catalytic 

process is given in ref 151. (B) General chemical structure and derivatives of Au(III) 

macrocycles. Reproduced from ref 151. Copyright 2014 American Chemical Society.
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Figure 8. 
General schemes for affinity-based target identification and activity-based protein profiling.
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Figure 9. 
Classical proteomics strategy to study drug action by gel electrophoresis, mass spectrometry, 

bioinformatics, and validation of the organometallic Au(III), Aubipyc. Reproduced from ref 

162. Copyright 2015 Royal Society of Chemistry.

Mertens et al. Page 73

Chem Rev. Author manuscript; available in PMC 2024 May 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 10. 
(a) P-chirogenic Au(III) molecule (AuPhos-19) and the alkyne functionalized probe 

(AuPhos-19-AP). (b) Assessment of cell viability in MDA-468 cells treated with parent 

molecule (AuPhos-19) versus AuPhos-19-AP. (c) Representation and result of biorthogonal 

Cu(I)-catalyzed azide–alkyne cycloaddition (CuAAC) reaction using an azide-tagged FITC 

fluorophore. Reproduced with permission from ref 175. Copyright 2022 Elsevier.
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Figure 11. 
(a) Mechanism of cystine arylation via Au(III) complex reductive elimination. (b) Workflow 

of isotopically labeled destiobiotin activity based protein profiling (isoDTB-ABPP). Figure 

reproduced from ref 180. Copyright 2022 Royal Society of Chemistry.
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Figure 12. 
(a) Structure of JHK-21. (b) Diagram illustrating the combined CRISPR-Cas9 screening 

method to identify JHK-21 cellular target and mode of action. Reproduced from ref 190. 

Copyright 2022 American Chemical Society.
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Figure 13. 
Au(I) fluorescent alkynyl-naphthalimide complexes for cell imaging. Reproduced from ref 

209. Copyright 2015 American Chemical Society.
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Figure 14. 
Images of MCF-7 cells incubated with [L2-Au-PPh3] (100 μg/mL, 4 °C, 30 min). Excited 

at 405 nm, acquired 530–580 nm. Reproduced from ref 221. Copyright 2012 American 

Chemical Society.
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Figure 15. 
(a) Recently reported NIR aza-BODIPY dinuclear Au(I) complexes, (b) azaBDP-Au-1 
localization in 4T1 cells visualized by confocal microscopy. 4T1 cells were incubated with 

azaBDP–Au-Cl (red) for 45 min at 5 μM, nuclei counterstain with blue, fluorescent dye 

(Hoesct 33342, and mitochondria labeling was done with mito-tracker green, (c) azaBDP-

Au1 distribution in tumor bearing mice. (d) An intravenous injection was administered, 

and images were collected at the indicated times. Accumulation of the compound in the 

tumor area was observed as shown with arrow. Reproduced with permission from ref 228. 

Copyright 2021 Elsevier.
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Figure 16. 
(a) Synthetic scheme of Au-Avidin, (b) confocal imaging of HeLa cells treated with 

conjugate Au-Avidin for 4 h followed by a fluorescently tagged biotin. Reproduced from ref 

242. Copyright 2015 Royal Society of Chemistry. (c) Synthesis of Au-AM self-assembled 

micelles. (D) Confocal microscopy images of A549 cells treated with Au-AM (33 μg/mL) 

(upper panel) for 4 h and without Au-AM (lower panel) under bright field or fluorescence 

field excitation at 405 nm. Reproduced from ref 243. Copyright 2016 Royal Society of 

Chemistry.
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Figure 17. 
(a) Chemical structure of Au(III)-complexes Au-IPI and Au-BPB. (b) Fluorescence images 

of Au-BPB derivative (left, 365 nm excitation), mitochondria-specific Mito-tracker Red 

stain (middle, 546 nm excitation), and the merged image (right). Reproduced from ref 101. 

