Skip to main content
Scientific Reports logoLink to Scientific Reports
. 2023 Jul 3;13:10714. doi: 10.1038/s41598-023-37830-6

Phytochemical analysis for ten Peruvian Mentheae (Lamiaceae) by liquid chromatography associated with high resolution mass spectrometry

Carlos A Serrano 1,, Gretty K Villena 2, Eric F Rodríguez 3, Belea Calsino 4, Michael A Ludeña 1, Gari V Ccana-Ccapatinta 5
PMCID: PMC10318056  PMID: 37400603

Abstract

The profile of secondary metabolites in ten members of tribe Mentheae (Nepetoideae, Lamiaceae) from Peru by liquid chromatography associated with high resolution mass spectrometry, is presented. Salvianolic acids and their precursors were found, particularly rosmarinic acid, caffeic acid ester derivatives, as well as a diversity of free and glycosylated flavonoids as main substances. At all, 111 structures were tentatively identified.

Subject terms: Drug discovery, Plant sciences

Introduction

The tropical Andes are considered one of the most diverse areas on the planet in terms of vascular plants. The flora of Perú is extremely rich, and its territory is home to some 25,000 species, almost 10% of all plants in the world. However, the percentage of them scientifically studied is quite low1. Phytochemical research on Peruvian biodiversity proved to be fundamental in the development of modern medicine, e.g. the isolation of cocaine from Erythroxylum coca was a milestone in the development of local anesthetics2, similarly the isolation of the first antimalarial agent, quinine from Cinchona ledgeriana cortex initiated “the alkaloids golden age”3. Most of those phytochemical investigations were conducted overseas, a fact that reflects the absence or the restricted access of resources and infrastructure for developing classical phytochemical research in Peru. Today, modern platforms maybe applied for the metabolic characterization of Peruvian flora, a task that can be achieved by a liquid chromatography associated with high resolution mass spectrometry (LC-HRMS) method since it is less time consuming compared to classic methods of isolation and structure identification. Some recent investigations that exemplify the use of LC-HRMS for describing the phytochemical profile of Peruvian flora include the metabolic profile on medicinal plants of the genus Chuquiraga (Asteraceae)4 and that related to Capsicum (Solanaceae) fruits5.

Perú has several traditional medicine systems, that of the northern Andes6,7, that of the southern Andes8 and that of the Amazonian forest9, each one of them with its main and minor plants and particular practices. With the passage of time, those traditional medicines are getting combined a fact that is especially noticeable in Lima city, the capital of Peru10. One aspect that is worth to highlight is that, especially in Andean medicines, but not in Amazonian ones, there is an important contribution of plants belonging to the Lamiaceae family to the traditional medicine systems.

The large family Lamiaceae has twelve subfamilies. The Nepetoideae subfamily, with 3400 species and 105 genera, has three tribes11: Elsholtzieae, Ocimeae and Mentheae, the latter with 65 genera. The Mentheae tribe is chemically characterized by having volatile terpenoids and a phenolic acid called rosmarinic acid that makes these plants aromatic and with medicinal properties12,13 Mentheae can also be classified into 3 subtribes: Menthinae (43 genera), Salviinae (10 genera) and Nepetiinae (12 genera)14,15. In Peru (Herbario Nacional Universidad de San Marcos-Perú, October 2017), the main genera of Mentheae were Clinopodium (29 species), Hedeoma (1 specie), Lepechinia (11 species), Minthostachys (7 species) and Salvia (60 species). Clinopodium, Hedeoma, and Minthostachys belong to the Menthinae subtribe, while Lepechinia and Salvia belong to the Salviinae subtribe. Investigations on the non-volatile components in Peruvian Mentheae are relatively scarce compared to the works related to essential oils16 . In a previous work17 the contents of rosmarinic acid, triterpenic acids, oleanolic and ursolic were quantified in thirteen Peruvian Mentheae. The highest content of rosmarinic acid was observed in Lepechina meyenii (Walp.) Epling and the highest content of triterpenic acids in Clinopodium revolutum (Ruiz & Pavón) Govaerts. Subsequently18, the non-volatile compounds were unambiguously or reasonably identified in two Lepechinia species: L. meyenii and L. floribunda (Benth.) Epling, by LC-HRMS, where the presence of salvianolic acids and diterpenoids were notable.

LC-HRMS methods have been used to comprehensively analyze the phenolic components of plants, this implies procedures for the systematic manually identification of mass spectra19,20 and also the use of suitable software21,22, in both cases the procedure involves recording of diagnostic ions for classification and then the identification of characteristic ionic products and neutral losses for confirmation. In the present communication, the profile of secondary metabolites by LC-HRMS is reported for ten Peruvian Mentheae: Clinopodium (4 species), Salvia (4 species), Hedeoma (1 species) and Minthostachys (1 species).

Results

Phytochemical profile

The LC-HRMS metabolite profile of the ethanolic extracts of the ten peruvian Mentheae was obtained in the negative mode (ESI (−)) and the detected compounds appear in Table 1. Assignments were made based on the literature2137. Isomers of quinic acid (m/z 191.0556), danshensu (m/z 197.0450), protocatechuic aldehyde (m/z 137.0239), and caffeic acid (m/z 179.0350) occur in most plants. Equally abundant are the monocaffeoylquinic acids present in seven species. Minthostachys mollis contains four different monocaffeoylquinic acids. Several derivatives of ferulic acid and p-coumaric acid could also be identified. The 4 (para) substitution or the 3,4 substitution with respect to C3 cannot be determined by MS, however this is the substitution reported in Mentheae19,20,23,3849. Caffeic acid, protocatechuic aldehyde and protocatechuic acid share the same substitution pattern. Furthermore, a diversity of flavonoids (flavonols, flavones, flavanones, flavanonols) was found in all the samples, both free and glycosylated. Minthostachys mollis, Clinopodium sericeum and Clinopodium pulchellum are the most diverse with respect to their flavonoids. The most frequent flavonoid aglycones were luteolin (m/z 285.0404), quercetin (m/z 301.0354), kaempferol (m/z 285.0404) and apigenin (m/z 269.0455). Eupatorin is present in five of the species studied50. In Clinopodium revolutum, apigenin and luteolin C- hexosides were detected. In all the samples the presence of rosmarinic acid (m/z 359.0772) was detected. In Clinopodium revolutum, salvianic acid C (m/z 377.0881), which is the result of hydrating the double bond of rosmarinic acid, has been detected, and, in Salvia sagitatta, teucrol (m/z 315.0880)51, a decarboxylated rosmarinic acid was observed. Isorinic acid (m/z 343.0827) a rosmarinic acid molecule without the 3-OH was present in Clinopodium brevicalyx, Salvia sagitatta, Salvia cuspidata and Hedeoma mandoniana. Methyl (m/z 373.0931) and ethyl (m/z 387.1088) esters of rosmarinic acid were present in Salvia cuspidata and Clinopodium brevicalyx. In Salvia cuspidata and Clinopodium revolutum, the dimer of rosmarinic acid, sagerinic acid (m/z 719.1598), which is a molecule with a stabilized cyclobutane ring, was found. Clinopodium pulchellum displayed the presence of salvianolic acid A (m/z 493.1143) and salvianolic acid F (m/z 313.0722). In Clinopodium brevicalyx, Clinopodium sericeum and Hedeoma mandoniana, the presence of salvianolic acid B (m/z 717.1443) was observed, a particularly important substance due to its effect on neurodegenerative diseases52. However, the plant with the greatest diversity of salvianolic acids was Clinopodium sericeum, "romero de jalca", in addition to salvianolic acid B, lithospermic acid (m/z 537.1038), two isomers of salvianolic acid A and two isomers of salvianolic acid F. This type of substances is very important due to its effect on cell fibrosis (scar formation) in direct relation to cancer53. Among the other substances found, it should be noted that the Rosmarinus type diterpenoids, common in Lepechinia18,54 are scarce in this work; only Salvia sagitatta and Salvia cuspidata show the presence of carnosol (m/z 329.1761) and the phenolic diterpenoid, rosmadial (m/z 343.1552) in the last one28. Salvia haenkei contains the ent-(5R,9R)-15,16-epoxy-10S-hydroxycleroda-3,7,13(16),14-tetraene-17,12S; 18,19 diolide (m/z 355.1190)26, while Salvia cuspidata had a lignan, isolariciresinol (m/z 359.1502) previously reported in Linum seeds31,55, and 5-epi-icetexone (m/z 341.1396) described as an anti- Trypanosoma cruzii molecule56. Oleanolic and ursolic triterpenic acids, quantified in a previous report by Serrano et al.17, do not appear in this analysis due to the elution program used, which does not reach 100% acetonitrile57. Figure 1 shows the typical ESI (−) chromatogram of Salvia sagitatta and Fig. 2 shows the chromatogram of Clinopodium sericeum. The chemical structures of the main metabolites detected are displayed in Fig. 3.

