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Summary

Many biological circuits comprise sets of protein variants that interact with one another in a 

many-to-many, or promiscuous, fashion. These architectures can provide powerful computational 

capabilities that are especially critical in multicellular organisms. Understanding the principles of 

biochemical computations in these circuits could allow more precise cellular control of cellular 

behaviors. However, these systems are inherently difficult to analyze, due to their large number 

of interacting molecular components, partial redundancies, and cell context dependence. Here, we 

discuss recent experimental and theoretical advances that are beginning to reveal how promiscuous 

circuits compute, what roles those computations play in natural biological contexts, and how 

promiscuous architectures can be applied for the design of synthetic multicellular behaviors.

TOC blurb:

Biological pathways comprise sets of protein variants that interact with one another in a many-to-

many fashion to biochemically “compute” complex functions of protein inputs. Here, Klumpe et 

al. discuss recent experimental and theoretical advances that reveal how these circuit architectures 

compute, what roles those computations play in natural biological contexts, and how they can be 

applied to the design of synthetic multicellular behaviors.
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Introduction

With the evolutionary transition from single cells to multicellular life, cells faced an 

expanded set of information-processing challenges. They had to support large numbers 

of distinct cell fates, decipher complex signals from other cells, and tailor their behavior 

depending on their own state, history, and local environment. Many of the protein circuits, 

or pathways, that evolved to address these challenges share a particular feature. They employ 

families of homologous, but subtly different, protein variants interacting in a many-to-many, 

or promiscuous, manner with one another, and with members of other protein families. 

These variants likely arose from duplications of simpler ancestral pathways1-5 (Figure 1A). 

Typically, different cell types express different combinations of variants, generating a set of 

related, but distinct, versions of any given circuit6 (Figure 1B).While specific components 

and interactions within these circuits are often well-studied, it is still generally unknown 

how their components collectively respond to diverse combinations of inputs, and how those 

responses change depending on the specific components expressed in each cell context. 

Recent work is beginning to shed light on these issues, revealing how promiscuous circuits 

can support the complex information processing requirements of multicellular life.

Promiscuous protein interaction circuits are prevalent throughout biology. Developmental 

cell-cell communication pathways such as Bone Morphogenetic Protein (BMP),7 Notch,8 

JAK/STAT,9,10 Wnt,11,12 Fibroblast Growth Factor (FGF),13 and Epidermal Growth Factor 

(EGF),14 comprise sets of distinct ligands, each of which interacts promiscuously with 

multiple receptor variants (Figure 1C). Promiscuity is also conspicuous in the interactions 

of receptors with downstream effectors. For example, individual G-protein coupled receptors 

(GPCRs) interact with multiple effector G proteins in an overlapping, promiscuous 

manner15 (Figure 1D). Transcriptional regulation, too, is replete with promiscuity. Families 

of transcription factor variants, such as NF-κB, bHLH, bZIP, and POU/Sox, interact 

promiscuously to form diverse homo- and heterodimeric complexes (Figure 1E) that vary in 

their DNA binding specificity and activate or repress overlapping sets of target genes.16-18 

Transcription factors also interact promiscuously with co-factors, as has been analyzed 

extensively for the Mediator complex19 and the homeobox genes.20 Extracellularly, families 

of Cadherin variants interact promiscuously with one another to control adhesion between 

adjacent cells21-24 (Figure 1F). In many of these examples, proteins may form higher order, 

oligomeric complexes with more than two components, adding additional complexity to the 

system. These examples show that combinatorial protein networks occur at multiple levels 

with multiple protein families.

It can be tempting to regard protein interaction promiscuity more as a nuisance—perhaps 

an artifact of gene duplication in evolutionary history—than a feature. On the other 

hand, complexity science, neurobiology and artificial neural networks show that simple 

elements, connected together in a many-to-many fashion, can act as powerful computational 

systems.25 By computation, we mean the ability to process input information encoded 

in multiple molecular signals in flexible and complex ways. Computations are usually 

understood to comprise three distinct levels: a function to be computed, an algorithm 

to implement that function, and the physical media that can execute that algorithm.26 

The first two are abstract descriptions of how inputs become outputs and are agnostic of 
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physical implementation. By contrast, the properties of a particular physical medium may 

constrain the functions or algorithms it can implement. Here, we consider protein-protein 

dimerization networks as physical media for computation in cells, and discuss the algorithms 

and functions they can compute. We are interested in both what higher-level functions these 

networks support, as well as how this logic can be physically realized by a variety of protein 

families. In all these respects, we consider protein dimerization networks as a powerful 

architecture for computation in cells.