Copyright 2013 John Wiley and Sons.
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Figure 18. 
Top. Chemical structure of [(ĈNĈ)AuH] complexes 1a–d, Bottom. (a) Emission spectrum of 

1 b in dichloromethane. (b) Fluorescence microscopy image of HepG2 cells treated with 10 

mm of 1 b for 1 h. (c) Bright field showing characteristics of apoptotic morphology change 

after irradiation. (d) Merged image. (e–h) Fluorescent images of HepG2 cells treated with 

10 mm of 1b for 1 h followed by 405 nm laser irradiation at selected region (dashed box) 

for 2 min (e) bright field; (f) green channel; (g) red channel; (h) merged fluorescent image. 

Reproduced with permission from ref 254. Copyright 2020 John Wiley and Sons.
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Figure 19. 
(a) Radioactivity curve of arterial blood determined by online blood sampling following 

the administration of Au–I-124 intravenously. (b) PET images gotten at different intervals 

following administration of Au–I-124 intravenously. (c) Representation of the radioactivity 

concentration in distinct organs at different time intervals assessed from the PET 

images following the administration of Au–I-124. (d) Representation of the radioactivity 

concentration (assessed from the PET images) and Au concentration (determined by ICP-

MS) in distinct organs. Panels a–d are reproduced from ref 259. Copyright 2020 John Wiley 

and Sons.
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Figure 20. 
(a) Inhibitory effect of auranofin on the activity of H. pylori TrxR. Reproduced from ref 319. 

Copyright 2016 Oxford University Press. (b) Combination studies of Auranofin with known 

H. pylori antibiotics. (c) Structures of NHC-Auranofin studied against H. pylori.
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Figure 21. 
(A) Chemical structures of adamantane Au(I)-oxazole/thiazolidinone derivatives. (B) In 
vivo efficacy of Au complexes in combination with Miltefosine. Reproduced from ref 339. 

Copyright 2020 American Chemical Society.
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Figure 22. 
(a) Chemical structures of three-coordinate Au(I), AuTri complexes. (b) Transmission 

electron microscopy of known cell death inducers, vehicle control, and AuTri-9 in MDA-

MB-231. (c) Maximal cristae width. Data are representative of 10 cells chosen at random 

n = 10, where mitochondria were also chosen at random. (d) Immunoblots of OPA1, 

MFF, MFN1, and TOM20. Reproduced from ref 355. Copyright 2021 American Chemical 

Society.
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Figure 23. 
(a) Au(I) complex Au-ICD induces immunogenic cell death (ICD) in a CT26 colon cancer 

cell. (b) Depiction of in vivo experiments carried out with Au-ICD. Reproduced from ref 

387. Copyright 2020 American Chemical Society.
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Figure 24. 
(a) Chemical structure of gold(I) complex bearing indomethacin moiety, identified as Au(I)-
indo. (b) Assessment of the cell viability of HMLER-shEcad cells treated with Au(I)-indo 
only and in combination with z-VAD-FMK and PGE2 at 5 μM and 20 μM respectively. 

(c) In vivo efficacy of Au(I)-indo in 4T1 tumor bearing mice. Reproduced with permission 

from ref 393. Copyright 2023 Royal Society of Chemistry.
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Figure 25. 
(a) Simple illustration of the life cycle of the SARS-CoV-2, golden bars represent gold drugs 

that target viral entry process and replication. Reproduced from ref 159. Copyright 2020 

John Wiley and Sons. (b) Gold(I) and gold(III) benzimidazole complexes used in evaluating 

antiviral properties against SARS-CoV-2.
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Figure 26. 
Diagram showing dissociation of pH sensitive gold(I)-loaded poly(β-amino ester)s micelle-

like nanoparticles in the lysosomes and mechanism of synergistic induction of cell death. 

Reproduced from ref 431. Copyright 2015 American Chemical Society.
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Figure 27. 
Formation of spherical micelles from polymeric auranofin. Reproduced from ref 434. 

Copyright 2015 American Chemical Society.
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Figure 28. 
(A) Structure of Au(III) porphyrin–PEG conjugate [Au(TPP–COO–PEG5000–OCH3)]Cl 

(Au–P–P). (B) Changes in tumor volume in HCT116 xenografts tumor bearing mice 

after treatment with the indicated complexes. Reproduced with permission from ref 436. 

