Huang et al. Insights into Imaging (2023) 14:117

https://doi.org/10.1186/513244-023-01464-z InSIghtS lntO Imaglng

oINIRE" CFRAbicLoGY

. . . ®
A systematic review and meta-analysis Sk

of CT and MRI radiomics in ovarian cancer:
methodological issues and clinical utility
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Abstract

Objectives We aimed to present the state of the art of CT- and MRI-based radiomics in the context of ovarian cancer
(OQ), with a focus on the methodological quality of these studies and the clinical utility of these proposed radiomics
models.

Methods Original articles investigating radiomics in OC published in PubMed, Embase, Web of Science, and the
Cochrane Library between January 1, 2002, and January 6, 2023, were extracted. The methodological quality was
evaluated using the radiomics quality score (RQS) and Quality Assessment of Diagnostic Accuracy Studies 2 (QUA-
DAS-2). Pairwise correlation analyses were performed to compare the methodological quality, baseline information,
and performance metrics. Additional meta-analyses of studies exploring differential diagnoses and prognostic predic-
tion in patients with OC were performed separately.

Results Fifty-seven studies encompassing 11,693 patients were included. The mean RQS was 30.7% (range — 4 to 22);
less than 25% of studies had a high risk of bias and applicability concerns in each domain of QUADAS-2. A high RQS
was significantly associated with a low QUADAS-2 risk and recent publication year. Significantly higher performance
metrics were observed in studies examining differential diagnosis; 16 such studies as well as 13 exploring prognostic
prediction were included in a separate meta-analysis, which revealed diagnostic odds ratios of 25.76 (95% confidence
interval (Cl) 13.50-49.13) and 12.55 (95% Cl 8.38-18.77), respectively.

Conclusion Current evidence suggests that the methodological quality of OC-related radiomics studies is unsatisfac-
tory. Radiomics analysis based on CT and MRI showed promising results in terms of differential diagnosis and prog-
nostic prediction.

Critical relevance statement Radiomics analysis has potential clinical utility; however, shortcomings persist in
existing studies in terms of reproducibility. We suggest that future radiomics studies should be more standardized to
better bridge the gap between concepts and clinical applications.

"Meng-Lin Huang and Jing Ren contributed equally to this work.

*Correspondence:

Yong-Lan He

heyonglan@pumch.cn

Yuan Li

liyuan10833@pumch.cn

Hua-Dan Xue

bjdannad5@hotmail.com

Full list of author information is available at the end of the article

. ©The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
@ SPrlnge]_‘ O pe n permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
— original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http//creativecommons.org/licenses/by/4.0/.


http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13244-023-01464-z&domain=pdf
http://orcid.org/0000-0003-2567-9710

Huang et al. Insights into Imaging (2023) 14:117 Page 2 of 19

Key points

- The methodological quality of current radiomics studies concerning ovarian cancer was unsatisfactory.

- Meta-analyses showed high diagnostic odds ratios regarding differential diagnosis and prognostic prediction.
- Radiomics analysis in ovarian cancer holds promise for clinical applications.

- More standardization should be required for radiomics studies.
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Radiomics analysis has potential clinical utility; however, shortcomings persist in existing studies in terms of reproducibility.
We suggest that future radiomics studies should be more standardized to better bridge the gap between concepts and clinical
applications

Introduction

Ovarian cancer (OC) is the most lethal gynecologi-
cal cancer and the fifth-leading cause of cancer-related
deaths among women; there were 313,959 newly diag-
nosed cases and 207,252 deaths worldwide in 2020 [1,
2]. The most recent cancer statistics report indicates that
approximately 19,710 new cases of OC will be diagnosed
in the USA in 2023, and 13,270 women will die from the
disease [2]. The World Health Organization classifica-
tion of tumors divides OC into dozens of pathological
types [3]; furthermore, 70% of patients with OC are diag-
nosed at an advanced stage, leading to worse outcomes
(their 5-year overall survival rates are 20-30% versus
80-95% for those diagnosed at early stages) [4—6]. Treat-
ment involves surgery and chemotherapy and depends

on the pathological type and International Federation of
Gynaecology and Obstetrics stage [5, 7]. Notwithstand-
ing advances in the diagnosis and treatment of OC, how-
ever, mortality rates have not changed appreciably in the
last 30 years [2, 8—12]. This is partly due to the difficulty
of early detection and the lack of effective therapeutic
options for patients in advanced stages.