Table 1.

Compounds detected in the ethanolic extracts of then Peruvian Mentheae by LC-HRMS.

No peak Assignment Rt [M–H] Experimental mass Δ (ppm) Fragments Detected in* References
1 Quinic acid 1.33 C7H11O6 191.0559 1.57 127.0394 Cb, So, Mm, Sc, Cr, Cs, Cp 23
2 Malic acid 1.36 C4H5O5 133.0139 1.5 Ss, Sc, 23
3 Quinic acid isomer 1.44 C7H11O6 191.0560 2.09 127.8695 Cb, Mm, Cr, Cs, Cp 23
4 Citric acid 1.77 C6H7O7 191.0196 2.09 111.0081 So 23
5 Pyroglutamic acid 1.87 C5H6O3N 128.0348 0.00 Sh 23
6 Succinic acid 1.98 C4H5O4 117.0187 0.85 So, Mm, Ss, Sc, Cr, Cs, Sh, Hm 23
7 Monoacetylglycerol 2.09 C5H9O4 133.0502 0.75 Ss
8 Mesaconic acid 2.96 C5H5O4 129.0190 1.55 Cp
9 3,4-dihydroxyphenyl lactic acid “danshensu” 4.05 C9H9O5 197.0454 2.02 123.0445, 135.0446, 179.0346 So, Cb, So, Mm, Sc, Cr, Cs, Hm, Sh 24,25
10 Protocatechuic acid 4.64 C7H5O4 153.0190 1.31 109.0289, 135.0448 So, Sc, Hm, Cp 24
11 1-O-Caffeoylquinic acid 6.39 C16H17O9 353.0883 2.83 135.0447, 179.0347, 191.0559 Mm 58,59,5860
12 Protocatechuic aldehyde 7.73 C7H5O3 137.0239 0.00 109.0289 Cb, So, Mm, Ss, Cr, Cs, Sh, Hm, Cp 24
13 Hydroxyheptandioic acid 8.78 C7H11O5 175.0611 2.28 So, Ss
14 p-Coumaroyl quinic acid 8.83 C16H17O8 337.0934 2.96 119.0496, 163.0398, 173.0453, 191.0559 Mm 58,59,5860
15 3-O-Caffeoylquinic acid 8.99 C16H17O9 353.0883 2.83 173.0453, 179.0559, 191.056 Mm, Cr 58,59,5860
16 Caffeic acid O-hexoside 9.02 C15H17O9 341.0883 2.93 179.0347, 233.0458, 251.0564, 281.0670 So, Ss, Sc 60,41
17 p-Coumaric acid 9.28 C9H7O3 163.0399 2.45 119.0497 Ss 38
18 5-O-Caffeoylquinic acid 9.41 C16H17O9 353.0883 2.83 135.0446, 179.0346, 191.055 Cb, So, Mm, Cr, Hm, Cp 58,59,5860
19 Eucomic acid 9.54 C11H11O6 239.0561 2.09 195.0660, 178.0586 Cb
20 Caffeic acid 9.64 C9H7O4 179.0348 1.67 135.0446, 161.0446 So, Mm, Ss, Sc, Cr, Cs, Sh, 38,39,41
21 Caffeic acid O-hexoside 9.77 C15H17O9 341.088 2.05 179.0345, 235.0453, 251.0561, 281.0667 Sc 60,41
22 Tuberonic acid hexoside 9.86 C18H27O9 387.1665 2.58 101.5668, 163.0033, 206.9725 So, Ss, Cr, Sh 23
23 p-Coumaroylquinic acid isomer 10.1 C16H17O8 337.0934 2.97 163.0397, 173.0454 So, Mm 58,59,61,27
24 Salvianic acid C 10.21 C18H17O9 377.0882 2.39 161.0240, 179.0347, 359.0776 Cr 41
25 p-Coumaroyl hexoside 10.38 C15H17O8 325.0930 1.85 119.0496, 163.0396 Sc 60
26 Feruloylquinic acid 10.38 C17H19O9 367.1040 3.0 149.0240, 191.0560, 193.0504, 173.0453 Mm 20,27
27 Quercetin 3,7-di-O-hexoside 10.43 C27H29O17 625.1407 0.32 121.0288, 179.0346, 273.0980, 301.0354, 303.1084, 463.0882, Cs, Cp 62,29,30
28 4-O-Caffeoylquinic acid 10.45 C16H17O9 353.0880 1.12 135.0445, 179.0345, 191.0557 Sc 58,59,5860
29 p-Coumaroyl hexoside 10.59 C15H17O8 325.0930 1.85 119.0496, 163.0396 Sc 60
30 Salvianic acid C isomer 10.67 C18H17O9 377.0881 2.12 197.0453, 347.1708, 359.0775 Cr 41
31 Tuberonic acid 10.67 C12H17O4 225.1132 2.22 134.8648, 146.9382, 168.8359, 187.9417, 213.0961 Mm, Sh, 23
32 Quercetin O-rutinoside 10.78 C27H29O16 609.1458 0.33 121.0289, 179.0345, 301.0356, 273.0881 Mm, Cp 60,29,30,35
33 Eriodictyol O-rutinosise 10.89 C27H31O15 595.1661 0.34 151.0397, 287.0562 Cs, Sh, Hm 42,29,30
34 Luteolin O-rutinoside 11.00 C27H29O15 593.1504 0.51 285.0403, 447.0928 Cb, Sc, Cr, Cp 16,63,26
35 Apigenin O-rutinoside 11.01 C27H29O14 577.1556 0.35 269.1030 Sc, Cr 16,38,63,26
36 Kaempferol O-hexoside 11.02 C21H19O11 447.0936 1.78 151.0031, 285.0406, Cb, Ss, Cs 20,29,30
37 Quercetin O-hexoside 11.02 C21H19O12 463.0886 1.94 301.0358 So, Mm, Ss, Sc, Cp 60,44,29,30
38 Quercetin O-glucuronide 11.09 C21H17O13 477.0679 2.1 301.0356 So, Ss 44,29,30