Copyright 2017 Royal Society of Chemistry.
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Figure 29. 
(a) Structure of the trans isomer of Auoxo3. (b) An illustration showing Auoxo3 

encapsulation within apoFt (Aft) nanocage. Reproduced with permission from ref 443. 

Copyright 2016 Royal Society of Chemistry.
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Figure 30. 
Development of the AFT-NP based Au(III) delivery system. (a) Loading of Au(III) into 

apoferritin. (b) Acquired SEM images of AFt nanocage and AFt-Au(III) NPs. (c) AFt 

and AFt-(III) NPs in glass vials. (d) Graph showing Au(III) release in vitro from the 

AFt-Au(III) NPs. (f) The ability of AFt-Au(III) NPs cells to target U87MG cells in vitro 
is assessed via ICP-MS analysis. (g) The intracellular uptake of Cy5.5-labeled AFt-Au(III) 

NPs by U87MG tumor cells is examined by confocal microscopy. (h) The intracellular 

uptake of Cy5.5-labeled AFt-Au(III) NPs by HL-7702 tumor cells is examined by confocal 

microscopy. Reproduced from ref 446. Copyright 2020 American Chemical Society.
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Figure 31. 
Illustration of drug-loaded peptides and structures of drugs and peptides used in this study. 

Reproduced from ref 458. Copyright 2022 American Chemical Society.
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Figure 32. 
Schematic illustration of the noncovalent self-assembled Au(III) porphyrin and the heat/acid 

dual responsiveness of cRGD-AuPNSs for synergistic chemo-photothermal therapy of a 

tumor. Reproduced from ref 462. Copyright 2022 American Chemical Society.
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Chart 1. 
Clinically Used Gold Complexes
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Chart 2. 
Schematic Reaction for Bioconjugation of meso-Unsubstituted Gold(III) Porphyrins with 

GSH under Physiological Conditions
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Chart 3. 
Chemical Structure of Au(I) Thiosemicarbazones
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Chart 4. 
Chemical Structures of DNA Interfering Substituted Au(III) Tetraphenylporphyrin
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Chart 5. 
Chemical Structures of [Aun(R–ĈNĈ)n(NHC)]n+ as Inhibitors of TopI
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Chart 6. 
Chemical Structures of Pyridyl and Isoquinolylamido Au(III) Complexes
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Chart 7. 
Chemical Structures of DNA Targeting Au(III) Pincer Complexes Supported by Carbazole 

Bis-carbene Ligands
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Chart 8. 
Benzophenone Photoaffinity Tag Au(III)-Porphyrin Probe
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Chart 9. 
Chemical Structures of Some Au(III)-NHC Probes
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Chart 10. 
Chemical Structures of BODIPY Au(I) Probes
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Chart 11. 
Chemical Structures of Luminescent Re–Au Complexes
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Chart 12. 
Reaction Scheme for Synthesis of Luminescent Re–Au Complexes Bearing NHC Ligands
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Chart 13. 
Chemical Structures of Luminescent Ru–Au Complexes
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Chart 14. 
Chemical Structure of Phosphorescent Ir–Au Complexes
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Chart 15. 
Chemical Structures of Some Radioactive Au(III) Complexes
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Chart 16. 
Chemical Structures of Bisphosphine-Au(I) Antifungal Complexes
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Chart 17. 
Chemical Structures of Au(III)-Azoles

Mertens et al. Page 113

Chem Rev. Author manuscript; available in PMC 2024 May 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Chart 18. 
Chemical Structures of Au(I)-NHC Complexes Studied for Their Antibacterial Activities
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Chart 19. 
Chemical Structures of Au(I)/(III)-NHC Complexes Studied for Their Antibacterial 

