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Sphingolipids, which are components of cellular membranes and organ tissues, can be synthesized or degraded to modulate
cellular responses according to environmental cues, and the balance among the different sphingolipids is important for directing
immune responses, regardless of whether they originate, as intra- or extracellular immune events. Recent progress in multiomics-
based analyses and methodological approaches has revealed that human health and diseases are closely related to the
homeostasis of sphingolipid metabolism, and disease-specific alterations in sphingolipids and related enzymes can be prognostic
markers of human disease progression. Accumulating human clinical data from genome-wide association studies and preclinical
data from disease models provide support for the notion that sphingolipids are the missing pieces that supplement our
understanding of immune responses and diseases in which the functions of the involved proteins and nucleotides have been
established. In this review, we analyze sphingolipid-related enzymes and reported human diseases to understand the important
roles of sphingolipid metabolism. We discuss the defects and alterations in sphingolipid metabolism in human disease, along with
functional roles in immune cells. We also introduce several methodological approaches and provide summaries of research on
sphingolipid modulators in this review that should be helpful in studying the roles of sphingolipids in preclinical studies for the

investigation of experimental and molecular medicines.

Experimental & Molecular Medicine (2023) 55:1110-1130; https://doi.org/10.1038/s12276-023-01018-9

INTRODUCTION

The immune system is a complex network of white blood cells,
organs, and secreted molecules that recognize allies/intruders,
selectively excluding potential sources of damage and thereby
protecting the host organism from dysfunctions known as
diseases. The radar and tactical teams of the immune system
need to act immediately and swiftly while fulfilling long-term
needs with accurate preparedness against urgent or upcoming
threats'. The innate and adaptive immune systems take part in
these different tasks and provide fast and unspecific or accurate
and tailored immune responses, respectively, gradually comple-
menting mutual inadequacies with characteristics such as trained
immunity and immunological memory'2. During this process,
each cell within inflamed tissues and recruited immune cells mark
their state and communicate with signals for proper immune
responses, expressed as surface checkpoint marker proteins and/
or secreted cytokine profiles, while controlling their own signaling
cascades according to the immune context' ™.

The plasma membrane and organelles (in the case of
membrane-bound organelles in eukaryotic cells) are dense
networks of lipids and proteins encasing a cell or within a cell,
respectively, that insulate the inner spaces from the outer spaces
for proper function. Lipids provide and maintain the lipid bilayer
structure that separates specific areas and provides the appro-
priate circumstances for the cells to function due to their
amphipathic nature stemming from the polarized structure of

lipids with hydrophilic heads and hydrophobic tails and incorpo-
rated proteins*®. There are three major lipids that comprise the
structure of lipid bilayers. The most common lipid is glyceropho-
spholipids (GPLs), although the composition of each lipid bilayer
differs depending on cell type and distribution in tissues. GPLs are
the main structural components of plasma membranes and are
composed of diacylglycerol-linked hydrophobic fatty acid chains,
which are usually unsaturated and centered in the membrane, and
diverse hydrophilic head groups, which constitute the inner and
outer surfaces of the membrane. Not restricted to the structural
frame, GPLs can also act as storage anchors for signaling
molecules and their precursors to modulate the functions of
neighboring proteins such as receptors and transporters®. Sterols,
a subgroup of steroids composed of fused rings with hydrocarbon
tails and hydroxyl groups, which mainly exist as cholesterol in
mammals, are incorporated into stacked lipid bilayers to sustain/
stabilize the chemistry of the lipid bilayer and can be converted
into biological molecules such as hormones>®. Finally, sphingoli-
pids, composed of usually long and saturated N-acyl hydrocarbon
chains, a sphingoid base, and a head group, can recognize
environmental cues and be degraded/synthesized according to
cellular needs, thus playing crucial roles in signal transduction and
modulation of cell metabolism®>. Collectively, the compositional
diversity of membrane lipids can act as complex codes or
conditional cues of the cells, and these different patterns can
decide/modulate biological functions through the interactions of
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Fig. 1

Synthesis and degradation of sphingolipids in cellular regions. Sphingolipids, as components of cellular and subcellular membranes,

can be synthesized by serial enzymes (de novo pathway) and can also be degraded from sphingomyelin and ceramide to smaller
sphingolipids (salvage pathway) as signaling molecules according to the environmental context.

lipids and proteins, such as internal/external signaling molecules
and receptors. In this review, we shed light on recent progress in
understanding the roles of membrane-derived lipids, especially
sphingolipids, in the functions of immune cells and related
diseases with clinically used/tried medicines.

SPHINGOLIPIDS AS “PROTEAN” SIGNALING MODULATORS

Considering the roles of sphingolipids as secondary messengers in
intra- and extracellular spaces, monitoring the synthesis/break-
down of sphingolipids and sphingolipid-related enzyme activities
are important clues for understanding signal transduction and the
states of resting/responding cells*” (Fig. 1 and Table 1).
Sphingomyelin, ceramides, and other lipids agglomerate to form
the asymmetric but balanced lipid rafts across the cellular
membrane®. Ceramides are highly concentrated and major
sphingolipids in the plasma membrane and can be generated
by de novo synthesis from palmitoyl-CoA and L-serine by the
sequential reactions of serine palmitoyltransferase (SPT), ceramide
synthase (CerS), and dihydroceramide desaturases at the cytosolic
leaflet of the endoplasmic reticulum (ER). When transferred to the
trans-Golgi apparatus, lysosome, and plasma membrane from the
ER, ceramides can be converted to sphingomyelins by sphingo-
myelin synthase (encoded by the SGMS gene), and these
sphingomyelins gradually increase in concentration to compose
most of the sphingolipids of the plasma membrane, which
respond to environmental cues as precursors of secondary
signaling messengers®. Conversely, ceramides can be restored
by the hydrolysis of sphingomyelins by different sphingomyeli-
nases (SMases) in different locations*”®, Although ceramides
themselves can act as bioactive signaling cues in a variety of
physiological responses, they can be degraded into sphingosine
and then transformed into sphingosine-1-phosphate (S1P) by the
action of ceramidase and sphingosine kinases (SphK), respectively,
or phosphorylated by ceramide kinase (CERK) to generate
ceramide-1-phosphate (C1P)°'". In a negative feedback loop,
C1P can inhibit the activity of SMase and SPT, blocking the
excessive accumulation of ceramides''™'3. Conversely, ceramides
can be recovered from C1P by C1P phosphatase and S1P and
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sphingosine by S1P phosphatase and CerS, referred to as the
salvage pathway, diminishing the excessive production of their
metabolites*'". In an SMase-independent manner, sphingomyelin
can be degraded into sphingosylphosphorylcholine (SPC) and
then further transformed into S1P by the actions of sphingomyelin
deacylase and autotaxin (ATX), the latter of which is an
ectonucleotide pyrophosphatase (phosphodiesterase with lyso-
phospholipase D activity), originally identified as a tumor-
regulatory factor for survival and proliferation'*'>. One interesting
aspect of these processes is that the modulation of sphingolipid
metabolism is not exclusively performed by the host. Recently,
several studies have revealed and discussed that commensal or
pathogenic microbiomes, especially the commensal Bacteroides,
provide or hijack sphingolipids as building blocks and utilize the
host machinery, thereby affecting the host's sphingolipid content
and immune responses'®'’. Homeostasis among these sphingo-
lipids, regardless of whether they originate from food, the host, or
the microbiome, is important because transformed and selectively
biased compositions of sphingolipids can decide the fate of cells,
such as maintenance (death, survival, and proliferation), renewal,
senescence, differentiation,  migration/retention,  immune
responses, and cell metabolism, and these cells collectively make
up tissues, organs, and organ systems and ultimately determine
the life of the organism'®7',

