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Abstract

Noncovalent adsorption of biopolymers on the surface of gold nanoparticles (AuNPs) forms a 

corona phase that drastically diversify AuNP functions. However, mechanical stabilities of corona 

phase are still obscure, hindering the application of biopolymer-coated AuNPs. Here, using optical 

tweezers we have observed for the first time that DNA corona phase adsorbed on a 5 nm AuNP 

via two (dA)21 strands in proximity can withstand an average desorption force of 40 pN, which 

is higher than the stall force of DNA/RNA polymerases. This suggests a new role for AuNPs to 

modulate replications or transcriptions after binding to prevalent poly(dA) segments in eukaryotic 

genomes. We have also revealed that with increasing AuNP size (1.8 – 10 nm), DNA corona 

becomes harder to remove, likely due to the larger surfaces and flatter facets on bigger AuNPs. 

These findings provide guidance to design AuNP corona that can withstand harsh environment for 

biological and materials applications.
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Introduction

With tuneable physical and chemical properties, gold nanoparticles (AuNPs) have 

demonstrated versatile applications across many fields.1–3 In particular, owing to their 

excellent biocompatibility, versatile bifunctionalities, and easy derivatization with bioactive 

molecules, AuNPs have been widely employed in the biomedical applications.1,4 

Functionalization of AuNPs plays an essential role to modulate activities of AuNPs. 

A diverse set of molecules such as proteins,5,6 nucleic acids (DNA or RNA),7–9 and 

organic molecules10,11 can be conjugated to the AuNP surface, drastically expanding the 

applications of AuNPs.

Among different functionalization strategies, anchoring DNA molecules onto AuNPs 

represents a particularly attractive approach due to the biocompatibility, functional diversity, 

and bottom-up programmability in DNA.7,9,12 However, since both DNA and AuNPs are 

negatively charged, challenge exists to overcome their charge repulsion while maintaining 

the stability of AuNP colloids.7,12 Salt-aging and pH-based DNA loading are among the 

first techniques to functionalize thiolated DNA on gold nanospheres.7,13–15 These processes 

are tedious to perform and require chemical modification of DNA with a sulfhydryl group. 

Recently, it has been found that natural poly-deoxyadenosine (poly(dA)) can adsorb to 

AuNP surfaces to form a DNA corona phase via noncovalent Au-N interactions16–20 

using either salt-aging17 or low-pH assisted21 procedures. This strategy has been further 

streamlined using a simple freeze and thaw procedure to displace original AuNP coating 

ligands with poly(dA) within 15 mins.22

When AuNPs are used in biological environment, it becomes important to maintain a stable 

corona surface for bioavailability while preserving desired activities of AuNPs. Research has 

found that thermodynamic stability of coated ligands on AuNPs depends on the nanoparticle 

size, salt concentration, and buffer pH.23–27 Several studies in the past have revealed 

mechanical stabilities of covalent Au-S interactions.28,29 Dependent on the sulfhydryl group 

in various molecules,30,31 rupture forces up to 1.5 nN have been detected, which may come 

from the rupture events of Au-Au atoms, instead of Au-S bonds30.

However, the mechanical stability of noncovalently adsorbed corona phase, such as the 

poly(dA) coating on AuNPs, is yet to be revealed. Due to rather convenient procedures, 

these noncovalent adsorptions have been recently exploited to prepare multi-domain AuNP 
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containing nanodevices with hierarchical structures and functionalities.32,33 Given that 

many applications of AuNPs occur in hydrogels and polymers which may experience 

high mechanical stresses such as swelling and shrinking, as well as centrifugation and 

shear flows, it becomes urgent to reveal mechanical properties of the corona phase on 

the AuNPs. In this work, we have studied the mechanical stability of noncovalent Au-N 

based corona adsorption for the first time using optical tweezers. Given the high sensitivity 

of optical tweezers in the mechanical force measurement, and its superiority over other 

force spectroscopy methods to minimize surface effect,34 we used this method to study the 

mechanical stability of DNA corona phase on AuNPs. Based on the widely used poly(dA)-

AuNP conjugates, we have found that two (dA)21 strands in close proximity show much 

improved adsorption to AuNPs than one (dA)21 strand or strands with shorter poly(dA) 

segments.