Activities
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Chart 20. 
Chemical Structures of Au(I) Benzothiazoles
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Chart 21. 
Chemical Structure of Alkynyl Au(I) Complexes and Their Antibacterial Activity
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Chart 22. 
Chemical Structures of Au(III)-Dithiolate Studied for Their Antibacterial Activity
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Chart 23. 
Chemical Structure of Cyclometalated Au(III) Complexes and Kanamycin with Their 

Bactericidal Activity
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Chart 24. 
Chemical Structures and Antileishmanial Activity of Auranofin and Amphotericin B
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Chart 25. 
Chemical Structures of Benzimidazole Supported Au(I)/Au(III) Antileishmanial Agents
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Chart 26. 
Chemical Structures of Au(I)/Au(III)-NHC Antileishmanial Complexes
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Chart 27. 
Chemical Structures of Au(I) Oxazole Complexes
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Chart 28. 
Synthetic Scheme to Obtain a Library of Gold(III) Dithiocarbamate Complexes
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Chart 29. 
Synthetic Scheme and SAR Depicted Library of Cyclometalated Gold(III) Phosphine 

Complexes
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Chart 30. 
Cyclometalated Gold(III) Complexes Ligated to Metformin and Derivatives Thereof
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Chart 31. 
Chemical Structures of Targeting Ligand Tethered Gold Agents
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Chart 32. 
Synthetic Scheme and Structures of Gold Complexes Investigated for Anti-inflammatory 

Effects in Several Cancer Cell Lines
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Chart 33. 
Synthetic Scheme and Depiction of Au(I) Complexes Used for Anti-inflammatory Purposes
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Table 4.

Antileishmanial Activity of Au(I) Complexes

Compound structure Cl—Au—L, where L = prom GI EC50 (μM) prom tox EC50 
(μM)

L. amazonensis CBA EC50 (μM)

AuLeish-1 P(t-Bu)2(p-(N(CH3)2)Ph) 0.11 ± 0.02 10.6 ± 0.4 0.2 ± 0.1

AuLeish-2 P(Cy)2(t-Bu) 0.18 ± 0.07 NTa 0.7 ± 0.3

AuLeish-3 P(Ph)(C5H12)2 0.3 ± 0.1 8.9 ± 0.7 0.23 ± 0.17

AuLeish-4 P(t-Bu)2(o-(3,5-diphenyl-1H-pyrazole)Ph) 0.37 ± 0.04 6.0 ± 3.0 0.8 ± 0.1

