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Abstract 

Objectives  We aimed to present the state of the art of CT- and MRI-based radiomics in the context of ovarian cancer 
(OC), with a focus on the methodological quality of these studies and the clinical utility of these proposed radiomics 
models.

Methods  Original articles investigating radiomics in OC published in PubMed, Embase, Web of Science, and the 
Cochrane Library between January 1, 2002, and January 6, 2023, were extracted. The methodological quality was 
evaluated using the radiomics quality score (RQS) and Quality Assessment of Diagnostic Accuracy Studies 2 (QUA‑
DAS-2). Pairwise correlation analyses were performed to compare the methodological quality, baseline information, 
and performance metrics. Additional meta-analyses of studies exploring differential diagnoses and prognostic predic‑
tion in patients with OC were performed separately.

Results  Fifty-seven studies encompassing 11,693 patients were included. The mean RQS was 30.7% (range − 4 to 22); 
less than 25% of studies had a high risk of bias and applicability concerns in each domain of QUADAS-2. A high RQS 
was significantly associated with a low QUADAS-2 risk and recent publication year. Significantly higher performance 
metrics were observed in studies examining differential diagnosis; 16 such studies as well as 13 exploring prognostic 
prediction were included in a separate meta-analysis, which revealed diagnostic odds ratios of 25.76 (95% confidence 
interval (CI) 13.50–49.13) and 12.55 (95% CI 8.38–18.77), respectively.

Conclusion  Current evidence suggests that the methodological quality of OC-related radiomics studies is unsatisfac‑
tory. Radiomics analysis based on CT and MRI showed promising results in terms of differential diagnosis and prog‑
nostic prediction.

Critical relevance statement  Radiomics analysis has potential clinical utility; however, shortcomings persist in 
existing studies in terms of reproducibility. We suggest that future radiomics studies should be more standardized to 
better bridge the gap between concepts and clinical applications.
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Key points 

•	 The methodological quality of current radiomics studies concerning ovarian cancer was unsatisfactory.
•	 Meta-analyses showed high diagnostic odds ratios regarding differential diagnosis and prognostic prediction.
•	 Radiomics analysis in ovarian cancer holds promise for clinical applications.
•	 More standardization should be required for radiomics studies.
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Radiomics analysis has potential clinical utility; however, shortcomings persist in existing studies in terms of reproducibility. 
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applications

A systematic review and meta-analysis of CT and MRI 
radiomics in ovarian cancer: methodological issues 

and clinical utility

Insights Imaging (2023) Huang ML, Ren J, Jin ZY et al. DOI: 10.1186/s13244-023-01464-z

• The methodological quality of current radiomics 
studies concerning ovarian cancer was 
unsatisfactory. 

• Meta-analyses showed high diagnostic odds 
ratios regarding differential diagnosis and 
prognostic prediction.

• Radiomics analysis in ovarian cancer holds 
promise for clinical applications.

• More standardization should be required for 
radiomics studies. 

Introduction
Ovarian cancer (OC) is the most lethal gynecologi-
cal cancer and the fifth-leading cause of cancer-related 
deaths among women; there were 313,959 newly diag-
nosed cases and 207,252 deaths worldwide in 2020 [1, 
2]. The most recent cancer statistics report indicates that 
approximately 19,710 new cases of OC will be diagnosed 
in the USA in 2023, and 13,270 women will die from the 
disease [2]. The World Health Organization classifica-
tion of tumors divides OC into dozens of pathological 
types [3]; furthermore, 70% of patients with OC are diag-
nosed at an advanced stage, leading to worse outcomes 
(their 5-year overall survival rates are 20–30% versus 
80–95% for those diagnosed at early stages) [4–6]. Treat-
ment involves surgery and chemotherapy and depends 

on the pathological type and International Federation of 
Gynaecology and Obstetrics stage [5, 7]. Notwithstand-
ing advances in the diagnosis and treatment of OC, how-
ever, mortality rates have not changed appreciably in the 
last 30 years [2, 8–12]. This is partly due to the difficulty 
of early detection and the lack of effective therapeutic 
options for patients in advanced stages.