The interconnectedness of protein and metabolic networks within the cell has long been 

recognized as providing the potential for computations in cells.27-29 Previous works 

have largely focused on how interacting biomolecules could implement aspects of digital 

computing, such as Boolean logic gates27,30 or neural networks.28,31 It has generally 

been more challenging to determine what computations are implemented natively by 

natural biomolecular circuits in living cells. Better understanding the range of native 

computations that arise in these settings could explain how cells, with many distinct 

properties from silicon chips, compute complex responses to their diverse input signals 

and, more specifically, how these computational capabilities address the unique challenges 

of multicellularity.

When many protein complexes can form through combinatorial dimerization of a smaller 

number of monomeric components, their distribution will in general depend on the 

abundances of each protein, their pairwise interaction strengths (e.g. affinities), as well 

as other inputs. These dependencies can be nonlinear and indirect, such that perturbing 

one protein level can affect the concentrations of complexes in which it does not appear. 

Further, distinct complexes can, in general, have distinct target specificities or activity levels. 

As a result, inputs that modulate one or more protein components can be processed by 

the combinatorial dimerization network in non-trivial ways to produce computations. These 

computations can support higher level functions in signaling, adhesion, and transcriptional 

regulation.7,18,32,33

This type of computation occurs at two levels. First, within an individual cell or cell type, 

systems can compute a specific function of multi-protein inputs. Second, the function that 

is computed can vary between different cell states (i.e. be context-dependent). This is 

possible because cell states, in general, express different subsets of the circuit’s molecular 

components, as single-cell atlas data sets have revealed.6 Each configuration (and thus each 

cell state) may compute a distinct functional response to the same environmental inputs. A 

single combinatorial system then provides not just one cellular computation, but a whole 

repertoire of different computations in different cell states.

Here, we argue that combinatorial protein dimerization networks represent a general 

biological strategy to implement context-dependent computations in cells. We further show 

how this viewpoint provides a unifying framework to explain a diverse array of biological 

processes, including signaling, gene regulation, and cell-cell adhesion. More specifically, 

we first highlight recent work that reveals computations in promiscuous protein-protein 

interaction systems and how they arise. We then discuss possible biological functions of 
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these computations. Finally, we explore experimental and computational approaches to 

understand and manipulate them.

Throughout, we focus on computations that emerge from networks of combinatorial protein-

protein binding interactions within pathways. We omit additional complexity that can 

emerge through interactions between different pathways,34 combinatorial allosteric control 

of individual protein activities,35-37 as well as computations within enzymatic and metabolic 

networks. We also leave out important work in neural circuits such as olfaction, which 

depends on many-to-many interactions between odorants and receptors, as these systems 

rely on neural circuitry for most signal processing and receptor expression is limited to one 

per cell, precluding formation of diverse protein complexes. Lastly, because we primarily 

focus on protein-protein dimerization as a mechanism, we do not discuss the fascinating 

computational capabilities produced by other circuit features, such as the regulation of 

protein activity by co-factor binding, expression-mediated feedback, and post-translational 

modifications.

Promiscuous protein-protein interaction systems compute functions of 

multiple input proteins

Combinatorial protein networks are based on protein complex formation (Figure 1C-F, black 

and white illustrations). These systems consist of one or more sets of protein variants that 

can combinatorially assemble into a zoo of different protein complexes. In some cases, 

the complexes contain only one class of protein, of which there are many variants. For 

example, different bHLH transcription factors can promiscuously dimerize with one another 

to produce many distinct homo- and heterodimers (Figure 1E). In other cases, complexes 

contain two or more types of proteins, each of which may comprise many variants. For 

instance, a set of ligand variants can form many potential signaling complexes with a set of 

receptor variants (Figure 1C). In either case, each of the resulting complexes can exhibit a 

different level of activity or affect a different set of molecular targets. Further, when certain 

protein concentrations are limiting, competition to form complexes can lead to non-intuitive 

behaviors. Perturbing the abundance of one or more individual input protein components can 

directly affect the concentrations of complexes and indirectly affect the concentrations of 

other complexes. Considering certain proteins as “inputs” and the activity or effects of the 

complexes as “outputs,” the overall network can thereby perform a variety of input-output 

computations, depending on the concentrations of each component, and the binding energies 

or affinities for each possible interaction (Figure 2A).