We have observed desorption force of >20 pN (average 37 – 43 pN) is needed to break the 

noncovalent interaction between the DNA and AuNPs. This mechanical stability is lower 

than that of covalent Au-S bonds, which is in the range of several hundreds to >1000 

pN.30,31 However, it is higher than that to maintain DNA secondary structures such as 

duplexes and tetraplexes (<20 pN35,36) or that to stall motor proteins such as DNA or 

RNA polymerases37–39. As DNA duplexes and tetraplexes routinely exist inside cells40, 

this suggests that AuNP coated with poly(dA) corona phase is strong enough to withstand 

the cellular environment from a mechanical perspective. Since poly(dA) is ubiquitous in 

genomes,41–43 a new function of AuNP may exist to modulate replication or transcription 

processes via binding to the poly(dA) segments.

Results and discussion

Single-molecule setup to study the poly(dA) corona on gold nanospheres

To investigate the noncovalent binding of poly(dA) DNA to AuNP, we designed a DNA 

construct consisting of a hairpin with two (dA)21 internal loops in the stem (shown in red 

in Figure 1A). In the microfluidic chamber in optical tweezers instrument (see SI section 

S9), the hairpin was tethered between two optically trapped beads using 1558 bp and 

2391 bp dsDNA handles. The tethering was achieved by biotin/streptavidin and digoxigenin/

anti-digoxigenin affinity interactions (detailed synthesis of the construct can be found in 

Figures S1 & S2). Tension in the DNA construct was developed when the two optically 

trapped beads were moved apart by steering one of the trapping lasers. When the tension 

was sufficiently high, the hairpin was unfolded, generating distinct unfolding features in the 

force-extension (FX) curve as shown in Figure 1B. The internal loops were ripped apart 

before the unfolding of the terminal hairpin since the former experienced the tension before 

the latter did due to their relative locations with respect to the direction of the applied 

force. Upon relaxing the stretched DNA construct to ~12.9 pN, the unfolded terminal hairpin 

refolded faster than the rest of the structure due to its small size and close location of 

the two complementary hairpin stems. The region below the terminal hairpin didn’t show 

immediate refolding during relaxing because of a long non-complementary region made of 

(dA)21 in internal loop. However, upon providing sufficient time (~15 s) at zero force, the 

complementary region below the poly(dA) internal loop refolded completely and the rupture 
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feature was observed again in the next FX curve. The forces at which the internal loops and 

the terminal loop were unfolded were centered at 12.9 pN (Figure 1 C&D), which is close 

to the unzipping force of duplex DNA.35,44 In the change-in-contour length (ΔL) histogram 

(Figure 1 C&E), two distinct populations represent the unfolding’s of the terminal hairpin 

(ΔL = 15.4 nm) and the internal (ΔL = 36.5 nm) loops, respectively. While the unfolding to 

release the internal loops shows the ΔL (36.5 nm (observed) vs 39.6 nm (expected)) close to 

that expected (see Figure S7), the terminal hairpin gives smaller values (15.4 nm (observed) 

vs 22.3 nm (expected)), which may be due to the breathing of the duplex DNA at the end of 

hairpin stems35,45.

Adsorption of DNA corona to AuNPs via the poly(dA) internal loops

Gold nanospheres are known to noncovalently bind to the poly(dA) via Au-N 

interactions.19,22,46 To evaluate this binding, we prepared a AuNP bound hairpin-based 

DNA construct. To prepare it, in brief, we incubated the DNA construct with 5 nm 

gold nanospheres at −80 °C for 15 mins in a 10:1 mole ratio before thawing at room 

temperature.22 This freeze-thaw procedure enabled the binding of AuNP to the (dA)21 

containing construct (see SI sections 7 & 8, and Figure S4). The force ramp experiment 

was performed after the construct was tethered between the two trapped beads in optical 

tweezers instrument. During mechanical unfolding of the AuNP bound DNA construct, 

a new rupture feature at a force higher than that to unfold terminal hairpin (14.9 pN, 

average force from Figure 1C) or internal loops (12.7 pN, average force from Figure 1C) 

was observed (state “3” in Figure 2 A - C, average 37.0 pN). Close inspection on the ΔL 
histogram (state “3” in Figure 2D) revealed an average unfolding population of 7.0 nm of 

this feature, which is much smaller than either the terminal hairpin (15.4 nm) or the internal 

loop (36.5 nm). This observation plus the fact that a higher force is required for its unfolding 

suggests this feature is associated with the AuNP binding to the DNA construct.