Computed tomography (CT) and magnetic resonance 
imaging (MRI) are essential for diagnosing and staging 
OC [5] and are invaluable for assessing chemotherapy 
response [13]. However, conventional imaging interpre-
tations rely on the skills of radiologists, and variabilities 
among reports inevitably exist. Fortunately, medical 
imaging is advancing toward more standardized, spe-
cialized, and quantitative approaches, contributing to 
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greater consistency and communication among radiolo-
gists. With this evolution, radiologists are shifting from 
conventional free-text reporting to structured report-
ing, enabling more accurate and efficient analysis of the 
extensive volumes of imaging data [14, 15]. Radiomics 
is a rapidly emerging field that quantitatively analyzes 
medical images utilizing artificial intelligence; based on 
high-throughput mining of quantitative image features, 
radiomics analysis generates unique markers that may be 
visually indiscernible yet can support clinical decision-
making and increase diagnostic and prognostic accuracy 
[8, 16, 17].

In recent years, extensive studies using radiomics meth-
ods based on CT and MRI have linked quantitative image 
features to diagnosis, response evaluation, and prognos-
tic prediction in patients with OC [8, 17, 18]. Neverthe-
less, it has remained difficult to assess the clinical value of 
radiomics in OC owing to the complexity of the methods 
and varying study designs. Therefore, we performed this 
study with two main aims: First, we evaluated the meth-
odological quality of existing studies using the ‘quality of 
diagnostic accuracy studies-2’ (QUADAS-2) tool as well 
as the ‘radiomics quality score’ (RQS) [16, 19]. Second, 
we conducted a meta-analysis to determine the diagnos-
tic performance of radiomics in patients with OC.

Materials and methods
Evidence acquisition protocol and registry
This systematic review was conducted according to the 
Preferred Reporting Items for Systematic Reviews and 
Meta-analysis (PRISMA) statement [20] (Additional 
file  1: Table  S1). A review protocol is available through 
the International Prospective Register of Systematic 
Reviews (PROSPERO) (CRD 42022313519).

Literature search and study selection
A structured search was performed independently 
by two reviewers (M.H. and J.R.) with 5 and 3 years of 
experience in gynecological imaging interpretation, 
respectively. Any disagreement was arbitrated by a third 
reviewer (Y.H.) with 12  years of experience, which was 
performed in 1.9% of the studies (8/418). The reviewers 
independently screened the titles, abstracts, and full texts 
of the extracted articles; uncertainties were discussed and 
resolved by consensus. Detailed search strategies and 
selection criteria are described in Additional file 1.

Data extraction and methodological quality assessment
After selecting the relevant studies, the two review-
ers developed a data extraction instrument (described 
in Additional file  1: Table  S2). After independently 
reading the full text of each eligible article, they docu-
mented: (1) bibliographical information, (2) baseline 

study information (including study design, imaging tech-
nique parameters, and modeling information), and (3) 
model performance metrics. The extracted information 
was recorded using the Excel software (Microsoft Corp., 
Redmond, WA, USA). The methodological quality of the 
eligible articles was independently assessed by the two 
reviewers using the RQS (described in Additional file 1: 
Table  S3) [16] and Quality Assessment of QUADAS-2 
tools [19]. Each of the 16 key components identified 
by the RQS was rated, resulting in a total score rang-
ing from − 8 to 36 points; these were converted to RQS 
percentages, with − 8 to 0 points defined as 0% and 36 
points defined as 100% [16]. The QUADAS-2 tool com-
prises seven assessment items reflecting four domains: 
‘patient selection’, ‘index test’, ‘reference standard’, and 
‘flow and timing’. Each item was judged as “low,” “high,” 
or “unclear” based on responses to signaling questions 
on the risk of bias and applicability concerns [19]. A 
summed RQS rating calculated by averaging the scores 
of the two reviewers was determined for each study. For 
QUADAS-2 assessment, any disagreement was arbi-
trated with a third reviewer (H.Y.) to achieve a common 
appraisal for each item. To facilitate additional analysis, 
a final risk assessment was performed for each study as 
follows: studies in which all seven items were rated “low” 
were defined as “low risk”, studies in which at least one 
item was rated “high” were defined as “high risk”, and the 
remainder were defined as “unclear risk”.