Mathematical models of competitive complex formation can capture many of the effects 

described above, allowing us to explore what kinds of computations are possible within 

different combinatorial protein network architectures. In addition, they reveal how those 

computations depend on the overall interaction architecture and biochemical parameters 

(Box 1). For example, models of receptor-ligand interactions have revealed how signaling 

pathways can compute Boolean and other types of combinatorial responses to multi-ligand 

inputs, two examples which we explore below. These examples show how diverse ligand-
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receptor affinities and signaling complex activities, defining features of combinatorial 

protein networks, can produce complex functions.

Computation of Boolean logic for two ligand inputs

An early theoretical study of combinatorial receptor-ligand interactions was performed by 

De Ronde et al.38 The authors explored a set of ligand-receptor interaction architectures and 

compared their ability to produce different Boolean logic gates. To do this, they adapted 

the equilibrium statistical mechanics description of allostery, provided by the classical 

Monod-Wyman-Changeux model,39 to describe how ligand binding alters the conformation 

of receptors to activate a pathway. In one scheme, they considered a dimer of two receptor 

subunits, in which one subunit could bind promiscuously to two ligand variants, while the 

other could bind only to one. By tuning the affinities of each ligand for each receptor, 

and the activities of the different possible complexes, the authors were able to generate all 

possible two-input Boolean logic functions. The most complex functional responses, such as 

XOR, required competition of two ligands to bind one of the receptor subunits. In this case, 

each ligand, presented individually, produced an activating receptor conformation. But when 

mixed together, one ligand outcompeted the other for its preferred subunit. The outcompeted 

ligand then bound its less preferred subunit and produced an inhibitory complex, leading 

to reduced activity when both ligands were present compared to the activity of each ligand 

alone. Simpler schemes, based on a single receptor or limited to homodimerization of 

receptors, exhibited more limited computational repertoires. These results demonstrated how 

ligands that promiscuously and competitively bind to heterodimeric receptors can perform a 

variety of multi-input computations.

Computation in the BMP signaling system

One example of computation in combinatorial protein networks occurs in the BMP pathway. 

This core cell-cell signaling pathway plays pivotal roles in a broad range of developmental, 

physiological, and disease processes. In mammals, BMP ligands are secreted by cells, 

diffuse through tissues to form morphogenetic gradients, and activate cognate receptors 

on signal-receiving cells. Critically, in most biological processes, cells are exposed to 

combinations of multiple BMP ligand variants, suggesting that the BMP signaling process 

could be inherently combinatorial.

To decipher these combinatorial input signals, cells express multiple variants of type I and 

type II receptor subunits, which assemble together with ligands to form signaling complexes, 

which activate downstream Smad transcription factors.40 In humans, there are approximately 

15 different ligand variants and 7 receptor variants (four type I and three type II), potentially 

generating thousands of distinct signaling complexes.7,41-43 Moreover, these complexes 

likely vary quantitatively in their rates of Smad phosphorylation,7 as non-signaling (i.e. 

inactive) complexes have been shown to occur in the closely related TGFβ pathway.44

This combinatorial complexity allows the BMP pathway to compute complex responses 

to multi-ligand combinations.41 For example, we found that in a mouse epithelial cell 

line, the ligand BMP4 strongly activates the BMP pathway, but its activity is blocked 

in a dose-dependent manner by another ligand, GDF5, such that pathway activity is 
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approximately proportional to the ratio of BMP4 and GDF5 concentrations. This type of 

ratiometric response can occur when two ligands bind to the same receptor subunits with 

similar affinity, but one (in this case, BMP4) forms an active signaling complex while the 

other (GDF5) forms a non-activating partial complex, or a weakly-activating full complex. 

Similar types of antagonism have been reported for TGFβ ligands45,46 and a related form of 

ratiometric sensing has been observed in yeast.47

Experiments also revealed more complex computations. For example, BMP4 and BMP10 

produce an “imbalance detector” response, in which either ligand can efficiently activate 

on its own, but the two ligands inhibit each other’s activity, neutralizing the response at a 

particular concentration ratio. (In this way the pathway is most active when the ligand’s 

concentrations are “imbalanced.”) Modeling showed that imbalance detection occurs in 

“incoherent” parameter regimes, where complexes that form with high affinity exhibit weak 

specific activity, while less preferred complexes are more active. In this regime, mixtures 

of the two ligands preferentially form their high affinity, but low activity complexes. 