39 Feruloyl hexoside 11.12 C16H19O9 355.1036 1.97 149.0240, 193.0502 Sc 60
40 Pentahydroxy-methoxyflavone hexoside 11.12 C22H21O13 493.0989 1.42 162.8387, 163.0397, 331.0827, 315.1089 Cs 29,30
41 Isorhamnetin O-hexoside 11.23 C22H21O12 477.1046 2.72 315.0824, 357.0352, 462.0768 Ss 43,29,30
42 Naringenin O- rutinoside 11.33 C27H31O14 579.1714 0.00 151.0030, 271.0612 Mm, Cb, Cs, Hm, Cp 29,30
43 Eriodictyol O- rutinoside 11.4 C27H31O15 595.1665 0.34 151.0033, 287.0564 Cs 29,30
44 Luteolin O-glucuronide 11.56 C21H17O12 461.0729 1.95 133.0290, 151.0395, 285.0407, So, Ss, Cr, Sh 44,29,30
45 Luteolin O-hexoside 11.57 C21H19O11 447.0937 2.01 151.0398, 241.1084, 285.0407 Mm, Cr 60,29,30
46 Dihydrobaicalin 11.57 C21H19O11 447.0936 1.79 271.0250, 403.1613 Sc 62
47 Sagerinic acid 11.58 C36H31O16 719.1600 1.67 161.0239, 179.0348, 359.0715, 539.1186 Sc, Cr 38,39,4547
48 Hesperetin 7-O-rutinoside 11.64 C28H33O15 609.1819 0.16 151.0397, 179.0347, 301.0718, 257.1035 Mm, Cb, Hm, Cp 29,30,64
49 Apigenin O-rutinoside 11.66 C27H29O14 577.1557 0.17 225.1129, 269.0453 Cr 29,30
50 Dimethylrosmarinic acid 11.67 C20H19O8 387.1091 2.84 179.0347, 135.0447, 161.0452 So, Sh
51 Isorhamnetin 3-O-glucuronide 11.7 C22H19O13 491.0834 1.62 151.0396, 179.0346, 302.0388, 300.0602, 301.0358, 299.0565, 315.0513 So 29,30
52 Salvianolic acid A isomer 11.75 C26H21O10 493.1142 1.42 179.0344, 197.0450, 269.0821, 295.1192, 313.0723, 359.0778 Cs 24,25,41,49
53 Tetrahydroxy-methoxyflavone O-hexoside 11.78 C22H21O12 477.1041 1.68 162.8398, 163.8391, 315.1451 Cr 29,30
54 Trihydroxymethoxyflavone O-hexoside 11.89 C22H21O11 461.1093 1.95 299.0559 Sh, 29,30
55 Salvianolic acid B isomer 11.99 C36H29O16 717.1443 1.81 321.0616, 519.0945 Cs 25,40,41,47,48
56 Apigenin C-hexoside 12.01 C21H19O10 431.0984 0.00 269.0452, 281.1024, 311.1130, 341.1960, 371.1002 Cr 20
57 Rosmarinic acid 12.04 C18H15O8 359.0775 2.23 161.0240, 179.0345, 197.0452 Cb, So, Mm, Ss, Sc, Cr, Cs, Sh, Hm, Cp 25,38,39,45,46,48
58 Luteolin C-hexoside 12.07 C21H19O11 447.0934 2.91 285.0404, 297.1353, 357.1921, 387.1160 Cr 20
59 Dicaffeoylquinic acid 12.17 C25H23O12 515.1194 0.19 135.0444, 161.0238, 179.0345, 353.0881 Cr 58,59,5860
60 Salvianolic acid B isomer 12.53 C36H29O16 717.1443 1.81 295.0611, 321.0408, 339.0512, 493.1137, 519.0930, 537.1024 Cb, Ss, Hm 25,40,41,47,48
61 Luteolin O-acetylhexoside 12.71 C23H21O12 489.1039 1.23 133.0289, 151.0395, 241.0537, 257.1035, 267.0667, 285.0404, 447.0935 Cr 63,26
62 Artemetin 12.8 C20H19O8 387.1089 2.32 327.1241, 342.1067, 357.0992, 372.1184 Sh, 29,30
63 Isorinic acid 12.95 C18H15O7 343.0827 2.62 161.0241, 327.2181 Cb, Ss, Sc Hm 41,65
64 Lithospermic acid 13.03 C27H21O12 537.1038 0.93 295.0610, 493.1147 Cs 24,41
65 Isosakuranetin O-rutinoside 13.15 C28H33O14 593.1874 0.51 285.0770, 594.1905 Mm, Cp 29,30
66 Methyl rosmarinate 13.28 C19H17O8 373.0935 2.95 179.0347, 194.0540, 359.0778 Sc 20,25,38
67 Quercetin O-(p-coumaroyl)-hexoside 13.51 C30H25O14 609.1242 0.49 301.0719, 447.0940, 462.0747, 594.1343 Cr 29,30
68 Eriodictyol 13.6 C15H11O6 287.0563 2.44 107.0133, 135.0445, 151.0030 Cb, Cp 29,30
69 Luteolin 13.62 C15H9O6 285.0408 3.16 133.0289, 151.0032, 241.1085 Cb, Hm 29,30,32
70 Dihydrophilonotisflavone 13.63 C30H19O12 571.0883 1.05 133.0290, 151.0033, 285.0410, 286.0441 So, Ss 29,30
71 Ferulic acid 13.68 C10H9O4 193.0504 1.55 134.0367, 149.0239, 178.0220 Sc 20,25,66
72 Salvianolic acid A isomer 13.87 C26H21O10 493.1141 1.22 159.8595, 179.0345, 197.0451, 295.0612, 269.0821, 313.0719, 359.0774 Cs, Cp 24,25,41,49