Data synthesis and analysis
Statistical analysis was conducted using the SPSS soft-
ware version 25.0.0.0 (IBM Corp., Armonk, NY, USA), 
Review Manager (RevMan) version 5.3, and R (version 
4.0.5; R Foundation for Statistical Computing) incorpo-
rating the ‘tidyverse’ packages. Categorical variables are 
presented as numbers and percentages, while continuous 
variables are presented as means and standard deviations 
or as medians and ranges. The inter-rater agreement for 
the RQS and QUADAS-2 was determined using Cohen’s 
kappa [21] and the ratio of agreements [21, 22]. An inter-
class correlation coefficient (ICC) of ≤ 0.4 was considered 
poor, 0.4–0.75 moderate, and > 0.75 good. Only train-
ing set performance metrics of the proposed radiomics 
models were recorded, even if validation sets existed, to 
maintain consistency among studies. Pairwise correlation 
analyses between methodological quality, baseline infor-
mation, and performance metrics were conducted. Cor-
relations between numeric variables were evaluated using 
linear regression analyses, while associations between 
numeric and categorical variables were assessed using 
unpaired Student’s t-tests or Mann–Whitney tests. The 
significance level α was 0.05, and statistical significance 
was set at a two-tailed p-value of < 0.05.
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Meta-analyses were performed using the STATA soft-
ware version 17.0 (StataCorp LP, College Station, TX, 
USA) with the ‘midas’ package when a sufficient number 
of studies attempted to address a similar question, and 
two-by-two tables could be extracted or reconstructed 
based on published data (the details are shown in Addi-
tional file  1). The sensitivity, specificity, positive likeli-
hood ratio (PLR), negative likelihood ratio (NLR), and 
diagnostic odds ratio (DOR) with 95% confidence inter-
vals (CIs) were calculated. Summary receiver operating 
characteristic (SROC) analysis was performed, and the 
areas under the curve (AUCs) were obtained to describe 
the diagnostic accuracy. If a particular study involved 
multiple models, only the radiomics model was selected. 
Heterogeneity was assessed using Cochrane’s Q test and 
Higgin’s inconsistency index (I2) test. Any heterogeneity 
was considered significant if the p-value on Cochran’s Q 
test was < 0.05, whereupon the random effects model was 
used. Higgins I2 values of < 25%, 25–50%, and > 50% were 
associated with low, moderate, and substantial heteroge-
neity, respectively. In cases of the latter, meta-regression 
was performed to explore the possible sources of hetero-
geneity. Deeks’ funnel plots were constructed to illustrate 
the risk of publication bias.

Results
The study selection process is illustrated in Fig.  1; 57 
articles were ultimately included in the systematic 
review [23–79]. We divided these publications based on 
the studies’ main objectives into three categories: dif-
ferential diagnosis (24/57, 42.1%), response evaluation 
(4/57, 7.0%), and prediction of prognosis (28/57, 49.1%). 
Additionally, one paper (1.8%) described both differen-
tial diagnosis and prognostic prediction. We found that 
assessments of differential diagnosis and prognostic pre-
diction were both commonly performed; thus, 16 articles 
focusing on the differential diagnosis of OC [24–26, 28-
32, 34, 35, 39, 40, 42, 44, 45, 47] and 13 that described 
studies on prognostic factors [52, 53, 55–57, 64, 66–68, 
71–74] were subjected to separate meta-analyses.