To confirm that the AuNP is bound to the poly(dA) via the internal loops, we performed 

a control experiment in which both internal loops contain random nucleotide sequences 

(see SI Table S1 for sequences, and Figure S3 for predicted lowest energy structures 

of the hairpins). As shown in Figure 3A, the low-ΔL, high-force population (state “3”) 

is significantly reduced (p<0.05) from 25% (state “3” in Figure 2) to 7.5%. In another 

experiment, we placed (dA)21 only in one strand of the internal loop while keeping random 

sequence in the other loop strand. As shown in Figure 3B, the population of interest 

(state “3”, 8.7% of entire population) was again significantly smaller (p<0.05) than the 

two (dA)21 internal loops. When we reduced (dA)21 to (dA)10 (Figure 3C) in each internal 

loop, we found the new species reduced to 8.0% of the total population. Finally, when only 

one internal loop contains (dA)10 whereas the other loop has a random sequence (Figure 

3D), the new species further reduced to 7.4% of the whole population. These experiments 

indicated that (dA)21 in both internal loops are most efficient to bind to the 5 nm AuNP. 

It is conceivable that closer locations of the two poly(dA) strands assist with each other to 

accommodate their better bindings to the AuNP surface.

The fact that removal of (dA)21 or reduction in the length of the (dA) segments results in 

much reduced AuNP binding population while neither rupture force nor ΔL varies with the 
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length of the poly(dA) suggest only one AuNP is bound to (dA)21 in both internal loops. 

AFM images by others with similar poly(dA) and AuNP interactions also proved binding of 

one AuNP by poly(dA) segment.32 Finally, the observation of only one rupture event with 

the high-force and low-ΔL feature (state “3” in Figures 2&3) in each force-extension curve 

confirmed the binding of single AuNP for each DNA construct used here.

Binding model between gold nanospheres and poly(dA)

Based on the observations from these control experiments (Figure 3), it is clear that 

poly(dA) on both strands of the internal loop facilitates the binding of one Au nanosphere. 

Given that the rupture event corresponding to the unfolding of the AuNP-DNA conjugate 

(state “3” in Figure 2) occurs at the later stage of the unfolding sequence where the force 

is high (Figures 2&3), we reasoned that the terminal hairpin (unfolding force: 13.8 pN, 

see Figure 2C) must unfold before the unbinding of the AuNP-DNA conjugate. This can 

only occur when one (dA)21 strand has a looser binding than the other stand in the internal 

loops (Figure 4). Thus, the unfolding starts with the ripping of the loosely adsorbed (dA)21 

strand from the AuNP, generating a large ΔL feature (step 1, Figure 4) with the size and 

force similar to those without AuNP (compare the state “1” in Figure 1B – D and Figure 

2). After the step 1, the force experienced by the AuNP-bound DNA construct is exerted 

on the terminal hairpin (Figure 4). This leads to the step 2 in which the unfolding of the 

terminal hairpin occurs (see state “2” in Figures 2 and 4). Completion of this step results 

in the force exerted on the remaining (dA)21 loop adsorbed to the AuNP. The small ΔL 
observed during step 3 (7.0 nm, the state “3” in Figure 2B&D) is either due to the stretching 

of some looped-out (dA)21 region in the DNA-AuNP conjugate or the change in the apparent 

contour length of the AuNP-bound (dA)21 when the construct experiences higher force 

(from the winding conformation of the poly(dA) adsorbed to the AuNP surface to the 

straight conformation, see step 3 in Figure 4).