Computed tomography (CT) and magnetic resonance
imaging (MRI) are essential for diagnosing and staging
OC [5] and are invaluable for assessing chemotherapy
response [13]. However, conventional imaging interpre-
tations rely on the skills of radiologists, and variabilities
among reports inevitably exist. Fortunately, medical
imaging is advancing toward more standardized, spe-
cialized, and quantitative approaches, contributing to
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greater consistency and communication among radiolo-
gists. With this evolution, radiologists are shifting from
conventional free-text reporting to structured report-
ing, enabling more accurate and efficient analysis of the
extensive volumes of imaging data [14, 15]. Radiomics
is a rapidly emerging field that quantitatively analyzes
medical images utilizing artificial intelligence; based on
high-throughput mining of quantitative image features,
radiomics analysis generates unique markers that may be
visually indiscernible yet can support clinical decision-
making and increase diagnostic and prognostic accuracy
8, 16, 17].

In recent years, extensive studies using radiomics meth-
ods based on CT and MRI have linked quantitative image
features to diagnosis, response evaluation, and prognos-
tic prediction in patients with OC [8, 17, 18]. Neverthe-
less, it has remained difficult to assess the clinical value of
radiomics in OC owing to the complexity of the methods
and varying study designs. Therefore, we performed this
study with two main aims: First, we evaluated the meth-
odological quality of existing studies using the ‘quality of
diagnostic accuracy studies-2’ (QUADAS-2) tool as well
as the ‘radiomics quality score’ (RQS) [16, 19]. Second,
we conducted a meta-analysis to determine the diagnos-
tic performance of radiomics in patients with OC.

Materials and methods

Evidence acquisition protocol and registry

This systematic review was conducted according to the
Preferred Reporting Items for Systematic Reviews and
Meta-analysis (PRISMA) statement [20] (Additional
file 1: Table S1). A review protocol is available through
the International Prospective Register of Systematic
Reviews (PROSPERO) (CRD 42022313519).

Literature search and study selection

A structured search was performed independently
by two reviewers (M.H. and J.R.) with 5 and 3 years of
experience in gynecological imaging interpretation,
respectively. Any disagreement was arbitrated by a third
reviewer (Y.H.) with 12 years of experience, which was
performed in 1.9% of the studies (8/418). The reviewers
independently screened the titles, abstracts, and full texts
of the extracted articles; uncertainties were discussed and
resolved by consensus. Detailed search strategies and
selection criteria are described in Additional file 1.

Data extraction and methodological quality assessment

After selecting the relevant studies, the two review-
ers developed a data extraction instrument (described
in Additional file 1: Table S2). After independently
reading the full text of each eligible article, they docu-
mented: (1) bibliographical information, (2) baseline
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study information (including study design, imaging tech-
nique parameters, and modeling information), and (3)
model performance metrics. The extracted information
was recorded using the Excel software (Microsoft Corp.,
Redmond, WA, USA). The methodological quality of the
eligible articles was independently assessed by the two
reviewers using the RQS (described in Additional file 1:
Table S3) [16] and Quality Assessment of QUADAS-2
tools [19]. Each of the 16 key components identified
by the RQS was rated, resulting in a total score rang-
ing from —8 to 36 points; these were converted to RQS
percentages, with—8 to 0 points defined as 0% and 36
points defined as 100% [16]. The QUADAS-2 tool com-
prises seven assessment items reflecting four domains:
‘patient selection, ‘index test, ‘reference standard, and
‘flow and timing’ Each item was judged as “low;,” “high,’
or “unclear” based on responses to signaling questions
on the risk of bias and applicability concerns [19]. A
summed RQS rating calculated by averaging the scores
of the two reviewers was determined for each study. For
QUADAS-2 assessment, any disagreement was arbi-
trated with a third reviewer (H.Y.) to achieve a common
appraisal for each item. To facilitate additional analysis,
a final risk assessment was performed for each study as
follows: studies in which all seven items were rated “low”
were defined as “low risk’, studies in which at least one
item was rated “high” were defined as “high risk’;, and the
remainder were defined as “unclear risk”