Study characteristics
There were between 28 and 1329 patients in each study; 
their median or mean ages ranged from 38.5 to 75 years. 
The studies’ baseline information and characteristics 
are shown in Tables 1 and 2, respectively. Nearly half of 
the studies were published in imaging journals (28/57, 
49.1%); the first authors were mainly specialized in radi-
ology (36/57, 63.2%) and most came from Asia (43/57, 
75.4%). Thirty-seven studies used CT and 20 used MRI; 
most applied the manual segmentation method and 
three-dimensional analysis. According to the model clas-
sification method proposed by the TRIPOD statement 

[80], a plurality of the studies established developed 
models validated with random splitting of data (27/57, 
47.4%), followed by developed models validated using 
exactly the same data (10/57, 17.5%) and separate data 
(9/57, 15.8%). Furthermore, using Zhong et  al. method 
[22], 59.6% of the studies were classified as phase 0 owing 
to their lack of external validation. Two phase III stud-
ies were conducted without sufficient patients or lacked 
external validation; however, they retained their phase 
categories owing to their prospective designs. Detailed 
characteristics of each study’s population and proposed 
radiomics model are presented in Additional file 1: Tables 
S4 and S5.

Methodological quality assessment
The 57 studies had a mean RQS of 12 (interquartile range 
10–14), with RQS values ranging from − 4 to 22. The 
mean percentage RQS was 30.7%, with a maximum of 
61.1%. The average ICC for the RQS was 0.80 (95% con-
fidence interval (CI) 0.69–0.91), i.e., a ‘good’ rating. The 
average rating and inter-rater agreement per RQS com-
ponent are shown in Table 3. In most studies, the lack of 
reproducibility and repeatability analysis of imaging fea-
tures (e.g., phantom study and imaging at multiple time 
points), insufficient cost-effectiveness analyses, and inad-
equate access to the data led to a low RQS. Additionally, 
biological correlation and cutoff analyses were seldom 
performed in the aftermath, and the rated validation 
score (2 [2]) was suboptimal. Discrimination statistics to 
assess model performance were available for all studies; 
21 of them also reported calibration statistics. Fifty-five 
studies (96.5%) were retrospective analyses, while only 
two (3.5%) were based on prospectively acquired data. 
The RQS assessments by each reviewer (M.H. and J.R.) 
are shown in Additional file 1: Table S6.

The summarized and individual QUADAS-2 results 
are presented in Fig.  2 and Additional file  1: Table  S7. 
A high risk of publication bias (19.3%) and applicability 
concerns (22.8%) were observed in terms of patient selec-
tion, mainly because of inappropriate exclusion. Twelve 
studies (21.1%) were regarded as having an unclear risk of 
bias in flow and timing, as they did not provide sufficient 
information regarding the interval between index tests 
and reference standards. Complete agreement between 
the two reviewers concerning the seven QUADAS-2 
items ranged from 80.7 to 96.5%.

Pairwise correlation analysis of methodological quality, 
baseline information, and performance metrics
The pairwise correlation analysis results are presented in 
Fig.  3. One article that discussed both differential diag-
nosis and prognostic prediction was analyzed twice as 
two separate studies. The RQS values were significantly 
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Fig. 1  Flowchart of the study selection process for the systematic review and meta-analysis
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Table 2  Characteristics of included studies

*Thirteen studies claimed joint first author, the author whose name was written first was assessed

**One study discussed two topics

***Two studies were classified as phase III due to prospective design, although they were conducted with less than 100 patients and without external validation

Characteristics No. of studies (%)

Journal speciality

Imaging 28/57 (49.1%)

Clinical 20/57 (35.1%)

Generalist 7/57 (12.3%)

Medical physics 2/57 (3.5%)

Specialty of the 1st author*

Radiologist 36/57 (63.2%)

Radiotherapist 1/57 (1.8%)

Clinician 11/57 (19.3%)

Physicist, Computer scientist 9/57 (15.8%)

Geographical origin of the study

Asia 43/57 (75.4%)

Europe 6/57 (10.5%)

North America 8/57 (14.0%)

Imaging modality

CT 37/57 (64.9%)

MRI 20/57 (35.10%)

Study objectives**

Differential diagnosis 25/57 (43.9%)

Response evaluation 4/57 (7.0%)

Prognosis prediction 29/57 (50.9%)

Segmentation method

Manual 53/57 (93.0%)

Semi-automatic 4/57 (7.0%)

Publication of negative results

No 55/57 (96.5%)

Yes 2/57 (3.5%)

Type of ROI

2D 11/57 (19.3%)