We argue that after step 3, the AuNP is still associated with the poly(dA) since steps 1–3 

are repeatedly observed in consecutive F-X curves, indicating rebinding of the AuNP to the 

(dA)21 strands at reduced force. The remaining adsorption is likely due to the Au-N bonds 

contributed from a limited number of deoxyadenosines without resulting in any looped-out 

poly(dA) segments. Such an adsorption is not expected to experience any stretching force in 

optical tweezers.

Mechanical binding strength of the (dA)21 to the AuNPs with different sizes

To study the size effect of the AuNP on the (dA)21 binding (state “3” in Figures 1–3 and 

step 3 in Figure 4), we repeated force-ramping experiments using the hairpin construct with 

the two (dA)21 internal loops in the presence of nanogold particles with different sizes. 

As shown in Figure 5 (state “3”), the unfolding force of the characteristic AuNP-(dA)21 

conjugates gradually shifted towards higher force with the increasing nanogold size. With 

the 1.8 nm nanogold (Figure 5A), the binding populations can be well fit by three force 

regimes centered at 27.9 pN (21.5%), 40.8 pN (12.6%), and 52.3 pN (5.9%) (average 36.9 

pN). We attribute this distribution to the three possible binding modes between (dA)21 and 

AuNP (Figure S8). From the unfolding ΔL of 6.4 nm (Figure 5, state “3”), we estimated 

~16 deoxyadenosines were contained in the sticking-out loop (Figure S8), leaving five 
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deoxyadenosines to serve as additional anchoring points (a total of 7) on the AuNP surface. 

The three unfolding force populations in Figure 5A can therefore be attributed to the one, 

two, or three anchoring deoxyadenosines located on each side of the sticking-out loop, 

which corresponded the 27.9 pN, 40.8 pN, and 52.3 pN unfolding forces, respectively. Due 

to the small size of the 1.8 nm AuNP, however, only a limited number of deoxyadenosines 

can adsorb on AuNP surface. Therefore, the more the anchoring deoxyadenosines, the 

higher the unfolding force, but the lower the populations as the random poly(dA) adsorption 

process may not be able to accommodate all 7 anchoring deoxyadenosines for the 1.8 

nm AuNP. It is likely that in the most stable binding mode (52.3 pN), the sticking-out 

poly(dA) loop straddles between two AuNP facets to fully accommodate the 3 anchoring 

deoxyadenosines on each side (Figure S8).

With the 5.0 nm AuNP (Figure 5B), the three unfolding species (24.9, 36.0, and 46.4 

pN, average 39.5 pN), which respectively correspond to the 1, 2, and 3 anchoring 

deoxyadenosines on each side of the sticking-out loop (a total of 6 anchoring 

deoxyadenosines, see Figure S8), increase their populations (7.2%, 11.5%, and 13.9%, 

respectively). We attribute this to the bigger surface area of the 5 nm nanogold than the 1.8 

nm AuNP, which makes it easier for all the anchoring deoxyadenosines to bind to the same 

AuNP facet (Figure S8), thereby increasing the mechanical stabilities of the adsorbed DNA 

as well as respective populations. Finally, the DNA adsorbed on the 10.0 nm AuNP showed 

only two populations (33.5 pN (13.0%) and 50.1 pN (17.6%), average 42.6 pN, Figure 5C). 

This is expected as a maximum of four anchoring deoxyadenosines is allowed in this case 

(see Figure S8 for calculation). This trend can be explained as larger facets in the 10 nm 

nanogold have increased opportunity to accommodate one (the 33.5 pN population) or two 

(the 50.1 pN species) anchoring deoxyadenosines at each side of the sticking-out loop on 

the same facet (Figure S8). Since the 33.5 pN population contains only one deoxyadenosine 

anchored at one side of the sticking-out loop, its force is lower than those of the 1.8 

nm (40.8 pN) and 5.0 nm AuNP (36.0 pN), both of which have at least two anchoring 

deoxyadenosines at each side of the sticking-out loop.