73 Protocatechuic acid O-(hydroxybenzoyl)hexoside 13.94 C20H19O11 435.0935 1.61 137.0239, 153.0191, 297.1346, 315.1452 Cr
74 Trihydroxy-methoxyflavone 14.00 C16H11O6 299.0565 3.01 151.0397, 255.0698, 285.0413 Ss, Sh 29,30,32,35
75 Hesperetin O-hexoside 14.27 C22H23O11 463.1250 2.06 151.0395, 179.0347, 301.0720 Cp 29,30,34
76 Caffeic acid ethyl ester 14.66 C11H11O4 207.0661 1.44 179.0347 Cb, Sc
77 Quercetin 14.97 C15H9O7 301.0356 2.33 273.0407, 257.8189, 179.0346, 151.0392, 121.0288 Sc 67,29,30
78 Caffeic acid dimethyl derivative 15.01 C11H11O4 207.0661 1.45 16,931.0239, 151.940396, 147.069552 Cs
79 Salvianolic acid F isomer 15.46 C17H13O6 313.0721 2.88 269.082196, 15,979.0656 Sc, Cs 41
80 Dimethylquercetin 15.49 C17H13O7 329.0673 3.34 314.0756, 301.0716, 179.0347, 151.0396, 121.0288 Cb 29,30
81 Trihydroxy-dimethoxyflavone 15.53 C17H13O7 329.0672 3.04 151.0398, 201.8020, 257.8197, 283.0612, 299.0201, 313.0722, 314.0754 Mm 29,30
82 Trihydroxylinoleic acid 16.03 C18H31O5 327.2183 2.75 269.0457 Cb, Mm, Ss, Sc, Hm
83 Ethyl caffeate 16.14 C11H11O4 207.0660 0.97 179.0346 Ss
84 Apigenin 16.15 C15H9O5 269.0459 3.35 151.0396, 117.0187 Ss, Sc, Cr 40,67,29,30,32
85 Naringenin 16.39 C15H11O5 271.0616 3.32 151.0397, 177.0190 Ss, Cp 68,29,30
86 Salvianolic acid F isomer 16.87 C17H13O6 313.0719 2.23 269.0822, 159.0658 Sc 41
87 Ethyl rosmarinate 17.23 C20H19O8 387.1088 2.07 179.0344, 206.9724, 359.0777 Cb 20,38,39
88 Dimethylquercetin 17.59 C17H13O7 329.0673 3.34 121.0291, 151.0397, 179.0350, 301.0715, 314.0756 Ss, Cp 66,29,30
89 Hesperetin 17.66 C16H13O6 301.0722 3.32 151.0032, 179.0343, 286.0495 Cp 29,30,34
90 Salvianolic acid F isomer 17.87 C17H13O6 313.0721 2.87 159.0448, 269.0821 Cs 41
91 15,16-epoxi-10S-hidroxicleroda-3,7,13(16),14 tetraeno-17, 12S; 18,19 diolido 17.94 C20H19O6 355.1190 2.25 311.1291 Sh 55
92 Trihydroxyoleic acid 18.13 C18H33O5 329.2336 2.43 171.0195, 224.7632, 250.1448 Mm, Cb Cs 37
93 Hydroxyhexadecandioic acid 18.63 C16H29O5 301.2025 3.32 Cs 37
94 Trihydroxy-trimethoxyflavone 18.73 C18H15O8 359.0766 0.28 301.6655, 314.2232, 329.0299, 344.0546 Mm, Cb, Cp
95 Trihydroxy-methoxyflavanone (hesperetin isomer) 19.15 C16H13O6 301.0721 2.87 161.0240, 139.0032 Cp 28,30
96 trihydroxymethoxyflavone 19.23 C16H11O6 299.0565 3.01 151.0397, 284.0327 So, Mm, Cr, Sh, Cp, Sd 69,32
97 Cirsimaritin 19.34 C17H13O6 313.0724 3.19 298.0488, 283.0249 Ss, Cr 70,35
98 Isolariciresinol 19.61 C20H23O6 359.1502 1.95 345.1346, 344.1582, 313.0714 Sc 55,31
99 Salvianolic acid F isomer 19.77 C7H13O6 313.0722 3.19 269.0459, 159.8597 Cp 41
100 Rosmadial 20.03 C20H23O5 343.1552 1.75 299.1652, 315.1598 Sc
101 Eupatorin 20.06 C18H15O7 343.0829 3.21 328.0595, 313.0359, 298.0125 Cb, Mm, Ss, Cr, Cp 48,50
102 Teucrol 20.3 C17H15O6 315.0880 3.5 179.0349, 135.0447, 161.0244 Ss 51
103 Dihydroxy-methoxyflavone 20.32 C16H11O5 283.0617 3.53 268.0386, 151.0034, 107.0327 Mm, Cp 29,30
104 Dihydroxy-dimethoxyflavanone 20.36 C16H13O5 285.0773 3.51 153.0190, 161.0453, 179.0349, 151.0397, 243.0668, 270.0535, 164.0012 Mm 29,30
105 Genkwanin 20.47 C16H11O5 283.0616 3.18 268.0386, 239.0922, 165.0192 Ss, Cr, Sh 43
106 Sakuranetin 20.57 C16H13O5 285.0771 2.81 241.1076, 165.0188, 121.0289 Cr 29
107 Octadecendioic acid 20.68 C18H31O4 311.2232 2.89 310.2107 So, Sh 23
108 Octadihydroxyoctadecadienoic acid 21.15 C18H31O4 311.2229 1.93 197.8076 Sc 23
109 Carnosol 22.2 C20H25O4 329.1761 2.7 285.1861 Ss, Sc 38,39,54
110 5-Epi-icetexone 22.45 C20H21O5 341.1396 0.88 297.1500, 299.1652 Sc 56
111 9,10-Dihydroxystearic acid 23.47 C18H35O4 315.2547 3.47 Ss 23