3D 43/57 (75.4%)

2D&3D 3/57 (5.3%)

Model type

Type 1a: developed model validated with exactly the same data 10/57 (17.5%)

Type 1b: developed model validated with resampling data 6/57 (10.5%)

Type 2a: developed model validated with randomly splitting data 27/57 (47.4%)

Type 2b: developed model validated with non-randomly splitting data 4/57 (7.0%)

Type 3: developed model validated with separate data 9/57 (15.8%)

Type 4: validation only 1/57 (1.8%)

Phase classification***

Discovery science: experimental 10/57 (17.5%)

Phase 0: < 100 patients; retrospective; internal validation Or > 100 patients; retrospective; internal validation 34/57 (59.6%)

Phase I: < 100 patients; retrospective; external validation 2/57 (3.5%)

Phase II: > 100 patients; retrospective; external validation 9/57 (15.8%)

Phase III: > 100 patients; prospective; external validation 2/57 (3.5%)

Phase IV: real world 0/57
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different between studies with different QUADAS-2 risk 
assessments (p = 0.011). Importantly, studies deemed 
low risk had a higher mean RQS than those with high or 
unclear risk; the difference between low-risk and unclear-
risk studies was significant (p = 0.002). The study aim 
(p = 0.180) and specialty of the first author (p = 0.520) 
did not influence the RQS rating. Studies published more 
recently received significantly higher scores (adjusted 
R2 = 0.264, p < 0.001).

The performance metrics were represented by the 
AUC in 49 studies (86.0%) and by the c-index in three 
(5.3%); they were missing in the remaining five (8.8%). 
Two of the studies explored two radiomics models 

with different aims; hence, their performance met-
rics were documented separately. The best radiom-
ics model used in each study had an AUC or c-index 
value between 0.620 and 1.000. Moreover, the perfor-
mance of the radiomics model was closely related to 
the study aim (p < 0.001); performance was significantly 
better in studies exploring differential diagnosis than 
in those evaluating response (p = 0.012) or predict-
ing prognosis (p < 0.001). No significant correlation 
was found between performance metrics and RQS 
(adjusted R2 = − 0.019, p = 0.892), sample size (adjusted 
R2 = − 0.019, p = 0.938), or number of features extracted 
(adjusted R2 = 0.046, p = 0.068).

Table 3  Average rating and inter-rater agreement per component of RQS

CI confidence interval, ICC interclass correlation coefficient, RQS Radiomics Quality Score

No. RQS item Range Average Median (range) Inter-rater 
agreement

ICC 95%CI

1 Image protocol quality 0–2 0.89 1 (0–2) 0.90 0.76–1.00

2 Multiple segmentations 0–1 0.63 1 (0–1) 1.00 1.00–1.00

3 Phantom study on all scanners 0–1 0.05 0 (0–1) 1.00 1.00–1.00

4 Imaging at multiple time points 0–1 0 0 (0–0) 1.00 1.00–1.00

5 Feature reduction or adjustment for multiple testing − 3 to 3 2.79 3 (− 3 to 3) 1.00 1.00–1.00

6 Multivariable analysis with non-radiomics features 0–1 0.72 1 (0–1) 0.91 0.80–1.00

7 Detect and discuss biological correlate 0–1 0.23 0 (0–1) 0.90 0.77–1.00

8 Cutoff analyses 0–1 0.13 0 (0–1) 0.77 0.52–1.00

9 Discrimination statistics 0–2 1.42 0 (0.5–2) 0.72 0.54–0.90

10 Calibration statistics 0–2 0.42 0 (0–2) 1.00 1.00–1.00

11 Prospective study registered in a trial database 0–7 0.25 0 (0–7) 1.00 1.00–1.00

12 Validation − 5 to 5 1.39 2 (− 5 to 5) 0.94 0.85–1.00

13 Comparison to ’gold standard’ 0–2 1.26 2 (0–2) 0.93 0.82–1.00

14 Potential clinical utility 0–2 0.70 0 (0–2) 1.00 1.00–1.00

15 Cost-effectiveness analysis 0–1 0 0 (0–0) 1.00 1.00–1.00

16 Open science and data 0–4 0.15 0 (0 ≥ 2) 0.92 0.78–1.00

Total points: − 8 to 0 = 0%, 36 = 100% 0–100% 11.04 = 30.7% 12 (− 4 to 22) 0.80 0.69–0.91