We found that average mechanical stability of (dA)21 strands adsorbed on these three 

AuNPs is ~40 pN. This value is significantly higher than the stall force of DNA/RNA 

polymerases.37–39 Therefore, similar to the G-quadruplex that may serve as a mechanical 

block47,48 to DNA replication or RNA transcription processes, the AuNP-poly(dA) may 

also serve similar functions given there are plenty of poly(dA) segments in genomes of 

many species41–43. This potential function further expands the applicability of AuNP in 

biomedicines. This approach of determining the mechanical stability of DNA corona phase 

on nanoparticles can also be extended to other materials such as carbon nanotubes which are 

of growing interest in recent years.49 However, the use of optical tweezers also comes with 

the limitation that it cannot measure very high forces unlike AFM.34

Conclusions

In summary, we have found the mechanical stability of the DNA corona phase on gold 

nanospheres increased with the size of AuNP. The average desorption force of the DNA 

corona is 36.9 – 42.6 pN, which is lower than the covalent S-Au attachment, but higher 
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than those to maintain DNA duplex or tetraplex structures inside cells, suggesting that the 

poly(dA) adsorption on AuNPs can withstand intracellular environment from mechanical 

perspective. The fact that the desorption force of poly(dA) from AuNP is higher than the 

stall force of motor proteins brings the possibility of using AuNP as a new agent to modulate 

various processes catalysed by motor proteins, which include replication and transcriptions. 

Given numerous applications of AuNPs inside cells as well as in materials explorations, our 

findings here provide convincing support that noncovalent DNA corona adsorption can serve 

as a mechanically competent approach to tailor functions of gold or other nanospheres.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
A) Schematic of the single-molecule platform to investigate the binding of poly(dA) to gold 

nanospheres. See Table S1 for DNA sequences. B) A typical force extension curve when a 

DNA construct is stretched (red) and relaxed (black) in the optical tweezers instrument. C) 

Scatter plot of force vs change-in-contour length (ΔL). D) Unfolding force and E) change-

in-contour-length (ΔL) histograms of the unfolding features shown in C). Solid curves are 

Gaussian fittings. N represents the number of molecules from which the FX curves were 

collected, and n represents the total number of unfolding features measured.
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Figure 2. 
A) A typical force extension curve when the DNA construct (shown in Figure 1) is stretched 

(red) and relaxed (black) in the presence of a 5 nm AuNP. A new unfolding feature (marked 

as ‘3’) is observed in the presence of nanogold. B) Plot of the unfolding force vs ΔL of 

the unfolding events. C) and D) Unfolding force and ΔL histograms of the features in the 

presence of the 5 nm AuNP, respectively. Solid curves are Gaussian fittings. N represents the 

number of molecules from which the FX curves were collected, and n represents the total 

number of unfolding features measured.
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Figure 3. 
Force vs ΔL plots (left), unfolding force histograms (middle), and ΔL histograms (right) 

of the unfolding features when the two DNA strands in the internal loops have different 

poly(dA) sequences. (A) Two random sequences. (B) One (dA)21 and one random sequence. 

(C) Two (dA)10 sequences. (D) One (dA)10 and one random sequence. Solid curves are 

Gaussian fittings. N represents the number of molecules from which the FX curves were 

collected, and n represents the total number of unfolding features measured. All experiments 

were performed in presence of 5 nm AuNP.

Pokhrel et al. Page 12

Langmuir. Author manuscript; available in PMC 2023 November 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Mechanical desorption pathway of the DNA adsorbed on the AuNP surface. The DNA 

adsorption is achieved via the two (dA)21 internal loops (red). Blue arrows indicate external 

forces.
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Figure 5. 
Force vs ΔL plot (left), unfolding force histograms (middle), and ΔL (right) histograms of 

the (dA)21 containing DNA constructs in the presence of AuNPs with diameters of A) 1.8 

nm, B) 5.0 nm, and C) 10.0 nm. Dotted curves in the blown-up insets in the unfolding force 

histograms represent the gaussian fits for individual populations. Solid curves are Gaussian 

fittings for overall populations. N represents the number of molecules from which the FX 

curves were collected, and n represents the total number of unfolding features measured.
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