Data synthesis and analysis

Statistical analysis was conducted using the SPSS soft-
ware version 25.0.0.0 (IBM Corp., Armonk, NY, USA),
Review Manager (RevMan) version 5.3, and R (version
4.0.5; R Foundation for Statistical Computing) incorpo-
rating the ‘tidyverse’ packages. Categorical variables are
presented as numbers and percentages, while continuous
variables are presented as means and standard deviations
or as medians and ranges. The inter-rater agreement for
the RQS and QUADAS-2 was determined using Cohen’s
kappa [21] and the ratio of agreements [21, 22]. An inter-
class correlation coefficient (ICC) of < 0.4 was considered
poor, 0.4—0.75 moderate, and>0.75 good. Only train-
ing set performance metrics of the proposed radiomics
models were recorded, even if validation sets existed, to
maintain consistency among studies. Pairwise correlation
analyses between methodological quality, baseline infor-
mation, and performance metrics were conducted. Cor-
relations between numeric variables were evaluated using
linear regression analyses, while associations between
numeric and categorical variables were assessed using
unpaired Student’s ¢-tests or Mann—Whitney tests. The
significance level & was 0.05, and statistical significance
was set at a two-tailed p-value of <0.05.
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Meta-analyses were performed using the STATA soft-
ware version 17.0 (StataCorp LP, College Station, TX,
USA) with the ‘midas’ package when a sufficient number
of studies attempted to address a similar question, and
two-by-two tables could be extracted or reconstructed
based on published data (the details are shown in Addi-
tional file 1). The sensitivity, specificity, positive likeli-
hood ratio (PLR), negative likelihood ratio (NLR), and
diagnostic odds ratio (DOR) with 95% confidence inter-
vals (ClIs) were calculated. Summary receiver operating
characteristic (SROC) analysis was performed, and the
areas under the curve (AUCs) were obtained to describe
the diagnostic accuracy. If a particular study involved
multiple models, only the radiomics model was selected.
Heterogeneity was assessed using Cochrane’s Q test and
Higgin’s inconsistency index () test. Any heterogeneity
was considered significant if the p-value on Cochran’s Q
test was < 0.05, whereupon the random effects model was
used. Higgins I* values of < 25%, 25-50%, and >50% were
associated with low, moderate, and substantial heteroge-
neity, respectively. In cases of the latter, meta-regression
was performed to explore the possible sources of hetero-
geneity. Deeks’ funnel plots were constructed to illustrate
the risk of publication bias.

Results

The study selection process is illustrated in Fig. 1; 57
articles were ultimately included in the systematic
review [23-79]. We divided these publications based on
the studies’ main objectives into three categories: dif-
ferential diagnosis (24/57, 42.1%), response evaluation
(4/57, 7.0%), and prediction of prognosis (28/57, 49.1%).
Additionally, one paper (1.8%) described both differen-
tial diagnosis and prognostic prediction. We found that
assessments of differential diagnosis and prognostic pre-
diction were both commonly performed; thus, 16 articles
focusing on the differential diagnosis of OC [24-26, 28-
32, 34, 35, 39, 40, 42, 44, 45, 47] and 13 that described
studies on prognostic factors [52, 53, 55-57, 64, 66—68,
71-74] were subjected to separate meta-analyses.