Reciprocal interference and modulation among sphingolipids
are crucial for the immune context because the misguided
“appearance” (migration, activation, and clonal expansion) or
“exit” (ignorance, senescence, anergy, exhaustion, apoptosis, or
transmigration) of immune players in the inflamed tissue stage is
closely related to excessive immune responses or immune
paralysis®'®'92°, Likewise, numerous research studies that inves-
tigated human disease with genome-wide association studies and
multiomics analyses of disease tissue compared to healthy control
tissue (from the PubMed Gene database®') revealed that
disrupted sphingolipids and their related enzymes are closely
related to hereditary neuronal diseases and life-threatening
diseases such as tumors and autoimmune disorders (Table 1
and Fig. 2). These results imply the importance of sphingolipid
homeostasis in human health. Investigation of sphingolipids has
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Idiopathic pulmonary fibrosis.

Blister. Mild cognitive impairment.

Crohn’s disease. Ulcerative colitis.
Posner-Schlossman syndrome.

Acute myocardial infarction.

Nonalcoholic fatty liver disease.

Hepatitis B. Cholestasis. Cholestatic

pruritus. Primary biliary cholangitis.
Type 1 autoimmune pancreatitis.

Sphingolipid-modulating enzymes and their NCBI gene ID number with their function, modulators, and reported human diseases (Analysis of disease: ~2022. Dec). Related human diseases are referenced from

the NCBI GENE database (Bibliography-all citations in PubMed)?" with statistically significantly different data from GWAS, multiomics, Western blot, and PCR analysis (bold, reported articles (cases) 23). See also

Fig. 2.

focused on the fate of cells, namely, survival, proliferation,
maintenance, or death, with altered balances among sphingoli-
pids, and these metabolic reactions of sphingolipids are inter-
convertible and reciprocally communicated® . Ceramides and
S1P are the most studied sphingolipids with respect to the
functions of immune cells. Extrinsic signaling cues such as tumor
necrosis factor-a (TNF-a) and lipopolysaccharide (LPS) and/or
intrinsic modulators such as cytosolic kinases and transcriptional
modulators (e.g., Foxp3, a master transcription factor of regulatory
T (Treg) cells, can transcriptionally inhibit the expression of Sgms1,
which converts ceramides to sphingomyelins) can cause ceramide
accumulation, and the increased ceramide levels can selectively
turn on/off intracellular machinery such as protein phosphatase 2
(PP2A), nuclear factor-kB (NF-kB), and mitogen-activated protein
kinases (MAPKs)*?2-2% Moreover, enrichment of the intracellular
content of ceramides can control the trafficking rate of proteins to
the Golgi complex and membrane, which may cause cellular
senescence®>?®, Calcium-dependent activation of CERK can
convert ceramide to C1P, and CI1P can be secreted into
extracellular regions as an auto/paracrine signaling cue or can
directly act as an intracellular signaling messenger. While
ceramide blocks the PI3K-Akt-mTOR pathway with PP2A activation
to modulate cellular functions such as proliferation and survival,
C1P enhances PI3K-mediated signaling, cell proliferation, and
survival. Moreover, C1P can bind and activate cytosolic phospho-
lipase A,, which in turn stimulates the production of arachidonic
acid-derived prostaglandins (PGs), and these PGs modulate pro-/
anti-inflammatory immune responses in a context-dependent
manner*?>?”, The opposite roles of ceramide and S1P are also well
characterized in cell death/survival and immune responses by
modulation of bcl-2 and bcl-2-like protein (Bax) and the
subsequent intracellular machinery for programmed cell death?®,
and these sphingolipid-related enzymes are closely related to the
pathogenesis and development of tumors (Table 1 and Fig. 2).
One significant and interesting factor in the treatment of cancer is
that tumor cells can also modulate sphingolipid metabolism with
ceramidase, SphK and ATX to favor their survival and maintenance
while blocking the patient's immune system?*3°, The functional
roles of S1P and its receptor (S1PR) in extracellular and
intracellular responses have been extensively investigated, and
S1PRs are closely related to human diseases such as cancer**°
(Table 1). Understanding the kinetics of sphingolipids and related
enzymes may provide insight into the current state of immune
cells, and by selectively modulating these molecules (Figs. 1 and 2
and Table 1), we can develop patient-specific medicine suitable
for the specific disease status. Fingolimod (FTY720, Gilenya) and its
phosphorylated form (phosphorylated by SphK, p-FTY720) are
clinically used as treatments to target S1PR; 3.5, but not STPR,, for
the treatment of autoimmune diseases such as multiple sclerosis
(MS) by sequestering lymphocytes in lymph nodes and therefore
attenuating the migration of inflammatory lymphocytes into
inflamed sites®’. Likewise, the modulation of sphingolipids and
their related enzymes has been studied in the clinic***3, which will
be discussed in more detail in the following sections.

SPHINGOLIPIDS AS PROGNOSTIC AND DIAGNOSTIC
INDICATORS OF DISEASE

Several human cohort studies of diabetes, tumors, autoimmune,
neuroinflammatory, and degenerative diseases, among other
diseases, have revealed that alterations in sphingolipid metabo-
lites in the blood can be detected several years before/during
disease development, and these abnormalities of sphingolipid
metabolism and sphingolipid-related enzymes in tissue may be
closely related to the progression and pathogenesis of disease®
(Table 1 and Fig. 2). Glucosylceramidase beta 1 (GBAT) is a
representative example that has been reported to be the
etiological factor for Parkinson’s disease (PD), which results from

Experimental & Molecular Medicine (2023) 55:1110-1130
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Fig. 2 Sphingolipid-related enzymes and reported human disease. Alteration of sphingolipids is closely related to human disease. The
numbers of reported human studies that analyzed genome-wide association studies, multiomics-based data, Western blot, and PCR
comparison of disease tissue to control tissue were counted as visualized (PubMed Gene). The counted numbers are subdivided by color to
facilitate understanding of the roles of sphingolipid-related enzymes in human disease.