By contrast, when either of the ligands is present alone, a mixture of strong and weak 

signaling complexes form, producing greater total activity. In the opposite “coherent” 

regime, where high affinity complexes also have high activity, the model predicts the 

opposite “balance detector” response, which was experimentally observed in a different 

cell line.41 Together, these results demonstrate that the promiscuous BMP pathway performs 

complex computations on multi-ligand inputs that can be explained in terms of an interplay 

between the affinity and activity of the various signaling complexes. These explanations for 

experimentally observed behaviors were consistent with a simplified model. Taken together, 

these modeling and experimental studies show how combinatorial ligand-receptor networks 

can compute responses to multiple ligands. However, further experimental validation will 

be necessary to definitively establish the underlying mechanisms that generate the observed 

responses.

Making computation contextual

Single-cell atlas projects have revealed the transcriptional expression profiles of diverse cell 

states.48-52 Analysis of these profiles showed that the components of many combinatorial 

protein networks are expressed in distinct and often recurring configurations in different 

cell types.6 For example, in pathways such as BMP, Wnt, and Notch, multiple receptor 

variants are co-expressed in specific combinations. This observation provokes the question 

of whether cells that express distinct, but overlapping, sets of pathway components can 

perform different computations (Figure 2A).

Modeling of the BMP pathway showed that receptor expression levels could strongly 

impact the computation performed by the pathway (Box 1). Consistent with this prediction, 

perturbing the expression of individual receptors experimentally changed the computational 

response of the cell to different ligand combinations.41,43 For example, knocking down 

the type II receptor BMPR2 changed an additive response to BMP4 and BMP9 into 

a ratiometric response. Similarly, ectopically expressing the type I receptor ACVRL1 

converted an imbalance detector response function into an additive response. Analysis of cell 

lines also suggested that receptor expression profile dictates computation. Two otherwise 
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unrelated cell lines with similar receptor profiles, one epithelial and one fibroblastic, 

exhibited similar multi-ligand integration responses. These differed qualitatively from 

responses of an embryonic stem cell line with a different receptor profile. Together, these 

results suggest that receptor expression profiles can (and likely do) control the type of 

computation that the BMP pathway performs on multiple ligand inputs.

This specific feature observed in signaling pathways suggests a more general feature of 

promiscuous protein-protein interaction networks. Indeed, earlier theoretical work on such 

networks showed that, in particular regimes, the steady-state concentrations of components 

depended more on protein abundance than the parameters of the protein-protein interactions 

themselves, suggesting that new network behaviors could be flexibly accessed by merely 

changing the concentration of different components.53 Therefore, in addition to performing 

complex computations on multiple inputs, protein-protein dimerization networks also 

allow cells to reprogram those computations by varying the expression levels of pathway 

components. This ability to perform a range of computations on the same inputs allows 

different cell types to extract different types of information from the same environment, or a 

given cell type to change its behavior in different developmental or physiological contexts. 

Returning to the neural network analogy, this behavior roughly corresponds to different 

cell lines operating the same network topology with different weights to compute distinct 

functions.

Molecular promiscuity enables cell-cell specificity in communication pathways

One of the most basic capabilities of any communication system is the ability to address 

messages to particular recipients. For example, in the familiar case of email, we can 

send messages to individuals or groups. Cell-cell communication presents an analogous 

addressing challenge: how to use signals to selectively activate specific target cell types.

The simplest way to achieve such cell-specific “addressing” is a one-to-one ligand-receptor 

system in which each ligand variant activates a distinct receptor variant exclusively 

expressed by a single target cell type. This architecture reflects the strategy used in human 

engineered communication systems, where the goal is to avoid undesired crosstalk between 

communication channels.54,55 It is also the basis for synthetic biological signaling systems 

such as synNotch, where each ‘ligand’ (cell surface protein) is recognized by a cognate 

antibody fused to its corresponding synNotch receptor.56 By contrast, in many natural 

cell-cell communication pathways, each ligand variant activates multiple receptor variants, 

each cell type expresses multiple receptor variants, and each environment contains multiple 

ligand variants. Is such a system compatible with communication specificity in the presence 

of promiscuous interactions?