Study characteristics

There were between 28 and 1329 patients in each study;
their median or mean ages ranged from 38.5 to 75 years.
The studies’ baseline information and characteristics
are shown in Tables 1 and 2, respectively. Nearly half of
the studies were published in imaging journals (28/57,
49.1%); the first authors were mainly specialized in radi-
ology (36/57, 63.2%) and most came from Asia (43/57,
75.4%). Thirty-seven studies used CT and 20 used MRI;
most applied the manual segmentation method and
three-dimensional analysis. According to the model clas-
sification method proposed by the TRIPOD statement
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[80], a plurality of the studies established developed
models validated with random splitting of data (27/57,
47.4%), followed by developed models validated using
exactly the same data (10/57, 17.5%) and separate data
(9/57, 15.8%). Furthermore, using Zhong et al. method
[22], 59.6% of the studies were classified as phase 0 owing
to their lack of external validation. Two phase III stud-
ies were conducted without sufficient patients or lacked
external validation; however, they retained their phase
categories owing to their prospective designs. Detailed
characteristics of each study’s population and proposed
radiomics model are presented in Additional file 1: Tables
S4 and S5.

Methodological quality assessment

The 57 studies had a mean RQS of 12 (interquartile range
10-14), with RQS values ranging from—4 to 22. The
mean percentage RQS was 30.7%, with a maximum of
61.1%. The average ICC for the RQS was 0.80 (95% con-
fidence interval (CI) 0.69-0.91), i.e., a ‘good’ rating. The
average rating and inter-rater agreement per RQS com-
ponent are shown in Table 3. In most studies, the lack of
reproducibility and repeatability analysis of imaging fea-
tures (e.g., phantom study and imaging at multiple time
points), insufficient cost-effectiveness analyses, and inad-
equate access to the data led to a low RQS. Additionally,
biological correlation and cutoff analyses were seldom
performed in the aftermath, and the rated validation
score (2 [2]) was suboptimal. Discrimination statistics to
assess model performance were available for all studies;
21 of them also reported calibration statistics. Fifty-five
studies (96.5%) were retrospective analyses, while only
two (3.5%) were based on prospectively acquired data.
The RQS assessments by each reviewer (M.H. and J.R.)
are shown in Additional file 1: Table Sé.

The summarized and individual QUADAS-2 results
are presented in Fig. 2 and Additional file 1: Table S7.
A high risk of publication bias (19.3%) and applicability
concerns (22.8%) were observed in terms of patient selec-
tion, mainly because of inappropriate exclusion. Twelve
studies (21.1%) were regarded as having an unclear risk of
bias in flow and timing, as they did not provide sufficient
information regarding the interval between index tests
and reference standards. Complete agreement between
the two reviewers concerning the seven QUADAS-2
items ranged from 80.7 to 96.5%.

Pairwise correlation analysis of methodological quality,
baseline information, and performance metrics

The pairwise correlation analysis results are presented in
Fig. 3. One article that discussed both differential diag-
nosis and prognostic prediction was analyzed twice as
two separate studies. The RQS values were significantly
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Fig. 1 Flowchart of the study selection process for the systematic review and meta-analysis
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Table 2 Characteristics of included studies

Page 12 of 19

Characteristics

No. of studies (%)

Journal speciality

Imaging

Clinical

Generalist

Medical physics

Specialty of the 1st author*

Radiologist

Radiotherapist

Clinician

Physicist, Computer scientist

Geographical origin of the study

Asia

Europe

North America

Imaging modality

cT

MRI

Study objectives**

Differential diagnosis

Response evaluation

Prognosis prediction

Segmentation method

Manual

Semi-automatic

Publication of negative results

No

Yes

Type of ROI

2D

3D

2D&3D

Model type

Type 1a: developed model validated with exactly the same data
Type 1b: developed model validated with resampling data
Type 2a: developed model validated with randomly splitting data
Type 2b: developed model validated with non-randomly splitting data
Type 3: developed model validated with separate data
Type 4: validation only

Phase classification***

Discovery science: experimental

Phase 0:< 100 patients; retrospective; internal validation Or> 100 patients; retrospective; internal validation
Phase I: < 100 patients; retrospective; external validation
Phase Il:> 100 patients; retrospective; external validation
Phase Ill:> 100 patients; prospective; external validation
Phase IV: real world

28/57 (49.1%)
20/57 (35.1%)
7/57 (12.3%)
2/57 (3.5%)