heterozygous mutation of this gene, now categorized as GBA-
PD*®. Enhanced S1P and C1P-producing enzymes (CERK, SphK,
and ATX) and activation of S1PRs in tumor tissues are closely
related to poor prognostic factors that result in tumor metastasis
and recurrence while attenuating chemo- and antitumor thera-
pies, deteriorating the survival of tumor patients**° (Fig. 2 and
Table 1). Analyses of open databases collected from a patient-
derived genome atlas can also facilitate the prediction of a
relationship between alterations in sphingolipid metabolism and
disease progression as a prognostic approach for diseases such as
tumorigenesis®>*°, Alzheimer's disease®', systemic lupus erythe-
matosus (SLE)*?, and metabolic diseases*’. Prediction of disease
progression in the clinic with a few drops of blood and/or
minimalized biopsy followed by pretreatment with prospective
patient-specific medicines may be goals for unmet medical needs
to improve our medical welfare (Fig. 3). To understand the
alterations in sphingolipid metabolism and related enzymes in
immune responses and disease, several methodological
approaches are now available for the detection/digitization and
visualization of sphingolipid contents, as well as during the
progression of de novo synthesis/degradation**™*¢. Classically,
after extraction of lipids from cells and tissues with high-
performance liquid chromatography (or thin-layer chromatogra-
phy), electron ionization of molecules followed by tandem mass
spectrometry-based sphingolipidomic analysis can provide struc-
tural and quantitative measurement of sphingolipids regarding
molecular weight (mass-to-charge ratio, m/z), specific information
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on the structure (length of N-acyl chains, bases, and composition
of head groups), and retention times. Although these techniques
cannot distinguish molecules that have geometrical and optical
isomers or produce similar ion products and require appropriate
stable-isotype controls, the approaches present very sensitive and
precise information on the molecules, including quality/purity and
quantity. Therefore, researchers can determine the current
composition of tissue, which has now been adapted for imaging
(mass spectrometry imaging)*®*’. Analysis of brain tissue from MS
patients with phospho-proteomics has revealed distinct phos-
phorylated protein patterns and has uncovered the uncontrolled
S1P-S1PR;-mediated Ty17-triggered immune response that causes
enhanced neuroinflammation®®. Likewise, analysis of mass
spectrometry-based techniques has provided links between
dysregulated sphingolipid contents and defects in sphingolipid-
related enzymes in the pathogeneses of pulmonary disease,
inflammatory bowel disease'’, cancer’®*°, and other diseases
(Table 1), proving the important roles of sphingolipids in human
health and disease. Analysis of the in silico retention time by a
quantitative structure retention-relationship approach, compar-
ison with a database from a mass spectral library, and/or analytic
programs can facilitate the identification of sphingolipids and the
interpretation of data from a target sample®'. Recently, Muralid-
haran et al. isolated and investigated the composition of 114
different sphingolipids from 21 different murine tissues and
plasma using targeted lipidomics®2. According to the results, only
11 sphingolipid species are common to all tissues, which may
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Fig. 3 Strategy for diagnosis/prognosis of diseases with sphingolipids. Recent progress in metabolomics and multiomics analysis has
enabled the investigation of sphingolipids as a marker of disease. After collection of human blood and disease tissue by biopsy, a series of
procedures with mass spectrometry enable the detection of changes in sphingolipids and related molecules compared to levels in healthy
volunteers. By analysis of a multiomics database, specific sphingolipids and related enzymes can be detected for human disease. Inhibition of
sphingolipid enzymes in a preclinical disease model should enable investigation of the roles of sphingolipids and related enzymes.

contribute to the fundamental and essential functions of tissues,
such as cell cycle regulation, while each tissue shows its own
distinct distribution of sphingolipids and shows similar patterns
among functionally close tissues. Since each tissue has its own
specific pattern/composition of hydrocarbons in sphingolipids,
analysis of blood can reveal the status of an organ that is expected
to be injured or inflamed. Skin, stomach, and intestines have a
tendency to have very long-chain fatty acids (C26:0, saturated 26
hydrocarbons), which may relate to barrier function with thicker
membranes. Principal component analysis of tissue sphingolipids
revealed that immune-related organs such as the spleen, thymus,
and lymph nodes are more closely clustered, with a closer cluster
between the spleen and thymus, followed by the lymph nodes,
compared to the intestine, stomach, lung, brain, and adipose
tissue>2. However, brown adipose tissue is more similar to the
lymph node, thymus, and spleen.

Phylogenetically, the majority of bacterial species cannot
produce sphingolipids, but Bacteroides, one of the most pre-
dominant commensal microbiomes in the intestine, can produce
and provide a source of ceramides with both odd (C17:0) and even
(C18:0) numbers of hydrocarbons, identical to mammalian
ceramides, attenuating inflammatory responses and contributing
to homeostasis of the intestinal immune system, while host-
derived sphingolipids from the intestine aid the maintenance of
Bacteroides species or function to control their abundance with
bactericidal sphingosine'”'®>3, In contrast, uncontrolled growth of
pathogenic bacteria such as Pseudomonas, Staphylococcus, or
Mycobacterium can disrupt the balance of the bacterial flora, and
these pathogens hijack and impair host sphingolipid metabo-
lism>3. Interestingly, the spleen contains S1P with an odd number
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of sphingoid bases C17:1 (17-carbon with 1-unsaturated hydro-
carbon chain), which usually cannot originate from mammals but
can be produced by the microbiome, along with the plasma, skin,
small intestine (but not the large intestine), and lungs of normal
C57BL/6 mice, implying that the microbiome can affect and shape
the systemic immune response®>>3, Likewise, uptake of Bacter-
oides-derived sphingolipids (C17:0) can affect the host cell's de
novo synthesis of sphingolipids (C18:0), showing an increased
frequency of odd-numbered S1P and ceramide production
compared to even-numbered S1P and ceramide'®. Similarly, in
humans, the majority of fatty acid hydrocarbons are even-
numbered, and less than 1% of fatty acids are odd-numbered in
plasma. It has been reported that increased C15 and C17 are
closely related to insulin resistance, and these are now accepted
as biomarkers for type 2 diabetes®®. The results obtained from
studies that map the lipid distribution of tissues complement the
tissue-specific sphingolipid atlas. Analysis of genomic approaches
such as bulk mRNA and single-cell RNA sequencing analyzing
lipid-related enzymes and previous reports and databases has
suggested another approach for understanding tissue-specific
immune (and/or nonimmune) responses in diseases. For example,
mass spectrometry followed by network analysis of tumor cells
after chemotherapy treatment revealed that chemotherapy of
tumor cells or administration of medicine can alter sphingolipid-
related enzymes such as SMase, CERK, and SphK and subsequently
alter cellular sphingolipids, which may help decipher the
malignancy of tumors and drug resistance®®>>’_ Although these
results from inflamed whole tissues may explain the unresolved
aspects of the conventional immune response, information on
sphingolipids from specific immune cells in normal and disease
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conditions, classified by the involvement of immune organs such
as the spleen, thymus, lymph nodes, and bone marrow, should be
investigated and discussed in more detail.

The development of traceable fluorescent molecules enables us
to chase and investigate the de novo synthesis, hydrolysis, and
transfer of sphingolipids with equipment for fluorescence micro-
scopy, flow cytometry, and mass spectrometry. Incorporation of
azide-functionalized, or other photoswitchable, sphingolipids
followed by application of biorthogonal click chemistry, which is
selective for the azide-/alkyne-modified region, with BODIPY
usually conjugated as fluorescence, can reveal the alterations in
the sphingolipid content and visualize the location of tagged
sphingolipids®®~°. Super-resolution microscopes such as expan-
sion microscopes or atomic force microscopes can provide an
alternative approach for sphingolipid imaging®®®'. Quantification
of sphingolipid-related mRNA and protein expression under
certain conditions and subsequent gain-/loss-of-function study
of a specific gene after biopsy can further strengthen the
understanding of the roles of sphingolipids in normal/disease
states. Techniques developed for analyzing sphingolipid metabo-
lism, antibodies that detect sphingolipid-related enzymes and
receptors, and sphingolipid-related transgenic or knockout (KO)
mice in preclinical studies can be utilized as diagnostics for
disease and may lead to the development of new drugs for clinical
studies. Collectively, investigation of sphingolipid metabolism may
supplement our understanding of the immune system in normal
homeostatic and disease states, which previously could not be
fully explained by nucleotides and proteins alone.