In a recent computational study, we sought to answer this question using a 

mathematical model of a BMP-inspired promiscuous signaling pathway.57 This work 

revealed that molecular promiscuity counterintuitively generates a powerful, fundamentally 

combinatorial, addressing capability, in which ligand combinations activate cells expressing 

corresponding receptor combinations. In this system, just two ligand variants, present 

together at different concentrations, could orthogonally activate at least eight different cell 

types (Figure 2A). This occurs because cells with different receptor profiles can respond to 
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different localized regions of ligand concentration space. These localized responses are in 

turn enabled by the computational capacity generated through promiscuous ligand-receptor 

interactions.

Increasing the number of receptor variants in the system allows more complex 

computational responses, and thereby increases the number of cell types that can be 

uniquely addressed by a given number of ligands. Key features that facilitate combinatorial 

addressing are (1) diverse activities for a given receptor, depending on the ligand that 

activates it, and (2) the existence of signaling complexes that form with high affinity but 

have low activity, and vice versa,57 similar to the interplay observed in other models of BMP 

signaling described above.41

The addressing capabilities in the many-to-many architecture can far exceed what is possible 

in the seemingly simpler and more efficient one-to-one architecture, assuming the same 

number of ligand and receptor variants. This advantage becomes even stronger when one 

considers schemes in which a specific ligand combination activates multiple cell types 

(analogous to an email “mailing list”). For example, a particular combination of 2 ligands 

could selectively activate a subset of 3 cell types, showing that promiscuous interactions 

can produce versatile addressing schemes. Overall, these results suggest a picture in which 

different cell types “tune in” to specific combinations of ligands by expressing different 

receptor combinations. Different environments, with distinct combinations of ligands, can 

then preferentially activate one cell type, another, or both. Nonetheless, direct experimental 

tests will be necessary to confirm if evolved signaling capacities make use of this addressing 

capability.

Molecular promiscuity and cellular specificity in adhesion

Context-dependent computation also enables another important biological function: the 

ability of one cell to distinguish itself from other cells. For example, neural circuit assembly 

requires self-avoidance: individual neurons must physically contact other neurons but avoid 

contacting themselves.58 To that end, neurons use unique sets of surface adhesion proteins 

to distinguish their own identity from that of other cells. In Drosophila, each neuron 

stochastically expresses a single isoform of the cell adhesion protein Dscam1 out of a large 

set (~19,000) of distinct isoforms. These isoforms interact homophilically (in a one-to-one 

manner), leading to contact-dependent repulsion for same-cell interactions. In this way, 

every isoform directly represents a single address.

By contrast, vertebrates use a combinatorial approach to generate a much larger set 

of addresses for unique neurons.59 Each cell stochastically expresses ~15 different 

protocadherin variants from a much smaller set of 58 (in the case of the mouse) variants. 

Within the same cell (i.e. in cis), different variants interact promiscuously,60 resulting in 

multimeric, heterogeneous protocadherin clusters. Each combination of expressed proteins 

represents a unique cellular identity. These protein variants interact in a many-to-many 

manner in cis, with each protein variant able to bind to all others. However, the multi-

protein clusters exhibit a combinatorially homophilic interaction between juxtaposed cell 

membranes (in trans), such that a perfect match of all components is required for trans 
interactions, whether on the same or different cells (Figure 2B). By experimentally co-
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expressing sets of up to 5 different protocadherin variants, Thu et al. showed that only 

cells with identical expression patterns exhibit strong trans binding. Mismatch of a single 

isoform located on two juxtaposed membranes was sufficient to greatly diminish homophilic 

adhesion strength.60,61 In this way, combinations of a few promiscuously interacting 

protocadherin isoforms in vertebrates provide neurons with a vast number of orthogonally 

interacting addresses and enable them to discriminate self from non-self. Recent work has 

shown that this mechanism might play more general roles in the mechanical organization of 

tissues during morphogenesis.62

Transcription factor dimerization networks allow complex gene regulation

In a multicellular organism, combinatorial transcription factor dimerization networks 

could play a key role in enabling cell type specific gene regulatory responses to 

signals. For example, members of the bHLH transcription factor family share similar 

helix-loop-helix domains that allow the formation of many different dimers, as many as 

30 in some systems.63 These dimers can exhibit different transcriptional activities and 

DNA binding site preferences. Further, some bHLH factors lack DNA binding domains 

altogether, and therefore generate transcriptionally inactive dimers. Consistent with the 

mathematical models and other examples above, this combinatorial complex formation 

could allow cell context-dependent computational gene regulation responses. For example, 

key developmental pathways activate the expression of bHLH transcription factors, which 

can then form various homo- and heterodimers with themselves and one another. In this 

way, they provide a layer of combinatorial dimerization between signaling pathways and 

their genomic targets. For example, the Hes and Her genes are bHLH transcription factors 

that are activated by Notch, FGF, and other signaling pathways.64 Once expressed, these 

transcription factors can then form dimers regulating the expression of downstream targets, 

as well as their own expression.