36/57 (63.2%)
1/57 (1.8%)
11/57 (19.3%)
9/57 (15.8%)

43/57 (754%)
6/57 (10.5%)
8/57 (14.0%)

37/57 (64.9%)
20/57 (35.10%)

25/57 (43.9%)
4/57 (7.0%)
29/57 (50.9%)

53/57 (93.0%)
4/57 (7.0%)

55/57 (96.5%)
2/57 (3.5%)

11/57 (19.3%)
43/57 (75.4%)
3/57 (5.3%)

10/57 (17.5%)
6/57 (10.5%)
27/57 (47 4%)
4/57 (7.0%)
9/57 (15.8%)
1/57 (1.8%)

10/57 (17.5%)
34/57 (59.6%)
2/57 (3.5%)
9/57 (15.8%)
2/57 (3.5%)
0/57

*Thirteen studies claimed joint first author, the author whose name was written first was assessed

**One study discussed two topics

***Two studies were classified as phase Ill due to prospective design, although they were conducted with less than 100 patients and without external validation
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Table 3 Average rating and inter-rater agreement per component of RQS

No. RQS item Range Average Median (range) Inter-rater
agreement
ICC 95%Cl

1 Image protocol quality 0-2 0.89 1(0-2) 0.90 0.76-1.00
2 Multiple segmentations 0-1 0.63 1(0-1) 1.00 1.00-1.00
3 Phantom study on all scanners 0-1 0.05 0(0-1) 1.00 1.00-1.00
4 Imaging at multiple time points 0-1 0 0(0-0) 1.00 1.00-1.00
5 Feature reduction or adjustment for multiple testing —-3to3 2.79 3(=3to3) 1.00 1.00-1.00
6 Multivariable analysis with non-radiomics features 0-1 0.72 1(0-1) 0.91 0.80-1.00
7 Detect and discuss biological correlate 0-1 0.23 0(0-1) 0.90 0.77-1.00
8 Cutoff analyses 0-1 0.13 0(0-1) 0.77 0.52-1.00
9 Discrimination statistics 0-2 142 0(05-2) 0.72 0.54-0.90
10 Calibration statistics 0-2 042 0(0-2) 1.00 1.00-1.00
11 Prospective study registered in a trial database 0-7 0.25 0(0-7) 1.00 1.00-1.00
12 Validation —-5to5 139 2(=5to5) 0.94 0.85-1.00
13 Comparison to ‘gold standard’ 0-2 1.26 2 (0-2) 0.93 0.82-1.00
14 Potential clinical utility 0-2 0.70 0(0-2) 1.00 1.00-1.00
15 Cost-effectiveness analysis 0-1 0 0 (0-0) 1.00 1.00-1.00
16 Open science and data 0-4 0.15 0022 092 0.78-1.00

Total points: —8 to 0=0%, 36=100% 0-100% 11.04=30.7% 12 (=410 22) 0.80 0.69-0.91

Cl confidence interval, ICC interclass correlation coefficient, RQS Radiomics Quality Score

Patient Selection [ B
Index Test [ I (.
Reference Standard [ [N [

Flowand Timing [l [

50%
Risk of Bias

}
0% 25%

: 1 I
75% 100% 0%

} t } i
25% 50% 75% 100%

Applicability Concerns

D Unclear

. High

. Low

Fig. 2 Quality assessment of included studies by QUADAS-2 tool. The authors’judgments for each domain of each included study were reviewed.
The proportion of included studies that indicated low, unclear, high risk, and applicability concerns were shown in green, yellow and gray,

respectively

different between studies with different QUADAS-2 risk
assessments (p=0.011). Importantly, studies deemed
low risk had a higher mean RQS than those with high or
unclear risk; the difference between low-risk and unclear-
risk studies was significant (p=0.002). The study aim
(p=0.180) and specialty of the first author (p=0.520)
did not influence the RQS rating. Studies published more
recently received significantly higher scores (adjusted
R*=0.264, p<0.001).