SPHINGOLIPIDS AS WARNING MOLECULES AND
MODULATORS OF THE INNATE IMMUNE RESPONSE

Deviation from mutual competition or alliance of the microbiome
with the host defense system leads to the direction/flow of
ceramide metabolism, and the leading entity that possesses
control of the host machinery determines the context of the
immune response'’>>. The phylum Bacteroides, containing mem-
bers such as Bacteroides, Parabacteroides, Prevotella, and Porphyr-
omonas, which compose the majority of the human gut
microbiome, can process food-derived metabolites and supply a
source of sphingolipids to epithelial cells, which can eventually be
absorbed by the hepatic portal vein and the circulatory
system'®2, With these absorbed sphingolipids, commensal
bacteria can affect and govern the host metabolic system and
immune response. The most differentially abundant metabolites
in the stool of patients who suffer from inflammatory bowel
disease, such as ulcerative colitis and Crohn’s disease, are host-
produced ceramides, sphingomyelins, and sphingosines (C18:1),
while sphingolipid-producing bacteria and Bacteroides-derived
sphingolipids are significantly decreased. The study of SPT-
sufficient or SPT-deficient Bacteroides thetaiotaomicron-adopted
mice revealed the crucial role of commensal-derived sphingolipids
in intestinal immune homeostasis'’. Although commensal bac-
teria provide a source of ceramides and attenuate excessive
intestinal inflammation, by crossing the barrier and subsequently
activating the innate/adaptive immune system, the excessive
“Renaissance” of commensal bacteria can also trigger activation of
the host immune system, especially humoral immunity, with the
production of antibodies and sphingosines that counteract
potential sources of danger, ultimately preventing the disruption
of the microflora and preparing a healthy host defense
system'”%3%% In contrast, bacterial pathogens try to neutralize
the host defense system and then bind to host epithelial cells and/
or secrete bacterial molecules (e.g., toxins) that stimulate the
accumulation of ceramides and block the production of sphingo-
sines, facilitating and promoting bacterial colonization®*6%5°,
Although epithelial cells of the mucosal barrier constitute the
front line of physical defense and are coated with mucins,
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defensins, IFN-A, and antibodies IgA and IgM®%8 when the
defense wall is damaged, epithelial cells request the reinforce-
ment from innate/adaptive immune cells with chemokines and
sphingolipid S1P%°. The functional roles of S1PRs have been
investigated by analyzing the spatiotemporal distribution and
internalization of receptors in response to sphingolipids®®’°. Here,
we briefly review the recent understanding of immune cells from
the aspect of sphingolipid metabolism (Fig. 4).

Neutrophils, the most abundant and crucial defenders of the
innate immune system, patrol the bloodstream, and when they
detect danger signals with pattern recognition receptors, they
migrate into inflamed sites and do their jobs in a context-
dependent manner'®. The decision for eternal sleep (apoptosis) or
not (NETosis, necrosis, and ferroptosis) after their role is complete
is crucial because a neutrophil corpse that is left behind can act as
a “dying message” to other immune cells that can follow the
intention of the deceased cell. Not surprisingly, from the cradle
(granulopoiesis) to the grave, sphingolipids can tremendously
affect a neutrophil’s short life'>. When human CD34" hemato-
poietic stem/progenitor cells are activated in vitro, the TNF-a-
triggered neutral SMase (nSMase)-ceramide axis can shape the
hematopoietic system to favor myelopoiesis but not erythropoi-
esis, while S1P can restore erythroid differentiation, switching the
direction of GATA, PU.1, and the autophagy-related machinery”".
S1P and fMLP secreted from inflamed epithelial cells and tissues
can attract the migration of neutrophils, and the intracellular
ceramide content of neutrophils can be increased when TNF-a
and fMLP are encountered’?”3, Increased ceramide can modulate
the function of neutrophils in terms of cell migration, the
generation of reactive oxygen species, neutrophil extracellular
trap formation, and bactericidal activities’*”’, and increased
sphingomyelin in neutrophils may be related to neutrophil
infiltration and phagocytic activity’®. Likewise, Cer52,6 modulates
the migration of neutrophils, and CerS6 KO exacerbates the
development of experimental autoimmune encephalomyelitis
(EAE) with enhanced infiltration of neutrophils, while CERS2-
deficient mice showed delayed development of EAE with
decreased chemokine receptors (CCR1, CXCR1, and CXCR2)”?%°,
implying that the length of the carbon chain attached to the
sphingoid base may differentially affect neutrophil function. One
of the most interesting aspects of neutrophil-mediated phagocy-
tosis is that this engulfment can increase the expression of SMase
and subsequent ceramide production, and administration of
exogenous ceramide can inhibit neutrophil functions such as
phagocytosis and degranulation, while C1P can enhance phago-
cytosis’’#'82 Upon exposure to immune contexts such as fMLP,
SphK activity can be increased in neutrophils, and the S1P that is
subsequently produced can enhance/sustain neutrophil function
in an autocrine or paracrine manner. Likewise, SphK1 deficiency in
neutrophils results in diminished pathogen-killing activity, and
administration of exogenous S1P rescues the function of SphK KO
neutrophils. The accumulation of ceramide (de novo, C16- and
C24-ceramide) can turn on programmed cell death in neutro-
phils®, and the apoptotic body can initiate resolution with the
efferocytosis process, educating immune-suppressive innate/
adaptive cells'. However, exposure to S1P, as well as IL-8 and
HMGB1, can induce the expression of anti-apoptotic Bcl-x in
neutrophils, and prolonged exposure to these inflammatory cues
can induce other forms of neutrophil death, such as necrosis or
ferroptosis, followed by “frustrated” efferocytosis, which are
closely related to chronic inflammatory diseases'®.