Fig. 2  Quality assessment of included studies by QUADAS-2 tool. The authors’ judgments for each domain of each included study were reviewed. 
The proportion of included studies that indicated low, unclear, high risk, and applicability concerns were shown in green, yellow and gray, 
respectively
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Meta‑analysis
Sixteen studies that focused on differential diagnosis and 
13 that investigated prognostic prediction were subjected 
to a meta-analysis. For studies of differential diagnosis, 
the pooled diagnostic odds ratio (DOR) was 25.76 (95% 
CI 13.50–49.13) (Fig. 4a); the pooled sensitivity, specific-
ity, positive likelihood ratio (PLR), and negative likelihood 
ratio (NLR) were 0.84 (95% CI 0.76–0.89), 0.83 (95% CI 
0.77–0.88), 5.00 (95% CI 3.58–6.97), and 0.19 (95% CI 
0.13–0.30), respectively (Additional file  1: Figs. S1a and 
Fig. S2a). The SROC curve suggested good diagnostic per-
formance with an AUC of 0.90 (95% CI 0.87–0.92) (Addi-
tional file  1: Fig. S3a). For studies analyzing prognostic 
prediction, the pooled DOR, sensitivity, specificity, PLR, 
and NLR were 12.55 (95% CI 8.38–18.77), 0.78 (95% CI 
0.71–0.83), 0.78 (95% CI 0.72–0.82), 3.59 (95% CI 2.80–
4.59), and 0.29 (95% CI 0.22–0.37), respectively (Fig.  4b, 
Additional file 1: Figs. S1b, and S2b). The AUC calculated 
from the SROC curve was 0.85 (95% CI 0.81–0.88), indi-
cating good performance of the prognostic prediction 
models (Additional file  1: Fig. S3b). Per Deeks’ funnel 
plots, the likelihood of publication bias was low for differ-
ential diagnosis studies (p = 0.760) but high for prognostic 
prediction studies (p = 0.040) (Additional file 1: Fig. S4).

Cochrane’s Q test (p < 0.001 and p < 0.001) and Hig-
gin’s I2 test (I2 = 94% and I2 = 91%) indicated high het-
erogeneity; therefore, a meta-regression analysis was 
conducted to identify its source (Table  4 and Addi-
tional file  1: Fig. S5). The number of patients was sig-
nificantly associated with heterogeneity in specificity 
(p < 0.001) for differential diagnosis studies and contrib-
uted to heterogeneity in sensitivity (p < 0.001), speci-
ficity (p < 0.001), and the AUC (p = 0.04) in prognostic 
prediction studies. Additionally, the imaging method 
(CT vs. MRI) influenced heterogeneity in both sensitiv-
ity (p < 0.001 for differential diagnosis and p < 0.01 for 
prognostic prediction studies) and specificity (p < 0.01 
for both study types). The heterogeneity of sensitiv-
ity and specificity in the differential diagnosis sub-
group was associated with the type of region of interest 
(p = 0.04 for sensitivity and p < 0.01 for specificity). 
In the prognostic prediction subgroup, however, the 
region of interest type influenced AUC (p = 0.03), sen-
sitivity (p < 0.001), and specificity (p < 0.01). Meanwhile, 
the type of features only contributed to heterogeneity 
in specificity (p < 0.01 for both differential diagnosis 
and prognostic prediction).