The performance metrics were represented by the
AUC in 49 studies (86.0%) and by the c-index in three
(5.3%); they were missing in the remaining five (8.8%).
Two of the studies explored two radiomics models

with different aims; hence, their performance met-
rics were documented separately. The best radiom-
ics model used in each study had an AUC or c-index
value between 0.620 and 1.000. Moreover, the perfor-
mance of the radiomics model was closely related to
the study aim (p <0.001); performance was significantly
better in studies exploring differential diagnosis than
in those evaluating response (p=0.012) or predict-
ing prognosis (p<0.001). No significant correlation
was found between performance metrics and RQS
(adjusted R*=—0.019, p=0.892), sample size (adjusted
R>=-0.019, p=0.938), or number of features extracted
(adjusted R*=0.046, p=0.068).
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Kruskal-Wallis, p=0.520

Study aim

» differential diagnosis
A prognosis prediction
m response evaluation

2

> o> ob dgh > o b

—

2022

2020

5L
radiologist clinician computer radiotherapist 2016 2018
physicist scientist

First author Year

performance.metrics

1000 0 2500 5000 7500 10000

Sample size No. of features

Fig. 3 Correlations between radiomics quality score (RQS), performance metrics and baseline information. a-d Correlation between RQS and
QUADAS-2, study aim, first author, and publication year. The vertical dashed line corresponds to the year of publication of the RQS. e~h Correlation
between performance metrics and RQS, study aim, number of patients, and number of features. Each point corresponds to a study. The regression
line and its 95% confidence interval are shown in gray with adjusted R” and p-value

Meta-analysis

Sixteen studies that focused on differential diagnosis and
13 that investigated prognostic prediction were subjected
to a meta-analysis. For studies of differential diagnosis,
the pooled diagnostic odds ratio (DOR) was 25.76 (95%
CI 13.50-49.13) (Fig. 4a); the pooled sensitivity, specific-
ity, positive likelihood ratio (PLR), and negative likelihood
ratio (NLR) were 0.84 (95% CI 0.76-0.89), 0.83 (95% CI
0.77-0.88), 5.00 (95% CI 3.58-6.97), and 0.19 (95% CI
0.13-0.30), respectively (Additional file 1: Figs. Sla and
Fig. S2a). The SROC curve suggested good diagnostic per-
formance with an AUC of 0.90 (95% CI 0.87-0.92) (Addi-
tional file 1: Fig. S3a). For studies analyzing prognostic
prediction, the pooled DOR, sensitivity, specificity, PLR,
and NLR were 12.55 (95% CI 8.38-18.77), 0.78 (95% CI
0.71-0.83), 0.78 (95% CI 0.72-0.82), 3.59 (95% CI 2.80—
4.59), and 0.29 (95% CI 0.22-0.37), respectively (Fig. 4b,
Additional file 1: Figs. S1b, and S2b). The AUC calculated
from the SROC curve was 0.85 (95% CI 0.81-0.88), indi-
cating good performance of the prognostic prediction
models (Additional file 1: Fig. S3b). Per Deeks’ funnel
plots, the likelihood of publication bias was low for differ-
ential diagnosis studies (p=0.760) but high for prognostic
prediction studies (p=0.040) (Additional file 1: Fig. S4).

Cochrane’s Q test (p<0.001 and p<0.001) and Hig-
gin’s I test (F=94% and I*=91%) indicated high het-
erogeneity; therefore, a meta-regression analysis was
conducted to identify its source (Table 4 and Addi-
tional file 1: Fig. S5). The number of patients was sig-
nificantly associated with heterogeneity in specificity
(p<0.001) for differential diagnosis studies and contrib-
uted to heterogeneity in sensitivity (p <0.001), speci-
ficity (p<0.001), and the AUC (p=0.04) in prognostic
prediction studies. Additionally, the imaging method
(CT vs. MRI) influenced heterogeneity in both sensitiv-
ity (p<0.001 for differential diagnosis and p<0.01 for
prognostic prediction studies) and specificity (p <0.01
for both study types). The heterogeneity of sensitiv-
ity and specificity in the differential diagnosis sub-
group was associated with the type of region of interest
(p=0.04 for sensitivity and p<0.01 for specificity).
In the prognostic prediction subgroup, however, the
region of interest type influenced AUC (p=0.03), sen-
sitivity (p <0.001), and specificity (p <0.01). Meanwhile,
the type of features only contributed to heterogeneity
in specificity (p<0.01 for both differential diagnosis
and prognostic prediction).
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Fig. 4 Forrest plot of the effect size calculated as diagnostic odds ratio for studies discussing the diagnostic accuracy of radiomics models in the
a differential diagnosis; b prognosis prediction of ovarian tumors. The numbers are pooled estimates with 95% Cls in parentheses; horizontal lines
indicate 95% Cls. TP, FP, FN, and TN were defined according to the original articles' descriptions
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Table 4 The results of meta-regression analysis of studies about differential diagnosis and prognosis prediction of OC