During/after immune responses, neutrophils can request
reinforcement from other immune cells, such as monocytes,
macrophages, and dendritic cells (DCs), to inflamed tissues'®. The
spatiotemporal action/activation of ceramide, C1P, STP-S1PR, and
related surface receptors such as CD69 can guide the distribution
of these innate immune cells and orchestrate the overall immune
response, while these cells can be a source of sphingolipids such
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as S1P*'®7384 During immune responses, exposure to TNF-a
activates CERK/SphK and stimulates the phosphorylation of
ceramide/sphingosine, resulting in the production of the proin-
flammatory cytokines IL-18 and CCL2%°#°, During the progression
of murine MS, activated mﬂammatory monocytes
(CD11b+CCR2+Ly6Ch'9hLy6G'°"") can migrate to and temporally
reside in lymph nodes with expression of CD69, which retains
inflammatory monocytes in the lymph node by internalization of
S1PR; 5, and these monocytes prime and educate lymphocytes by
supplying S1P and inflammatory cytokines for the development of
Tw17 and follicular helper T cells®:. The function and phenotype of
monocytes are heterogeneous and plastic in immune responses,
and monocytes can differentiate into proinflammatory (M1) or
immune-regulatory (M2) phenotype macrophages or DCs, which
have distinct roles®”. S1P-S1PR; mediates the trafficking and
migration of monocytes and macrophages®®, and S1P can block
the apoptosis of macrophages via PI3K-Akt signaling while
skewing phenotype switching toward M2%. S1PR, can oppose
S1PR;-mediated migration and differentiation of macrophages,
with STP-S1PR, altering macrophage phenotypes to M1 and
suppressing phagocytosis but not bactericidal capacity®¥°2 TNF-a
activates CERK and stimulates C1P production, which can
modulate the induction of a proinflammatory phenotype in
macrophages, and secreted C1P directly inhibits TNF-a converting
enzyme (TACE/ADAM17, the active form of which resides within
the cholesterol-rich membrane region) and therefore calms down
the LPS-induced production of mature TNF-q, cutting off the
excessive cycle of inflammation®3. One of the main immunolo-
gical roles of monocytes and macrophages is “to eat”, ie,
phagocytosis, which is the clearance of pathogens, foreign
molecules, cellular debris, and apoptotic bodies®*. The synthesis
of sphingolipids, but not glycosphingolipids, is required for the
phagocytosis of specific pathogens such as Mycobacterium
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tuberculosis, thereby modulating actin dynamics and the forma-
tion of the phagocytic cup during engulfment and internaliza-
tion®. Analysis of phagocytosis with quantitative lipidomics
during the process of phagosomal maturation revealed that early
phagosomes have enhanced activity of neutral ceramidase
compared to CerS under neutral (pH 7.0) conditions, resulting in
decreased ceramide levels. However, ceramides and glucosylcer-
amides with long hydrocarbon chains (16:0, 18:0, 20:0, 22:0, and
24:0 but not 12:0 and 14:0) are gradually enriched on mature
phagosomes of Raw264.7 cells, a murine macrophage cell line,
with enhanced glucosylceramide synthase (GCS) activity, while
sphingosines and the expression/activity of CerS2 are decreased”®.
During phagosomal maturation, the levels of sphingomyelin and
C1P are comparable in early and late phagosomes, but activation
of CERK and C1P can facilitate Fc receptor-mediated phagocytosis,
collectively implying the delicate roles of sphingolipids in
macrophage function®?%%, Although some bacteria and hosts
have evolved to live together by symbiosis, other bacteria called
pathogens have evolved to exploit and hijack host metabolites for
their own purposes>>®2. The sphingolipid metabolism pathway is
not exempt from being hijacked, and some pathogens cause the
disruption of host sphingolipid metabolism to neutralize and
counteract the host defense system®>%2 Different pathogens
utilize different strategies; fungi synthesize their own sphingoli-
pids and specific enzymes for synthesis and can use their own and
host sphingolipids. Most pathogenic bacteria and viruses act as
“parasites” of host sphingolipid metabolism, thereby disturbing
the host defense system'®>3%5, Neisseria gonorrhoeae, the major
cause of meningitis and septicemia, Pseudomonas aeruginosa,
which is an opportunistic pathogen and the cause of cystic
fibrosis and sepsis, and Staphylococcus aureus can stimulate
the acid SMase (aSMase) of epithelial cells and fibroblasts,
facilitating invasion through a sphingomyelin-decreased and

Experimental & Molecular Medicine (2023) 55:1110-1130



ceramide-enriched platform?’~%° and evading the innate immune

defense system'%°'°2, The enrichment of ceramides in host cells
can induce cell death and thereby destroy the barriers formed by
cells. Even worse, several kinds of toxins produced by pathogens
(e.g., the a-toxin produced by S. aureus) can bind to surface
metalloproteinases (e.g., ADAM10) of the host and induce the
release of acid ceramidase-mediated ceramide outside of the
inflamed walls, which eventually leads to degradation of tight
junctions®®. Moreover, the produced chemokines and S1P recruit
innate/adaptive immune cells, and recruited macrophages can
wisely utilize the SMase/ceramidase strategy of the pathogen to
rearrange its cytoskeleton, facilitating the process of
phagocytosis®®'%,

A series of fierce battles end with dead immune and tissue cells,
and upon completing their duties, some immune cells, such as
neutrophils, accept their programmed death, apoptosis, in the
immune context to herald the end of the war and a new era of
regeneration'®'%*, Phagocytes can trace CX3CL1, ATP, LPC, and
S1P as “find me” signals from apoptotic bodies, and apoptotic
body-derived S1P can turn on the anti-apoptotic system of
macrophages and stimulate the production of anti-inflammatory
IL-10 to decrease inflammatory responses'®. Macrophages check
the state of the target to determine whether it has exposed
phosphatidylserine on the cell surface to distinguish dead targets
from live targets, which express CD47, CD31, and CD24 as “don't
eat-me” signals on the outer membrane. During the process of
efferocytosis, phagocytes recognize phosphatidylserine with sur-
face receptors such as TIM1, 4 and LDL-receptor-related protein 1,
and other receptors such as MERTK and scavenger receptor
(CD36) can facilitate the uptake of dead cells and debris'®*. CD36
is a major scavenger receptor for oxidized LDL (oxLDL), and in
turn, oxLDL enhances CD36 expression by lipid peroxidation with
peroxisome proliferator-activated receptor (PPAR)-y, and oxLDL
can also maintain macrophage survival and enhance prolifera-
tion'%>'%_ The PPARy agonists thiazolidinediones can upregulate
S1PR;'%”, and silencing of aSMase can enhance the transcription
of PPARy-coactivator-1 a (PGC1-a)'%, which can repress foam cell
formation and atherosclerosis'®. On the other hand, soluble
SMase secreted by macrophages and endothelial cells and the
subsequently increased ceramide levels are closely related to
aggregated atherosclerotic lesions, and ceramides can reduce
CD36 expression and thereby decrease oxLDL uptake by
monocytes and macrophages''®'"". The administration of bacter-
ial SMase to macrophages can cause intracellular trapping of
CD36, resulting in a significant reduction in CD36 on monocytes
and macrophages''°. Increased ceramide levels via de novo
ceramide synthesis can inhibit the efferocytic function of resident
alveolar macrophages''?, while de novo synthesis of ceramides for
inflammasome-mediated inflammation is dispensable’"?,