AuLeish-5 P(Et)3 0.39 ± 0.04 2.7 ± 0.9 0.27 ± 0.08

AuLeish-6 P(Ph)2(cy) 0.5 ± 0.1 8.2 ± 0.5 0.27 ± 0.03

AuLeish-7 P(Ph)(Et)2 0.6 ± 0.1 6.8 ± 0.5 0.22 ± 0.08

AuLeish-8 P(Ph)2(t-Bu) 0.7 ± 0.1 11.8 ± 0.2 0.3 ± 0.2

AuLeish-9 P(Ph)2(i-Pr) 0.8 ± 0.3 6.5 ± 1.0 0.17 ± 0.05

AuLeish-10 P(Ph)2(Et) 0.8 ± 0.1 7.0 ± 0.5 0.3 ± 0.1

AuLeish-11 P(Ph)3 1.3 ± 0.1 NT 0.5 ± 0.2

AuLeish-12 P(Ph)(Me)2 1.4 ± 0.2 8.9 ± 1.1 0.14 ± 0.03

AuLeish-13 P(cy)2(N,N-dimethylaminobiphenyl) 1.5 ± 0.5 NT 0.18 ± 0.02

AuLeish-14 P(Ph)2(Bz) 2.1 ± 0.3 NT 0.6 ± 0.1

AuLeish-15 P(Ph)(CH2CH2CN)2 2.4 ± 0.2 NT 0.13 ± 0.02

AuLeish-16 P(Ph)2(4-biphenyl) 2.5 ± 0.2 10.2 ± 0.4 0.12 ± 0.02

AuLeish-17 P(p-FPh)3 3.0 ± 0.3 13.7 ± 0.4 0.2 ± 0.1

AuLeish-18 P(Ph)2(2-pyridine) 3.5 ± 0.6 13.6 ± 0.4 0.46 ± 0.02

AuLeish-19 P(p-(OCH3)Ph)3 3.8 ± 1.0 15.0 ± 0.1 0.2 ± 0.1

AuLeish-20 P(Ph)2(p-(N(CH3)2)Ph) 3.9 ± 1.3 NT 0.4 ± 0.2

AuLeish-21 P(Ph)2(CH2CH2NCOCH2CH2Ph) 4.2 ± 1.2 NT 0.16 ± 0.05

AuLeish-22 P(cy)3 4.4 ± 2.1 NT 0.5 ± 0.1

AuLeish-23 P(p-(CH3)Ph)3 4.6 ± 1.1 NT 0.5 ± 0.4

AuLeish-24 P(Ph)2(CH2CHCH2) 5.3 ± 1.1 NT 0.50 ± 0.04

AuLeish-25 P(Ph)2(p-(NH2)Ph) 5.5 ± 0.2 >20 0.21 ± 0.04

AuLeish-26 P(Ph)2(CH2CH2NCOCH2Ph) 5.6 ± 0.3 >20 0.14 ± 0.06

AuLeish-27 P(2-furan)3 6.0 ± 0.9 NT 0.5 ± 0.2

AuLeish-28 P(p-ClPh)3 6.9 ± 1.3 NT 0.30 ± 0.04

AuLeish-29 P(Ph)2(p-(CO2H)Ph) 7.6 ± 2.0 NT 0.40 ± 0.15

AuLeish-30 P(3,5-(CF3)2Ph)3 9.4 ± 0.6 NT 0.4 ± 0.1

AuLeish-31 P(1-naphthalene)3 10.5 ± 0.9 NT 0.9 ± 0.2

AuLeish-32 P(p-(CF3)Ph)3 16.8 ± 7.0 NT 0.3 ± 0.1

AuLeish-33 P(Ph)2(m-(SO3H)Ph) 17.4 ± 3.5 NT 0.6 ± 0.2

AuLeish-34 P(Cy)2(o-Tol) >20 NT 0.7 ± 0.3

AuLeish-35 P(Ph)2(m-(CO2H)Ph) >20 NT 0.15 ± 0.05
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Compound structure Cl—Au—L, where L = prom GI EC50 (μM) prom tox EC50 
(μM)

L. amazonensis CBA EC50 (μM)

AuLeish-36 P(Ph)(p-(SO3H)Ph)2 >20 NT 0.3 ± 0.1

AuLeish-37 P(CH2CH2COOH)3 >20 NT 0.70 ± 0.01

AuLeish-38 P(p-(SO3H)Ph)3 >20 NT 0.15 ± 0.02

a
Antileishmanial activity of gold(I) compounds in L. amazonensis promastigote growth inhibition assays. Cl, chloride; prom, promastigote; GI, 

growth inhibition; tox, toxicity; CBA, cell-based amastigote; NT, not toxic or growth inhibitory. Data are presented as mean ± SD.
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Table 5.

Inhibitory Values of Benzimidazole-Based Gold Complexes against Replication of Spike-ACE2

Complex Spike-ACE2 (IC50 μM) PLpro SARS-CoV-1 (IC50 μm) PLpro SARS-CoV-2 (IC50 μm)

benzimidazole >100 >100 >100

Chloroquine 31.9 ± 5.4 n.d. n.d.

Disulfiram n.d. 6.5 ± 0.4 1.05 ± 0.34

Auranofin 22.2 ± 2.8 25.5 ± 1.2 0.75 ± 0.13

Au-1 19.4 ± 5.7 6.3 ± 1.6 1.04 ± 0.02

Au-2 20.0 ± 2.3 5.5 ± 0.5 1.44 ± 0.22

Au-3 23.1 ± 6.8 14.2 ± 0.3 >100

Au-4 25.0 ± 4.2 14.1 ± 2.1 >50

Au-5 16.2 ± 2.4 6.7 ± 0.9 0.96 ± 0.07
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