Covariates Subgroup No. of studies Sensitivity [95%Cl] Psen Specificity [95%Cl] Pgpe P

Differential diagnosis

Number of patients <100 1 0.83 [0.75-0.92] 0.15 0.86 [0.80-0.91] <0.001 042
>100 5 0.84 [0.74-0.95] 0.78 [0.69-0.88]

Imaging modality MRI 8 0.89 [0.82-0.95] <0.001 0.85[0.78-0.93] <0.01 017
cT 8 0.78 [0.68-0.88] 0.81[0.73-0.89]

Type of ROI 2D 7 0.85 [0.76-0.95] 0.04 0.84[0.75-0.92] <0.01 092
3D 9 0.83[0.74-0.92] 0.83[0.76-0.90]

Type of features Low-order 12 0.83[0.75-0.91] 0.26 0.84 [0.78-0.90] <0.01 0.77
High-order 4 0.86 [0.75-0.97] 110.71-0.91]

Prognosis prediction

Number of patients <100 9 0.79[0.73-0.85] <0.001 0.82 [0.76-0.87] <0.001 0.04
>100 4 0.73 [0.64-0.82] 0.73[0.64-0.82]

Imaging modality MRI 5 0.79[0.71-0.88] <0.01 0.79 [0.70-0.87] <0.01 0.85
cT 8 0.76 [0.69-0.84] 0.78 [0.71-0.85]

Type of ROI 2D 4 0.84[0.77-0.92] <0.001 0.82 [0.74-0.91] <0.01 0.03
3D 9 0.74 [0.68-0.80] 0.76 [0.69-0.83]

Type of features Low-order 6 0.74[0.65-0.82] 0.09 0.80[0.70-0.85] <0.01 046
High-order 7 0.81[0.74-0.88] 0.77 [0.70-0.85]

Discussion
Our systematic review found that the methodological
quality of CT and MRI radiomics for patients with OC
was relatively low, while our meta-analysis revealed that
radiomics has promising potential in discriminating
between OC subtypes and predicting patient prognosis.
Several narrative reviews described the prospects of
applying radiomics in OC [8, 17, 81, 82]. Rizzo et al’s sys-
tematic review [83] included six studies that lacked RQS
ratings and meta-analyses, whereas that by Ponsiglione
et al. [18] used the RQS to evaluate the methodologi-
cal quality of studies involving CT-, MRI-, ultrasonogra-
phy-, or positron emission tomography-based radiomics
in ovarian disorders published as of November 2021. The
field of radiomics is in a period of rapid growth; 42.1% of
the studies we analyzed were published in 2022 or 2023.
Aside from the RQS, QUADAS-2 was applied to assess
potential publication bias and applicability concerns.
While previously published reviews usually describe only
qualitative analyses, we performed quantitative evaluation
of the effect of radiomics models by conducting a meta-
analysis; our mean RQS (30.7%) was acceptable when
compared to those published previously (5.6—-36.1%) [18,
22, 84-87]. However, the overall scientific quality was still
unsatisfactory, given that the assessment values were con-
siderably below 100%. The main reasons for the low RQS
ratings, as in previous analyses [22, 86, 88], included low
levels of feature robustness, insufficient model assess-
ment, and lack of concern for clinical applications.