During phagocytosis, macrophages can load some lysosomal
particles to the major histocompatibility complex (MHC) and
present it as a molecular pattern to lymphocytes, which recognize
and initiate the adaptive immune response. Furthermore, macro-
phages do not present efferocytic particles, if not infected, on the
MHC and thereby context-dependently turn on/off the link to the
adaptive immune response'®. DC is another type of potent and
professional antigen-presenting cell that directs/maintains the
immune context-dependent activation and differentiation of
lymphocytes''®. Before exposure to pathogens, DCs reside in
peripheral tissue in the immature state, waiting for their
designation. S1P can promote the migration of human immature
DCs but not LPS-stimulated mature DCs''®, and selective
recruitment of immature DCs to inflamed peripheral tissues by
S1P implies that S1P favors the role of immature DCs in peripheral
tissues in certain immune contexts''®. Immature DCs can migrate
into inflamed sites and then capture and process antigens, thus
proceeding to their irreversible maturation process®*''*, Inflam-
matory cues such as TNF-q, IL-1$3, and LPS and ligation of DC-SIGN
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and CD40 can stimulate SMase, subsequently leading to the
accumulation of intracellular ceramides during DC differentiation,
and ceramides are required for pathogen uptake and phagosome
formation®®''®, Moreover, increased intracellular ceramide inter-
feres with vesicle trafficking of newly synthesized or phagocy-
tosed MHC epitopes to be loaded on the MHC, therefore limiting
the variation and loading of presented epitopes?®''”. During
maturation, DCs reduce their capacity for antigen uptake and
processing while fully optimizing their antigen presentation ability
with enhanced expression of MHC and costimulatory surface
molecules such as CD80/86, CD83, CD40, and chemokine receptor
CCR7 (which leads cells to T-cell zones of secondary lymphoid
organs according to gradients of CCL19/21 through lymphatic
vessels), and once migrated to the T-cell zones of secondary
lymphoid organs, mature DCs efficiently transmit the processed
molecules on MHC for epitope-specific lymphocytes to prime/
initiate the adaptive immune response''*'"®. Programmed cell
death, or apoptosis, of DCs is a physiologically required
phenomenon for the elimination of end-stage matured cells.
Endogenous ceramides can suppress Akt- and NF-kB-mediated
signaling as well as Bcl-x when limited by extracellular cues such
as an absence of serum and endogenous and exogenous
S1P"97121 Inhibition or deficiency of ceramidase or SphK can
sensitize DCs to ceramide-induced cell death, and tumor cells such
as B16 melanoma release C16/24 ceramides and stimulate
ceramide-induced apoptosis of DCs, attenuating DC-mediated
lymphocyte activation'?*"'?2, Collectively, the results imply that
the extracellular and/or intracellular contents of sphingolipids and
their plasticity in innate immune cells are closely related to the
direction of current and subsequent immune responses. Recently,
analysis of plasma metabolomics has shown that after anti-
tuberculosis BCG vaccination, the levels of sphingolipids such as
S1P, sphingomyelin, N-acylsphingosine, and glucosylceramide are
significantly changed, and the trained immunity response may be
closely associated with these altered sphingolipid metabolites'?3,
implicating the involvement of sphingolipids in trained immunity.

FUNCTIONAL ROLES OF SPHINGOLIPIDS IN LYMPHOCYTES

The functional roles of sphingolipids, especially ceramides and
S1P, have been well investigated in terms of T-lymphocyte
distribution and activation®®''®, The differentiation of each
lymphocyte in inflammatory circumstances and in homeostasis
are also well characterized with regard to the understanding of
immune disease pathogenesis’''®. The functional roles of S1P
have been characterized with its receptors S1PR;_5, and S1P-S1PR
regulate many aspects of immune cell function, such as the
migration and maintenance of lymphocytes. S1PRs are differen-
tially expressed in lymphocytes; S1PR; and S1PR; are mainly
expressed by T cells, while B cells express S1PR; 4, but S1PR;3 is not
expressed in human B cells. STPRs are not necessarily expressed
simultaneously and are differentially expressed during diverse
stages of cell activation and maturation”®®''®, The best studied
S1PRis STPR;, with a special focus on lymphocyte migration out of
the thymus and secondary lymphoid organs into the blood and
inflamed sites, with counteraction of the chemokine receptor
CCRY7. Spontaneous activation of S1PR; in the lymph node and
spleen is required to sustain and maintain naive lymphocytes in
normal homeostasis, supplying necessary substances for lympho-
cytes such as IL-2'%%, S1PR, is the representative receptor that
modulates immune cell trafficking and development, stimulating
the PI3K-Akt-mTOR and Stat3 pathways, while STPR; can counter-
act S1PR;-mediated activities''®'?>.  Sphingolipid-mediated
responses are not stereotypically fixed in one direction of cellular
function. For example, by signaling through the differentially
expressed S1PRs that can be internalized and/or altered by
extracellular and intracellular signaling, on immune cells such as
immune-activator conventional T (Tcon,) and T4 cells, STP can
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selectively and properly modulate the migration, proliferation,
differentiation, and pro-/anti-inflammatory function of immune
cells via different S1PRs according to environmental cues. Notably,
excessive S1PR; blocks T, development and function via the Akt/
mTOR-mediated pathway and modulates T4 distribution in the
body by selective activation with CCR7, directing time-dependent
modulation of early-time immune activation of T, cells followed
by the immune-regulatory response of T4 and affecting
development of resident memory T cells that migrate to the
lymph nodes'?®"'%”. Likewise, excessive S1PR; activation, which
activates the PI3K-Akt- and p-Stat3-mediated Tyl and Tyl17
responses, and enhanced expression of STPR; have been reported
in autoimmune patients with MS**'2%, S1P can enhance TNF-
induced expression of the receptor activator of nuclear factor kB
ligand and in turn aggravate the pathogenesis of inflammatory
bone disease'*®'*°, Due to its similar structure to other
sphingolipids, especially S1P, the signaling pathways of SPC have
been investigated with regard to S1PRs, and the study of the roles
of SPC has focused on vascular/cardiovascular disease and
tumors'3". Studies of fingolimod, a novel functional antagonist
for STPR; 3.5, have revealed and supported important roles of S1P-
mediated signaling in the modulation of immune disease. In an
unphosphorylated or phosphorylated form mediated by Sphk,
fingolimod can impair the ability of lymphocytes and induce the
internalization and terminal degradation of S1PR;, a crucial
receptor for lymphocyte maintenance, proliferation, and function
as well as distribution in the host body'*%. Ozanimod is a newly
FDA-approved medicine for MS that selectively antagonizes
S1PR; 5, and several STPR modulators have been developed for
the selective inhibition of S1PR'3. Likewise, modulation of
sphingolipids and their related enzymes has been studied in the
clinic. Inhibition of tumor sphingolipid metabolism with fingoli-
mod or fenretinide facilitates the apoptosis of tumors while
blocking the cell cycle and survival of cancer cells'**. Although
SPC and S1P can share the same S1PRs, SPC and S1P oppositely
regulate the activity and expression of ATX (Enpp2), which is
positioned between SPC and S1P in the SPC-ATX-S1P axis, and as
such, the choice of SPC and S1P in STPR signaling may be another
modulator of cellular responses similar to LPC and LPA'*">"37 |n a
normal immune system response, S1PRs are differentially inter-
nalized or enhanced with context-dependent activation of
lymphocytes, according to environmental cues. Ceramide is
another important player in lymphocyte activation. Of note,
T-cell receptor (TCR)-induced ceramides can serve as a negative
regulator of TCR signaling and can modulate the activation,
survival, and proliferation of lymphocytes with IL-2 secretion and
the distribution and signaling of TCR as nanoclusters'>"37,
Likewise, coreceptor CD28 engagement can enhance SMase-
mediated ceramide generation with PI3K-Akt-mTOR signaling that
promotes lymphocyte activation and proliferation'*® and mod-
ulates the transport of IL-2"*°, collectively implying the crucial
roles of sphingolipids in mediating TCR signaling. Likewise,
functional roles of SMase in Tyl, Ty17, and T4 cells were
reported'*®. With an increase in SMase activity and increased
ceramide production, ceramides enhance T1/Ty17 differentiation
via phosphorylation of JNK and PI3K-Akt-mTOR'#%'*!, while CD28-
mediated activation of SMase acts as a negative regulator of T,q
function and differentiation, dampening the induction and
stability of the T,eg-specific transcription factor Foxp3'**. However,
intermediate TCR stimulation triggered by an adequate amount of
antigen can induce FOXP3 expression, and T4 contain high
levels of ceramides for PP2A activity that modulate IL-2Rf
signaling pathways and sustain T.q stability by trapping its
modulatory protein SET?*'*?, implying that the proper level of
ceramides and the modulation of related intracellular enzymes
and molecules are important for lymphocyte fate. Differentially
expressed PP2A in T,eg and Tcony cells (with high expression of SET
in the resting state) results in the high sensitivity to IL-2 of Tgs,
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which cannot express IL-2, and therefore facilitates prior activation
of Tregs compared to NKT, CD8, and CD4 Tcony'*.