*Clinopodium brevicalyx (Cb), Salvia oppositiflora (So), Minthostachys mollis (Mm), Salvia sagittata (Ss), Salvia cuspidate (Sc), Clinopodium revolutum (Cr), Clinopodium sericeum (Cs), Salvia haenkei (Sh), Hedeoma mandoniana (Hm), Clinopodium pulchellum (Cp).

Figure 1.

Figure 1

ESI (−) chromatogram of Salvia sagitatta.

Figure 2.

Figure 2

ESI (−) chromatogram of Clinopodium sericeum.

Figure 3.

Figure 3

Chemical structures of main metabolites identified.

Discussion

This is the first time that the phytochemical profile has been obtained for the ten Peruvian Mentheae (Lamiaceae) here reported. The botanical genera studied were Salvia (Salviinae), Clinopodium, Hedeoma and Minthostachys (Menthinae). While Salvia and Clinopodium are genera of worldwide distribution, Hedeoma and Minthostachys are American and South American genera, respectively. All Salvia species in this work belong to the Salvia subgenus Calosphace Benth. (Epling)63. Assignments were based on the search for diagnostic ions, characteristic product ions and neutral losses19,20,25,40,41. The fragmentation patterns shown in said references are particularly useful for this work since they are specifically directed to Lamiaceae/Mentheae. The phytochemical profiles of those Mentheae here surveyed are quite similar to their European and Asian relatives. All the species analyzed show the presence of rosmarinic acid, while, quinic acid, 3,4-dihydroxyphenyl-lactic acid “danshensu”, protocatechuic aldehyde and caffeic acid are present in most of the samples. Monocaffeoylquinic acids, also called chlorogenic acids, are also frequent but better expressed in Minthostachys. Dicaffeoylquinic acid was detected only in Clinopodium revolutum. All samples contained flavonoids with more diversity in Minthostachys and Clinopodium. Flavonoid-free aglycones predominate in several plants: In Salvia sagitatta, cirsimaritin is abundant64, while eupatorin predominates in Clinopodium revolutum50, genkwanin in Salvia haenkei36 and hesperetin in Clinopodium pulchellum27. In several plants, rosmarinic acid is the main peak: Clinopodium brevicalyx, Salvia oppositiflora, Clinopodium sericeum and Hedeoma mandoniana. Some type of salvianolic acid is present in all the samples, although in some cases, they are very small modifications of the rosmarinic acid molecule. Dimers and trimers of rosmarinic acid are present in Clinopodium brevicalyx, Salvia oppositiflora, Salvia cuspidata, Clinopodium sericeum, Hedeoma mandoniana and Clinopodium pulchellum. In Clinopodium sericeum, not only is the diversity of salvianolic acids important but also their abundance in salvianolic acid A, which would allow the preparation of the said substance from it71.

Conclusion

Peruvian Mentheae are a rich source of flavonoids, phenolic acids and terpenoids. The present study involved LC-HRMS analysis of ten species. A total of 111 compounds were detected. Most of these were identified by key ion filtering strategy and comparison with literature data. This methodology can be used to the authentication and differentiation of larger numbers of Mentheae species: The San Marcos Herbarium, Lima-Perú, in 2017 had 108 Mentheae.

Methods

Plant material

The plants used in this study are as follows: Clinopodium brevicalyx Epling (Harley & Granda) (Menthinae) (HUT 59506), Salvia oppositiflora (R. and P.) (Salviinae) (HUT 59502), Minthostachys mollis Griseb. (Menthinae) (HUT 59766), Salvia sagittata R. and P. (Salviinae) (HUT59499), Salvia cuspidata subsp. cuspidata (R. and P.) (Salviinae) (HUT 59505), Clinopodium revolutum (R. and P.) (Menthinae) (HUT 58329), Clinopodium sericeum (Briq. et Benth) Govaerts (Menthinae) (HUT 58,332), Salvia haenkei Benth. (Salviinae) (HUT 59500), Hedeoma mandoniana Wedd. (Menthinae) (HUT 59763), Clinopodium pulchellum Kunth (Govaerts) (Salviinae) (HUT 59765). All of them were collected in Peru (2014–2018) by the author (C.S.) according to the procedures of the Universidad San Antonio Abad and following the guidelines of the Herbarium Truxillense of the Universidad Nacional de Trujillo (HUT)—Perú https://facbio.unitru.edu.pe. Specimens were identified and deposited by the botanist Eric Frank Rodríguez (Herbarium Truxillense).

Sample preparation for metabolite profiling

Fifty milligrams of pulverized aerial parts were subjected to an ultrasonic bath for five minutes with 1 mL of ethanol for three times. The filtrates were evaporated in vacuo and stored at 4 °C until use.

LC-HRMS

Chromatographic separation was performed on a Thermo Scientific Dionex Ultimate 3000 UHPLC system with an Acclaim RP C18 150 × 4.6 mm × 1.8 µm chromatographic column at 25 °C and a gradient of (a) 0.1% H2CO2 in water and (b) acetonitrile: [time, % (b)]: (0.5); (5,5); (10.30); (15.30); (20,70); (25.70); (35.5) and 12 min of equilibration before each injection. The flow rate was 1 mL min−1, and the injection volume was 10 μL. The extracts were dissolved in 1.5 mL of methanol and filtered through 0.22 µm PTFE. For high resolution mass spectrometry, a Q-Exactive MS (Thermo Fisher Germany) equipped with electrospray ionization (ESI) in negative mode was used. The MS collection parameters were as follows: spray voltage 2500 V; capillary temperature, 400 °C. Sheath gas flowed at a rate of 75 units. Auxiliary gas flowed at 20 units. Scanning range of 100–1500 m/z. Resolution of 35,000. The mass tolerance threshold was 5 ppm. Data acquisition and processing were performed with XCalibur 2.3 (Thermo Fisher Scientific).

Diagnostic ions for classification

Quinic acids derivatives: 337.0929 p-coumaroylquinic acid, 367.1035 feruloylquinic acid, 353.0878 caffeoylquinic acid, 515.1195 dicaffeoylquinic acid.

Phenylpropionic acids: 163.0401 p-coumaric acid, 179.0350 caffeic acid, 359.07772 rosmarinic acid.

Flavonoids: 253.0506 chrysin, 269.0455 apigenin, 285.0404 luteonin and kaemferol, 301.0354 quercetin.

Supplementary Information

Acknowledgements

CS thanks to Proyecto “Cuatro Moléculas” and Vicerrectorado de Investigación de la Universidad Nacional de San Antonio Abad del Cusco-Perú (CIPCU 003-2021-UNSAAC). Special thanks to Dr. Carlos Areche, Chemistry Department, Universidad de Chile, For LC-HRMS experiments.

Author contributions

C.S., G.V., G.C., M.L. conception, design of the work. C.S., G.V., G.C. wrote the main manuscript. E.R., B.C. plant material collection and taxonomical identification. C.S., G.V. and M.L. phytochemical analysis.

Data availability

The datasets used and/or analyses during the current study are available from the corresponding author on reasonable request.

Competing interests

The authors declare no competing interests.

Footnotes

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

The online version contains supplementary material available at 10.1038/s41598-023-37830-6.