The primary challenge for feature robustness was the
high variability in radiomics features; few of the publi-
cations we analyzed described phantom studies [74, 77,
78], multiple time-point imaging, or automatic segmen-
tation [49-51]. Regarding model assessment, radiom-
ics studies usually included discrimination statistics;
however, cutoff analyses and calibration statistics were
often neglected, thus complicating the risk evalua-
tion of overly optimistic results and accuracy of model
predictions. Classification indexes including sensitiv-
ity and specificity, which are critical for quantitative
analysis, were lacking in some studies. Our results sug-
gest the need for performing additional technical vali-
dation before considering radiomics models for clinical
applications.

Although most studies involved internal validation
(which is indispensable for the clinical translation and
broad application of radiomics models), the absence of
external validation at several centers undermined the
credibility and generalizability of the models. Very few
prospective studies [37, 66], which are considered to have
a high level of evidence, were performed. Furthermore,
analysis of cost-effectiveness was absent from all our
included studies, and the lack of decision curve analysis
in approximately two-thirds of them also obscured the
applicability of the models to clinical settings. As such,
technical and clinical validations remain critical unmet
requirements for incorporating radiomics analysis into
clinical applications.
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The importance of open science is emphasized in the
RQS ratings to ensure the transparency and reproduc-
ibility of research findings, but such access was lacking in
our studies. As such, we suggest that researchers should
at least include the computed numerical values of any
investigated features in their publications.

In terms of correlations between the RQS and original
variables, there was a significant relationship between
RQS and publication year. More modern studies pre-
sumably have a larger sample size, collect data from
multiple centers, use a prospective design, and/or apply
more strict inclusion and exclusion criteria, thereby con-
tributing to a higher RQS. Additionally, a higher RQS
was significantly correlated with low-level risk accord-
ing to QUADAS-2, which may support using the former
to improve research quality. We also found that studies
exploring differential diagnosis had significantly higher
performance metrics, whereas studies of response evalu-
ation or prognostic prediction may be more affected by
non-relevant factors, such as lifestyle and other medi-
cations, given that they have longer follow-up periods.
Contrary to our expectation, we did not find a significant
relationship between performance metrics and the num-
ber of features extracted, which could be explained by the
heterogeneity in feature selection and modeling.

The results of our meta-analysis were promising; the
pooled AUCs reached 0.90 for differential diagnosis and
0.85 for prognostic prediction, indicating a relatively
high accuracy in categorizing different pathological sub-
types and predicting the prognoses of patients with OC.
According to Cochrane’s Q and Higgin’s I tests, studies
included in the meta-analysis had high levels of heteroge-
neity, which a meta-regression analysis attributed to the
influence of patient number, imaging modality, region of
interest, and feature type.

Our study had some limitations. First, most included
articles did not report the numbers of true/false posi-
tives or true/false negatives, and our calculation of these
data from the available information might have intro-
duced some errors. Second, studies predicting chemo-
therapy response were not included in the meta-analysis
owing to insufficient data. Third, studies involved in the
meta-analysis showed high heterogeneity; although we
found significant correlations between such heterogene-
ity and certain factors, the latter may not have sufficiently
explained the former. Fourth, the prognostic prediction
studies included in our meta-analysis had a significant
risk of publication bias, likely because we only included
English-language articles and also because half of the
studies comprised small sample sizes; reluctance to pub-
lish negative data may also have been a factor.

In conclusion, radiomics analysis showed prom-
ise in terms of overcoming some current obstacles
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in determining differential diagnosis, chemotherapy
response, and prognosis in patients with OC. Pairwise
correlation analysis revealed a significant relationship
between RQS and QUADAS-2 result or publication
year, as well as between performance metrics and study
aims. Additionally, our meta-analysis demonstrated
the suitability of radiomics analysis for discriminating
between various subtypes of OC and identifying prog-
nostic factors through quantitative analysis. Given the
generally low RQS ratings of all the included studies,
the methodological quality of radiomics studies involv-
ing OC is lower than desirable; hence, more high-level
evidence is required to develop effective radiomics
models.
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