Sphingolipids in cytotoxic lymphocytes are now being looked at
with interest to understand the modulation of immune responses
against viruses or tumors'*>'*®, Encountering a virus can trigger
activation of SphK1/2, which modulates clonal activation of CD8
T cells to control viral clearance and persistence. Although SphK1
and SphK2 share the same enzymatic function of S1P generation,
SphK1 mainly localizes to the cytosol and plasma membrane,
while SphK2 resides in the nucleus and cytoplasm. In an
interesting viral response, viruses hijack host SphK1/2 to replicate
themselves while suppressing host defense systems'**. Inhibition
of SphK restores and enhances the function of CD8 and CD4
T cells, but SphK deficiency results in excessive lymphocyte
numbers and ultimately host death'®. Likewise, tumor cells
activate SphK and ATX to modulate sphingolipid metabolism,
favoring an immunosuppressive response in the tumor micro-
environment?>'*¢'" Cancer cells utilize the sphingolipid con-
tents to relieve hypoxia- and energy-induced stresses and
enhance their survival, promoting autophagy, proliferation, and
migration and triggering angiogenesis. Likewise, the functions of
ceramide nanoliposomes as antitumor agents are being investi-
gated for the treatment of cancer’>'*®, Collectively, these results
imply that sphingolipids can act as immune context molecules
presented by viruses and tumors to deceive cytotoxic lympho-
cytes, and altered sphingolipid metabolism is required for evasion
of the host immune system, resulting in exhaustion and anergy of
CD8 T cells.

S1PR; and S1PR; regulate B cells in the germinal center reaction
and development of memory B cells and plasma cells'*'>°. Aged
S1pr2-deficient mice develop diffuse large B-cell lymphoma with
increased germinal center B cells and spontaneous germinal
center formation. Under homeostatic conditions, S1PR, antag-
onizes the activation of Akt and prosurvival signals, which can be
activated by other S1PRs, while S1PR; directs the exit of follicular B
cells from the marginal zone to the blood''. Collectively,
competition to control sphingolipid metabolism among the host,
commensal bacteria, and pathogens can decide the direction of
the immune response, and therefore, understanding the altera-
tions in sphingolipid signaling in the host immune system and
subsequent effective treatment of medicine can facilitate the
prevention and treatment of human disease.

DISRUPTED HOMEOSTASIS OF SPHINGOLIPIDS IN DISEASE

As discussed above, abnormalities in sphingolipid metabolism and
sphingolipid-related enzymes are closely related to disease
progression (Fig. 2), and these alterations in sphingolipid-
mediated signaling in immune players can contribute to the
pathogenesis of disease. Considering the crucial roles of
sphingolipids in the fate of immune and nonimmune cells as
well as inflammagen-like pathogens and tumors, understanding
sphingolipid dynamics in the disease-specific immune response
may be helpful for controlling human disease. Here, we briefly
discuss some studies of how altered sphingolipid metabolism
worsens health problems.

Cancer

Sphingolipids and sphingolipid-related enzymes are strongly
related to the development and malignancy of human cancer,
and ceramide and S1P have been implicated in tumor
immunology®*®'**. With enhanced SphK and ATX and down-
regulated S1P lyase in tumors, STP can promote Stat3- and Akt-
mediated tumor cell growth with upregulation of Bcl-2/Bcl-xL
while resisting p53-mediated apoptosis and stimulating a
vicious cycle of tumorigenesis'>?7'°, Likewise, downregulation
of CerS promotes the development of tumors with prolonged
inflammation and dysregulated ER stress'>”'*%, and the acidic
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tumor microenvironment can activate aSMase and induce
metalloproteinase-9, which promotes metastasis and immune
evasion of tumors'>®'%°, Modulation of nSMase2 can enhance
the antitumor response to anti-PD-1 therapy'®’, but tumor-
infiltrating T,egs can reduce the expression of endothelial
nSMase2, preventing lymphocyte migration;'®® moreover,
enriched S1P and LPA in the tumor microenvironment can
reprogram the antitumor activity of infiltrated lymphocytes®®'%3,
The results suggest that targeted sphingolipid modulation in
tumor patients can provide a strategy for cancer therapy and
can promote the survival of tumor patients'".

Inflammatory disease

Alterations in ceramide and C1P levels can tune the direction of the
inflammatory cascade by modulating the TNF-a-mediated
response'®’. Deficiency of CerS2 enhances the activity of TACE,
thereby worsening LPS-mediated septic shock'®, while CERK
modulates the production of TNF-a by inhibiting TACE®>'¢",
Likewise, Cerk-deficient mice showed an impaired immune
response to Streptococcus pneumoniae with neutropenia, and acid
ceramidase loss in myeloid cells attenuated the intestinal recruit-
ment of neutrophils'®'®8, Increased activity of SMase is related to
host cell death and organ failure in severe septic patients'®, and
aSMase can paralyze the immune response against Pseudomonas
aeruginosa, inducing macrophage apoptosis with redox signal-
ing'®. TNF-a can induce aSMase and subsequent Bid-mediated
caspase-3/-9 activation, which can induce cellular apoptosis;'”®
however, aSMase is required for early host defense against Listeria
monocytogenes'”' and modulates LPS-palmitic acid-amplified
inflammatory signaling in macrophages'’2. Inhibition of SphK1
attenuates the symptoms of polymicrobial sepsis'’?, and deficiency
of SGPL1 enhances the proinflammatory response while impairing
neutrophil trafficking'”#, implying the differential roles of sphingo-
lipids in the host defense system. Modulation of sphingolipid-
related enzymes has also been implicated in intestinal immune
homeostasis. Deficiency of CerS6 or CERK aggravates the patho-
genesis of experimental colitis'”>'”%, and deficiency of alkaline
SMase also enhances dextran sulfate sodium-induced colitis in mice
with ATX upregulation, the last of which can enhance the T;17 and
B-cell response in the colon'””~"7%,

Autoimmune disease

FTY720, an FDA-approved S1PR modulator for treating MS,
provides proof that the selective modulation of sphingolipid
metabolism and its signaling pathway can cure patients with
autoimmune disease®'. Although the differences in the carbon
chains in sphingolipids such as CerS2 and CerS6 may affect the
progression of autoimmune disease through neutrophil traffick-
ing”>®, targeting sphingolipid-related enzymes and sphingolipid
receptors is a good strategy for the treatment of autoimmune
disease®. Knockdown of Cerk ameliorates MS-like behavior and
cuprizone-induced demyelination'®’, and genetic deletion of ATX
in CD11b™* myeloid cells and deficiency of aSMase attenuated the
severity of EAE'®"'82 In the progression of SLE, SMPD1 can
enhance BCR signaling in B lymphocytes'®®, and the dysfunction
of SMPD3 can enhance the inflammatory response of macro-
phages and B lymphocytes'®®. Pharmacological inhibition of
aSMase reduces joint swelling and the production of inflammatory
cytokines in antigen-induced arthritis'®>, and increased ATX
expression in synovial fibroblasts mediates the pathogenesis of
autoimmune arthritis'3°. Likewise, CerS and SMase modulate the
lymphocyte allogenic response and impact graft-versus-host
disease'®”"'88 collectively implying that the inhibition of CERK,
SMase, or ATX can be good targets against autoimmune disease.