Fig. 3  Correlations between radiomics quality score (RQS), performance metrics and baseline information. a–d Correlation between RQS and 
QUADAS-2, study aim, first author, and publication year. The vertical dashed line corresponds to the year of publication of the RQS. e–h Correlation 
between performance metrics and RQS, study aim, number of patients, and number of features. Each point corresponds to a study. The regression 
line and its 95% confidence interval are shown in gray with adjusted R2 and p-value
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Fig. 4  Forrest plot of the effect size calculated as diagnostic odds ratio for studies discussing the diagnostic accuracy of radiomics models in the 
a differential diagnosis; b prognosis prediction of ovarian tumors. The numbers are pooled estimates with 95% CIs in parentheses; horizontal lines 
indicate 95% CIs. TP, FP, FN, and TN were defined according to the original articles’ descriptions
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Discussion
Our systematic review found that the methodological 
quality of CT and MRI radiomics for patients with OC 
was relatively low, while our meta-analysis revealed that 
radiomics has promising potential in discriminating 
between OC subtypes and predicting patient prognosis.

Several narrative reviews described the prospects of 
applying radiomics in OC [8, 17, 81, 82]. Rizzo et al.’s sys-
tematic review [83] included six studies that lacked RQS 
ratings and meta-analyses, whereas that by Ponsiglione 
et  al. [18] used the RQS to evaluate the methodologi-
cal quality of studies involving CT-, MRI-, ultrasonogra-
phy-, or positron emission tomography-based radiomics 
in ovarian disorders published as of November 2021. The 
field of radiomics is in a period of rapid growth; 42.1% of 
the studies we analyzed were published in 2022 or 2023. 
Aside from the RQS, QUADAS-2 was applied to assess 
potential publication bias and applicability concerns. 
While previously published reviews usually describe only 
qualitative analyses, we performed quantitative evaluation 
of the effect of radiomics models by conducting a meta-
analysis; our mean RQS (30.7%) was acceptable when 
compared to those published previously (5.6–36.1%) [18, 
22, 84-87]. However, the overall scientific quality was still 
unsatisfactory, given that the assessment values were con-
siderably below 100%. The main reasons for the low RQS 
ratings, as in previous analyses [22, 86, 88], included low 
levels of feature robustness, insufficient model assess-
ment, and lack of concern for clinical applications.

The primary challenge for feature robustness was the 
high variability in radiomics features; few of the publi-
cations we analyzed described phantom studies [74, 77, 
78], multiple time-point imaging, or automatic segmen-
tation [49–51]. Regarding model assessment, radiom-
ics studies usually included discrimination statistics; 
however, cutoff analyses and calibration statistics were 
often neglected, thus complicating the risk evalua-
tion of overly optimistic results and accuracy of model 
predictions. Classification indexes including sensitiv-
ity and specificity, which are critical for quantitative 
analysis, were lacking in some studies. Our results sug-
gest the need for performing additional technical vali-
dation before considering radiomics models for clinical 
applications.

Although most studies involved internal validation 
(which is indispensable for the clinical translation and 
broad application of radiomics models), the absence of 
external validation at several centers undermined the 
credibility and generalizability of the models. Very few 
prospective studies [37, 66], which are considered to have 
a high level of evidence, were performed. Furthermore, 
analysis of cost-effectiveness was absent from all our 
included studies, and the lack of decision curve analysis 
in approximately two-thirds of them also obscured the 
applicability of the models to clinical settings. As such, 
technical and clinical validations remain critical unmet 
requirements for incorporating radiomics analysis into 
clinical applications.

Table 4  The results of meta-regression analysis of studies about differential diagnosis and prognosis prediction of OC

Covariates Subgroup No. of studies Sensitivity [95%CI] PSEN Specificity [95%CI] PSPE P

Differential diagnosis

Number of patients  < 100 11 0.83 [0.75–0.92] 0.15 0.86 [0.80–0.91]  < 0.001 0.42

≥ 100 5 0.84 [0.74–0.95] 0.78 [0.69–0.88]

Imaging modality MRI 8 0.89 [0.82–0.95]  < 0.001 0.85 [0.78–0.93]  < 0.01 0.17

CT 8 0.78 [0.68–0.88] 0.81 [0.73–0.89]

Type of ROI 2D 7 0.85 [0.76–0.95] 0.04 0.84 [0.75–0.92]  < 0.01 0.92

3D 9 0.83 [0.74–0.92] 0.83 [0.76–0.90]