References

  • 1.Lock O, Pérez E, Villar M, Flores D, Rojas R. Bioactive compounds from plants used in Peruvian traditional medicine. Nat. Prod. Commun. 2016;11:315–337. [PubMed] [Google Scholar]
  • 2.Paulet P. La cocaína. Boletín del Ministerio de Fomento del Perú. 1903;1:23–42. [Google Scholar]
  • 3.Roersch, A. Colonial agroindustrialism: Science, industry and the state in the dutch golden alkaloid age, 1850–1950. Doctoral Thesis University of Utrecht 2015.
  • 4.Ccana-Ccapatinta G, et al. High resolution liquid chromatography–mass spectrometry based metabolomics for the classification of Chuquiraga (Barnadesioideae, Asteraceae): New phenylpropanoid derivatives as chemical markers for Chuquiraga spinosa. J. Nat. Prod. 2023;86:683–693. doi: 10.1021/acs.jnatprod.2c00603. [DOI] [PubMed] [Google Scholar]
  • 5.Espichán F, Rojas R, Quispe F, Cabanac G, Marti G. Metabolomic characterization of 5 native Peruvian chili peppers (Capsicum spp.) as a tool for species discrimination. Food Chem. 2022;386:132704. doi: 10.1016/j.foodchem.2022.132704. [DOI] [PubMed] [Google Scholar]
  • 6.Vásquez, L., Escurra, J., Aguirre, R., Vásquez, G., Vásquez, L. Plantas Medicinales del Norte del Perú. FINCyT. Lambayeque 2010.
  • 7.Bussmann R., Sharon, D. Plantas de los Cuatro Vientos. Flora Mágica y Medicinal del Perú. Trujillo 2007.
  • 8.Roersch C. Plantas Medicinales del Sur Andino del Perú. Koeltz Scientific Books; 1994. [Google Scholar]
  • 9.Rutter R. Catálogo de Plantas Útiles de la Amazonía del Perú. Instituto Lingüístico de Verano; 1990. [Google Scholar]
  • 10.Bussmann R, Paniagua N, Castañeda R, Prado Y, Mandujano J. Health in a pot. The ethnobotany of emolientes and emolienteros in Perú. Econ. Bot. 2015;69:83–88. doi: 10.1007/s12231-014-9296-1. [DOI] [Google Scholar]
  • 11.Zhao F, et al. An updated tribal classification of Lamiaceae based on plastome phylogenomics. BMC Biology. 2021;19:2. doi: 10.1186/s12915-020-00931-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Wink M. Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry. 2003;64(1):3–19. doi: 10.1016/S0031-9422(03)00300-5. [DOI] [PubMed] [Google Scholar]
  • 13.Amoah S, Sandjo L, Kratz J, Biavatti M. Rosmarinic acid-pharmaceutical and clinical aspects. Planta Med. 2016;82:388–406. doi: 10.1055/s-0035-1568274. [DOI] [PubMed] [Google Scholar]
  • 14.Bräuchler C, Heubl G, Meimberg H. Molecular phylogeny of Menthinae (Lamiaceae, Nepetoideae, Mentheae)-taxonomy, biogeography and conflicts. Mol. Phylogenet. Evol. 2010;55:501–523. doi: 10.1016/j.ympev.2010.01.016. [DOI] [PubMed] [Google Scholar]
  • 15.Drew B, Sytsma K. Phylogenetics, biogeography, and staminal evolution in the tribe Mentheae (Lamiaceae) Am. J. Bot. 2012;99:933–953. doi: 10.3732/ajb.1100549. [DOI] [PubMed] [Google Scholar]
  • 16.Senatore F, de Feo V. Flavonoid glycosides from Minthostachys spicata (Lamiaceae) Biochem. Syst. Ecol. 1995;23:573–574. doi: 10.1016/0305-1978(95)00039-W. [DOI] [Google Scholar]
  • 17.Serrano C, Villena G, Rodríguez E. Algunos componentes fitoquímicos y actividad antioxidante en representantes de la tribu Mentheae (Lamiaceae) del Perú. Arnaldoa. 2020;27:e101–e107. [Google Scholar]
  • 18.Serrano C, Villena G, Rodríguez E. Phytochemical profile and rosmarinic acid purification from two peruvian Lepechinia Willd. Species (Salviinae, Mentheae, Lamiaceae) Sci. Rep. 2021;11:7260. doi: 10.1038/s41598-021-86692-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Qiao X, et al. A targeted strategy to analyze untargeted mass spectral data: Rapid chemical profiling of Scutellaria baicalensis using ultra high performance liquid chromatography coupled with hybrid quadrupole orbitrap mass spectrometry and key ion filtering. J. Chromatogr. A. 2016;1441:83–95. doi: 10.1016/j.chroma.2016.02.079. [DOI] [PubMed] [Google Scholar]
  • 20.Li J, et al. Characterization of the multiple chemical components of Glechomae herba using ultra high performance liquid chromatography coupled to quadrupole time of flight tandem mass spectrometry with diagnostic ion filtering strategy. J. Sep. Sci. 2019;42:1312–1322. doi: 10.1002/jssc.201801212. [DOI] [PubMed] [Google Scholar]
  • 21.Shan Q, Cao G, Cai H, Cong X, Cai B. Novel software based method to classify structurally similar compounds combined with high performance liquid chromatography-quadrupole time of flight mass spectrometry to identify complex components of herbal medicines. J. Chromatogr. A. 2012;1264:13–21. doi: 10.1016/j.chroma.2012.09.045. [DOI] [PubMed] [Google Scholar]
  • 22.Cerrato A, et al. A new software-assisted analytical workflow based on high-resolution mass spectrometry for the systematic study of phenolic compounds in complex matrices. Talanta. 2020;209:120573. doi: 10.1016/j.talanta.2019.120573. [DOI] [PubMed] [Google Scholar]
  • 23.Taamalli A, et al. LC–MS-based metabolite profiling of methanolic extracts from the medicinal and aromatic species Mentha pulegium and Origanum majorana. Phytochem. Anal. 2015;26:320–330. doi: 10.1002/pca.2566. [DOI] [PubMed] [Google Scholar]
  • 24.Li C, et al. Precursor ion scan enhanced rapid identification of the chemical constituents of Danhong injection by liquid chromatography–tandem mass spectrometry: An integrated strategy. J. Chromatogr. A. 2019;1602:378–385. doi: 10.1016/j.chroma.2019.04.023. [DOI] [PubMed] [Google Scholar]
  • 25.Luo Y, Wen Q, Jian Sheng C, Feng Y, Tan T. Characterization of the polymeric phenolic acids and flavonoids in Clerodendranthi spicati herba using ultra high performance liquid chromatography coupled to quadrupole time of flight tandem mass spectrometry with target and nontarget data mining strategy. Rapid Commun. Mass Spectrom. 2019;33:1884–1893. doi: 10.1002/rcm.8527. [DOI] [PubMed] [Google Scholar]
  • 26.Almanza G, et al. Clerodane diterpenoids and an ursane triterpenoid from Salvia haenkei. Computer- assisted structural elucidation. Tetrahedron. 1997;53:14719–14728. doi: 10.1016/S0040-4020(97)00943-5. [DOI] [Google Scholar]