Neuronal disease

The most extensively investigated sphingolipid in neuronal disease
is Parkinson’s disease- and Goucher disease-associated GBA1°>,
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GBA1 modulates the ratio of a-synuclein tetramer-monomer,
preventing the accumulation of lipid-rich aggregates and preserving
subsequent motor and cognitive function'®, Haplodeficiency or
homozygous deficiency of GBA1 can impair cellular bioenergetics
associated with mitochondrial dysfunction and defects in mito-
phagy'®°. Ty1- and Ty 17-mediated immune responses are increased,
and complement-derived glucosylceramide accumulates in tis-
sue'®'%2 It has been reported that aSMase-deficient mice show a
broad range of abnormalities in the central nervous system'?, and
aSMase can modulate autophagic processes in Alzheimer's disease
by modulating lysosomal biogenesis'®’. Neuronal SphK1 can
acetylate COX2'®®, which can metabolically produce PGs and
mediate the reciprocal activation of amyloidf and IL-1B in
Alzheimer's inflamed sites'®®, and neuronal-specific deficiency of
S1P lyase can aggravate the calcium-dependent hyperphosphoryla-
tion of Tau protein and elevate abnormal histone3/4 acetylation
pathogenesis and abnormal histone acetylation'®”. The S1P
transporter Spns2 is also closel1y related to LPS- and amyloid-
B-induced neuronal inflammation 98 and the inhibition of SMS1 can
be a good approach to controlling Alzheimer’s disease by promoting
lysosomal degradation of BACE1'®°. From the early stage of
Huntington’s disease, biopsies of patients show increased SGPL1
and decreased SphK1 in postmortem brain tissue*®®, and
SphK1 stimulation can exert neuroprotective effects in a mouse
model of Huntington’s disease®".

Respiratory disease

Impaired sphingolipid synthesis and/or increased ceramide can
induce airway hyperreactivity and allergic response®°*?°3, ORMDL3,
as a negative regulator of de novo sphingolipid biosynthesis,
attenuates antigen- and FceRl-stimulated mast cell activation by
modulating autophagy activation?**2%, and CD4-specific CerS2 null
mice are protected from ovalbumin-induced asthma?®. Likewise, an
accumulation of ceramide can cause pulmonary inflammation and
mediate lung fibrosis®”, and deficiency of aSMase and sufficiency of
acid ceramidase can attenuate lung inflammation and fibrosis?°2%°,
suggesting that this may be a therapeutic target against respiratory
diseases such as chronic obstructive pulmonary disease, asthma,
and idiopathic pulmonary fibrosis.

Metabolic disorder
Ceramide and ceramide derivatives are emerging modulators of
metabolic fitness. Hypothalamic neurons of the central nervous
system can regulate body weight and energy homeostasis by
interacting with the leptin receptor by modulating the expression of
GCS?'. Ceramide is reported to induce vascular dysfunction in diet-
induced obesity by dephosphorylation of the eNOS/Akt/
Hsp90 signaling complex with PP2A, and inhibition of ceramide
synthesis can enhance the insulin response®' ', Likewise, inhibi-
tion of ORMDL3 impairs adipocyte thermogenesis and induces
insulin resistance®'®, and CERT is involved in muscle insulin
resistance®™, while knockdown of Cerk can improve glucose
intolerance by attenuating MCP-1/CCR2-mediated inflammation®'>.,
Alterations in sphingolipid metabolism also modulate the fate of
adipocytes and hepatocytes. Defective expression of DEGS1 impairs
adipocyte differentiation, and ATX can suppress brown adipose
differentiation while enhancing the expression of adipose tissue and
impairing the insulin response in diet-induced obesity®'*2'%,
Abnormal accumulation of unfolded protein, which induces ER
stress, can upregulate de novo sphingolipid synthesis, and
ceramide can induce hepatic insulin resistance by suppressing
PPARy22'%?%, Hepatocyte-specific CerS2 deficiency enhances
insulin sensitivity and attenuates diet-induced hepatic steatosis**’,
and overexpression of aSMase in the liver can improve hepatic
glucose and lipid metabolism through activation of Akt, GSK3, and
AMPK???, suggesting the crucial roles of sphingolipids in the
metabolic response. The functional role of sphingolipids is also
implicated in metabolic liver disease. The expression and activity
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of SphK1 are significantly increased in fibrotic livers compared to
normal livers, and SphK1 can promote liver fibrosis by modulating
collagen deposition and a-SMA??%. Notably, hepatocyte-secreted
ATX can aggravate nonalcoholic fatty liver disease by autocrine
inhibition of the PPARa/FGF21 axis?**. On the other hand,
inhibition of aSMase can prevent the progression of the early
stage of nonalcoholic steatohepatitis?®®, collectively suggesting
that sphingolipid-related enzymes can be therapeutic targets
against metabolic disease.

CONCLUDING REMARKS

Studies on the functional roles of sphingolipids and alterations in
sphingolipid contents have been limited due to the limited
techniques for the detection of sphingolipids and methods for
extraction. Recent progress in lipidomics of the plasma and organ
tissue has revealed that changes in sphingolipid metabolites and
related small molecules are closely related to human diseases
(Table 1 and Fig. 2). This finding implies that analysis of sphingolipid
patterns with a few drops of blood and tissue biopsy can be used as
diagnostic and prognostic tools (Fig. 3). Each organ that performs
its normal functions is composed of distinct sphingolipid hydro-
carbons, suggesting that increased peaks of unique sphingolipid
hydrocarbons®® imply a damaged organ or inflamed tissue,
facilitating the diagnosis of human disease. Homeostasis among
subsets of sphingolipids, such as ceramides, sphingosines, S1P, C1P,
and SPC, is important for the maintenance, progression, and
regulation of the immune response”''®. We analyzed reported
sphingolipid-related human diseases from the PubMed Gene
database in Table 1 and visualized the information with Fig. 2 to
facilitate understanding of human diseases from the aspect of
sphingolipid metabolism. The small counts of numbers in Fig. 2
among the diagrams imply that further extensive human research is
required for the diagnosis of human disease. Therefore, we hope
that future extensive studies on sphingolipid-mediated signaling in
the immune system will result in an improvement in human health.
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