Type of features Low-order 12 0.83 [0.75–0.91] 0.26 0.84 [0.78–0.90]  < 0.01 0.77

High-order 4 0.86 [0.75–0.97] 0.81 [0.71–0.91]

Prognosis prediction

Number of patients  < 100 9 0.79 [0.73–0.85]  < 0.001 0.82 [0.76–0.87]  < 0.001 0.04

≥ 100 4 0.73 [0.64–0.82] 0.73 [0.64–0.82]

Imaging modality MRI 5 0.79 [0.71–0.88]  < 0.01 0.79 [0.70–0.87]  < 0.01 0.85

CT 8 0.76 [0.69–0.84] 0.78 [0.71–0.85]

Type of ROI 2D 4 0.84 [0.77–0.92]  < 0.001 0.82 [0.74–0.91]  < 0.01 0.03

3D 9 0.74 [0.68–0.80] 0.76 [0.69–0.83]

Type of features Low-order 6 0.74 [0.65–0.82] 0.09 0.80 [0.70–0.85]  < 0.01 0.46

High-order 7 0.81 [0.74–0.88] 0.77 [0.70–0.85]
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The importance of open science is emphasized in the 
RQS ratings to ensure the transparency and reproduc-
ibility of research findings, but such access was lacking in 
our studies. As such, we suggest that researchers should 
at least include the computed numerical values of any 
investigated features in their publications.

In terms of correlations between the RQS and original 
variables, there was a significant relationship between 
RQS and publication year. More modern studies pre-
sumably have a larger sample size, collect data from 
multiple centers, use a prospective design, and/or apply 
more strict inclusion and exclusion criteria, thereby con-
tributing to a higher RQS. Additionally, a higher RQS 
was significantly correlated with low-level risk accord-
ing to QUADAS-2, which may support using the former 
to improve research quality. We also found that studies 
exploring differential diagnosis had significantly higher 
performance metrics, whereas studies of response evalu-
ation or prognostic prediction may be more affected by 
non-relevant factors, such as lifestyle and other medi-
cations, given that they have longer follow-up periods. 
Contrary to our expectation, we did not find a significant 
relationship between performance metrics and the num-
ber of features extracted, which could be explained by the 
heterogeneity in feature selection and modeling.

The results of our meta-analysis were promising; the 
pooled AUCs reached 0.90 for differential diagnosis and 
0.85 for prognostic prediction, indicating a relatively 
high accuracy in categorizing different pathological sub-
types and predicting the prognoses of patients with OC. 
According to Cochrane’s Q and Higgin’s I2 tests, studies 
included in the meta-analysis had high levels of heteroge-
neity, which a meta-regression analysis attributed to the 
influence of patient number, imaging modality, region of 
interest, and feature type.

Our study had some limitations. First, most included 
articles did not report the numbers of true/false posi-
tives or true/false negatives, and our calculation of these 
data from the available information might have intro-
duced some errors. Second, studies predicting chemo-
therapy response were not included in the meta-analysis 
owing to insufficient data. Third, studies involved in the 
meta-analysis showed high heterogeneity; although we 
found significant correlations between such heterogene-
ity and certain factors, the latter may not have sufficiently 
explained the former. Fourth, the prognostic prediction 
studies included in our meta-analysis had a significant 
risk of publication bias, likely because we only included 
English-language articles and also because half of the 
studies comprised small sample sizes; reluctance to pub-
lish negative data may also have been a factor.

In conclusion, radiomics analysis showed prom-
ise in terms of overcoming some current obstacles 

in determining differential diagnosis, chemotherapy 
response, and prognosis in patients with OC. Pairwise 
correlation analysis revealed a significant relationship 
between RQS and QUADAS-2 result or publication 
year, as well as between performance metrics and study 
aims. Additionally, our meta-analysis demonstrated 
the suitability of radiomics analysis for discriminating 
between various subtypes of OC and identifying prog-
nostic factors through quantitative analysis. Given the 
generally low RQS ratings of all the included studies, 
the methodological quality of radiomics studies involv-
ing OC is lower than desirable; hence, more high-level 
evidence is required to develop effective radiomics 
models.
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