  • 27.Wianowska D, Gil M. Recent advances in extraction and analysis procedures of natural chlorogenic acids. Phytochem. Rev. 2018;18:273–302. doi: 10.1007/s11101-018-9592-y. [DOI] [Google Scholar]
  • 28.Wang L, et al. Determination and pharmacokinetic study of three diterpenes in rat plasma by UHPLC-ESI-MS/MS after oral administration of Rosmarinus officinalis L. Extract. Mol. 2017;22:934. doi: 10.3390/molecules22060934. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Fabre N, Rustan I, Hoffmann E, Quetin J. Determination of flavone, flavonol, flavanone aglycones by negative ion liquid chromatography electrospray ion trap mass spectroscopy. J. Am. Soc. Mass Spectrosc. 2001;12:707–715. doi: 10.1016/S1044-0305(01)00226-4. [DOI] [PubMed] [Google Scholar]
  • 30.Yang W, Ye M, Qiao X, Wang Q, Bo T, Guo D. Collision-induced dissociation of 40 flavonoid aglycones and differentiation of the common flavonoids subtypes using electrospray ionization ion-trap tandem mass spectrometry and quadrupole time of flight mass spectrometry. Eur. J. Mass Spectrom. 2012;18:493–503. doi: 10.1255/ejms.1206. [DOI] [PubMed] [Google Scholar]
  • 31.Meagher L, Beecher G, Flanagan V, Li B. Isolation and characterization of the lignans, isolariciresinol and pinoresinol, in flaxseed meal. J. Agric. Food Chem. 1999;47:3173–3180. doi: 10.1021/jf981359y. [DOI] [PubMed] [Google Scholar]
  • 32.Troalen L, Phillips A, Peggie D, Barran P, Hulme A. Historical textile dyeing with Genista tinctoria L.: A comprehensive study by UPLC-MS/MS analysis. Anal. Methods. 2014;6(22):8915–8923. doi: 10.1039/C4AY01509F. [DOI] [Google Scholar]
  • 33.Choi S, Lee S, Lee K. A comparative study of hesperetin, hesperidin and hesperidin glucoside: Antioxidant, anti-inflammatory, and antibacterial activities in vitro. Antioxidants. 2022;11:1618. doi: 10.3390/antiox11081618. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Ciric A, Prosen H, Jelikic M, Durdevic P. Evaluation of matrix effect in determination of some bioflavonoids in food samples by LC–MS/MS method. Talanta. 2012;99:780–790. doi: 10.1016/j.talanta.2012.07.025. [DOI] [PubMed] [Google Scholar]
  • 35.Sohuila T, Zohra B, Tahar H. Identification and quantification of phenolic compounds of Artemisia herba-alba at three harvest time by HPLC–ESI–Q-TOF–MS. Int. J. Food Prop. 2019;22:843–852. doi: 10.1080/10942912.2019.1614051. [DOI] [Google Scholar]
  • 36.Song Y, Zhang S, Liu H, Jin X. Determination of genkwanin in rat plasma by liquid chromatography-tandem mass spectrometry: Application to a bioavailability study. J. Pharm. Biomed. Anal. 2013;84:129–134. doi: 10.1016/j.jpba.2013.06.006. [DOI] [PubMed] [Google Scholar]
  • 37.Castañeta G, Cifuentes N, Sepulveda B, Bárcenas D, Cheel J, Areche C. Untargeted metabolomics by using UHPLC-ESI-MS/MS of an extract obtained with ethyl lactate Green solvent from Salvia rosmarinus. Separations. 2022;9:327. doi: 10.3390/separations9110327. [DOI] [Google Scholar]
  • 38.Sharma Y, Velamuri R, Fagan J, Schaefer J. Full-spectrum analysis of bioactive compounds in rosemary (Rosmarinus officinalis L.) as influenced by different extraction methods. Molecules. 2020;25:4599. doi: 10.3390/molecules25204599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Velamuri R, Sharma Y, Fagan J, Schaefer J. Application of UHPLC-ESI-QTOF-MS in phytochemical profiling of sage (Salvia officinalis) and rosemary (Rosmarinus officinalis) Planta medica Int. Open. 2020;7:e133–e144. doi: 10.1055/a-1272-2903. [DOI] [Google Scholar]
  • 40.Li Q, et al. Chemical constituents and quality control of two Dracocephalum species based on high-performance liquid chromatographic fingerprints coupled with tandem mass spectrometry and chemometrics. J. Sep. Sci. 2016;21:4071–4085. doi: 10.1002/jssc.201600645. [DOI] [PubMed] [Google Scholar]
  • 41.Shen Y, et al. Rapid profiling of polymeric phenolic acids in Salvia miltiorrhiza by hybrid data-dependent/targeted multistage mass spectrometry acquisition based on expected compounds prediction and fragment ion searching. J. Sep. Sci. 2018;41:1888–1895. doi: 10.1002/jssc.201701134. [DOI] [PubMed] [Google Scholar]
  • 42.Boudair T, Lozano J, Boulaem H, del Mar M, Segura A. Phytochemical characterization of bioactive compounds composition of Rosmarinus eriocalyx by RP-HPLC-ESI-QTOF-MS. Nat. Prod. Res. 2019;33:2208–2214. doi: 10.1080/14786419.2018.1495635. [DOI] [PubMed] [Google Scholar]
  • 43.Mena P, et al. Phytochemical profiling of flavonoids, phenolic acids, terpenoids, and volatile fraction of a rosemary (Rosmarinus officinalis L.) extract. Molecules. 2016;21:1576. doi: 10.3390/molecules21111576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Sulniuté V, Pukalskas A, Venskutonis P. Phytochemical composition of fractions isolated from ten Salvia species by supercritical carbon dioxide and pressurized liquid extraction methods. Food Chem. 2017;224:37–47. doi: 10.1016/j.foodchem.2016.12.047. [DOI] [PubMed] [Google Scholar]
  • 45.Barros L, et al. Phenolic profiles of cultivated, in vitro cultured and comercial samples of Melissa officinalis L. infusions. Food Chem. 2013;136:1–8. doi: 10.1016/j.foodchem.2012.07.107. [DOI] [PubMed] [Google Scholar]
  • 46.Fialová S, Slobodnikova L, Veizerova L, GranCai D. Lycopus europaeus: Phenolic fingerprint, antioxidant activity and antimicrobial effect on clinical Staphylococcus aureus strains. Nat. Prod. Res. 2015;29:2271–2274. doi: 10.1080/14786419.2015.1010086. [DOI] [PubMed] [Google Scholar]
  • 47.Miron T, Herrero M, Ibáñez E. Enrichment of antioxidant compounds from lemon balm (Melissa officinalis) by pressurized liquid extraction and enzyme-assisted extraction. J. Chromatogr. A. 2013;1288:1–9. doi: 10.1016/j.chroma.2013.02.075. [DOI] [PubMed] [Google Scholar]
  • 48.Guo Z, Liang X, Xie Y. Qualitative and quantitative analysis on the chemical constituents in Orthosiphon stamineus Benth. using ultra high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry. J. Pharm. Biomed. Anal. 2019;164:135–147. doi: 10.1016/j.jpba.2018.10.023. [DOI] [PubMed] [Google Scholar]
  • 49.Liu, A., Guo, H., Ye, M., Lin, Y. Detection, characterization and identification of phenolic acids in Danshen using high-performance. liquid chromatography with diode array detection and electrospray ionization mass spectrometry. J. Chromatogr. A1161, 170–82 (2007). [DOI] [PubMed]
  • 50.Li L, et al. Identification of metabolites of eupatorin in vivo and in vitro based on UHPLC-Q-TOF-MS/MS. Molecules. 2019;24:2658. doi: 10.3390/molecules24142658. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Amani M, et al. Teucrol, a decarboxyrosmarinic acid and its 4′-O-triglycoside, teucroside from Teucrium pilosum. Phytochemistry. 2000;55:927–931. doi: 10.1016/S0031-9422(00)00218-1. [DOI] [PubMed] [Google Scholar]
  • 52.Zhao R, Liu X, Zhang L, Yang H, Zhang Q. Current progress of research on neurodegenerative diseases of salvianolic acid B. Oxid. Med. Cell. Longev. 2019;2019:3281260. doi: 10.1155/2019/3281260. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.Ma L, Tang L, Yi Q. Salvianolic acids: Potential source of natural drugs for the treatment of fibrosis and cancer. Front. Pharmacol. 2019;10:1–13. doi: 10.3389/fphar.2019.00097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Chabán M, et al. Antibacterial effects of extracts obtained from plants of Argentina: Bioguided isolation of compounds from the anti-infectious medicinal plant Lepechinia meyenii. J. Ethnopharmacol. 2019;239:111930. doi: 10.1016/j.jep.2019.111930. [DOI] [PubMed] [Google Scholar]
  • 55.Fischer U, Jacksh A, Carle R, Kammerer D. Determination of lignans in edible and nonedible parts of pomegranate (Punica granatum L.) and products derived therefrom, particularly focusing on the quantitation of isolariciresinol using HPLC-DAD-ESI/MSn. J. Agric. Food Chem. 2012;60:283–292. doi: 10.1021/jf203598m. [DOI] [PubMed] [Google Scholar]
  • 56.Nieto M, García E, Giordano O, Tonn C. Icetexane and abietane diterpenoids from Salvia gilliesi. Phytochemistry. 2000;53:911–915. doi: 10.1016/S0031-9422(99)00480-X. [DOI] [PubMed] [Google Scholar]
  • 57.Avula B, et al. Comparative analysis of five Salvia species using LC-DAD-QToF. J. Pharm. Biomed. Anal. 2021;209:114520. doi: 10.1016/j.jpba.2021.114520. [DOI] [PubMed] [Google Scholar]
  • 58.Gil M, Wianowska D. Chlorogenic acids-their properties, occurrence and analysis. Annales Universitatis Mariae Curie-Sklodowska Lublin Polonia. 2017;LXXII:61–104. doi: 10.17951/aa.2017.72.1.61. [DOI] [Google Scholar]
  • 59.Schutz K, Kammerer D, Carle R, Schieber A. Identification and quantification of caffeoylquinic acids and flavonoids in artichoke (Cynara scolymus L.) heads, juice and pomace by HPLC-DAD-ESI/MSn. J. Agric. Food Chem. 2004;52:4090–4096. doi: 10.1021/jf049625x. [DOI] [PubMed] [Google Scholar]
  • 60.Abu Reidah I, et al. HPLC–ESI-Q-TOF-MS for a comprehensive characterization of bioactive phenolic compounds in cucumber whole fruit extract. Food Res. Int. 2012;46:108–117. doi: 10.1016/j.foodres.2011.11.026. [DOI] [Google Scholar]
  • 61.Krzyzanowska J, Pecio L, Moldoch J, Ludwiczuk A, Kowalczyk M. Novel phenolic constituents of Pulmonaria officinalis L. LC-MS/MS comparison of spring and autumn metabolites profiles. Molecules. 2018;23:2227. doi: 10.3390/molecules23092277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.Kim S, et al. PubChem 2023 update. Nucleic Acids Res. 2023;51:1373–1380. doi: 10.1093/nar/gkac956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63.Gonzáles Gallegos J, et al. Richness and distribution of Salvia subg. Calosphace (Lamiaceae) Int. J. Plant Sci. 2020;181:831–856. doi: 10.1086/709133. [DOI] [Google Scholar]
  • 64.Benali T, et al. The current state of knowledge in biological properties of cirsimaritin. Antioxidants. 2022;11:1842. doi: 10.3390/antiox11091842. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65.Satake T, et al. Studies on the constituents of fruits of Helicteres isora L. Chem. Pharm. Bull. 1999;47:1444–1447. doi: 10.1248/cpb.47.1444. [DOI] [Google Scholar]
  • 66.Misic D, et al. Simultaneous UHPLC/DAD/(+/−)HESI-MS/MS analysis of phenolic acids and nepetalactones in methanol extracts of Nepeta species: A possible application in chemotaxonomic studies. Phytochem. Anal. 2015;26:72–85. doi: 10.1002/pca.2538. [DOI] [PubMed] [Google Scholar]
  • 67.Keckes S, et al. The determination of phenolic profiles of Serbian unifloral honeys using ultra-high-performance liquid chromatography/high resolution accurate mass spectrometry. Food Chem. 2013;138:32–40. doi: 10.1016/j.foodchem.2012.10.025. [DOI] [PubMed] [Google Scholar]
  • 68.Ertas A, et al. A detailed study on the chemical and biological profiles of essential oil and methanol extract of Thymus nummularius (Anzer tea): Rosmarinic acid. Ind. Crops Prod. 2015;67:336–345. doi: 10.1016/j.indcrop.2015.01.064. [DOI] [Google Scholar]
  • 69.Brito A, Ramírez J, Areche C, Sepúlveda B, Simirgiotis M. HPLC-UV-MS profiles of phenolic compounds and antioxidant activity of fruits from three Citrus species consumed in Northern Chile. Molecules. 2014;19:17400–17421. doi: 10.3390/molecules191117400. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70.Peter S, Peru K, Fahlman B, McMartin M, Headley J. The application of HPLC ESI MS in the investigation of the flavonoids and flavonoid glycosides of a Caribbean Lamiaceae plant with potential for bioaccumulation. J. Environ. Sci. Health B. 2015;50:819–826. doi: 10.1080/03601234.2015.1058103. [DOI] [PubMed] [Google Scholar]
  • 71.Lu L, Zhang H, Qian Y, Yuan Y. Isolation of salvianolic acid A, a minor phenolic carboxylic acid of Salvia miltiorrhiza. Nat. Prod. Commun. 2010;5:805–808. [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Data Availability Statement

The datasets used and/or analyses during the current study are available from the corresponding author on reasonable request.


Articles from Scientific Reports are provided here courtesy of Nature Publishing Group

RESOURCES