In many developmental processes, Hes and Her proteins negatively regulate their own 

expression, producing complex regulation of downstream gene targets. In somitogenesis, 

this autoregulation leads to synchronized oscillations in expression, which are necessary 

for the repetitive process of somitogenesis.65 In neurogenesis, additional factors controlling 

the strength of this feedback can produce different outcomes in embryonic and adult stem 

cells.66 However, though the negative feedback of Hes and Her genes plays a clear role in 

both somitogenesis and neurogenesis, it was insufficient to explain all the observed patterns 

of gene expression in these two processes.33,67 This suggests that combinatorial interactions 

between bHLHs could play a key role in determining gene activation and dynamics. 

Below, we describe two examples where explicitly accounting for bHLH dimerization was 

necessary to explain the combinatorial and context-dependent effects of Hes and Her on 

their target genes.

In somitogenesis, knocking out Her1 or Her7 produces distinct effects, even though they 

promiscuously bind similar targets and have similar effects when overexpressed.33 A careful 

study of Her1 and Her7 in zebrafish development revealed that they form many dimers, 

binding to themselves, each other, and a third binding partner, Hes6. This confirmed an 

earlier prediction of the existence of Her1-Her7 heterodimers to explain observed effects in 
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zebrafish.68 Most of the formed dimers are transcriptionally inactive. Only the Her7:Hes6 
heterodimer and the Her1:Her1 homodimer have strong DNA binding activity and can 

regulate downstream expression of Her1 and Her7. Thus, while Her1 and Her7 bind similar 

DNA regions, their sequestration in a “dimer cloud” and competition for shared binding 

partners give them distinct roles in controlling gene expression, as Her7, but not Her1, is 

required for certain oscillations.

Dimerization of bHLHs can also be used to explain their context-dependent effects on their 

gene targets. Neural stem cells (NSCs) readily proliferate during embryonic development but 

are largely quiescent during adult neurogenesis. The Hes bHLH genes have two regulatory 

roles in this transition to quiescence: inhibiting their own expression and inhibiting the 

expression of proneural factors. Combinatorial bHLH dimerization is key to explaining how 

this circuit can produce different degrees of quiescence between the adult and embryonic 

states.67 Specifically, Inhibitor of DNA-binding factors (IDs) have a helix-loop-helix domain 

that allows them to dimerize with bHLHs, but lack the basic domain that promotes 

DNA binding. Thus, IDs can dimerize with Hes proteins and alter their DNA binding 

properties. As a result, Hes-ID dimers can perform only one of Hes’s two regulatory 

roles, as they can inhibit expression of proneural factors but do not inhibit expression 

of Hes itself. This suggests that the expression of ID factors in adult NSCs stabilizes 

Hes expression, removing oscillations produced by its negative autoregulation, while more 

strongly repressing proneural factors, increasing the degree of quiescence.

Together, these examples highlight the complex gene regulation requirements for 

mammalian development and how bHLH dimerization supports those higher level functions. 

But key questions remain unclear: What computations are possible with bHLH and 

other combinatorial transcription factor dimerization architectures, and how do those 

computations enable developmental and physiological cell behaviors? What particular 

functions do these computations support, outside of achieving diverse patterns of gene 

expression? For example, dimerization networks can decouple the control of different 

aspects of circuit output, such as the period or amplitude of oscillations in somitogenesis.33 

Moreover, control of bHLH gene expression is also crucial to buffering these oscillations 

from the effects of bursty transcription.69,70 How do these promiscuous dimerization 

networks integrate with other complex circuit features, such as autoregulation to produce 

oscillations of shared components? Experimental work is needed to systematically map 

bHLH dimerization networks, identify the functions they compute, and determine how 

those functions change depending on which factors are expressed in any given cell context. 

Moreover, the role of competitive dimerization in tuning DNA-binding and transcription 

factor activity can be applied to other transcription factor families, such as nuclear hormone 

receptors, which also exhibit complex dimerization patterns.71,72 Such studies would allow 

us to understand transcription factor dimerization networks as predictable computational 

devices, and better control their behavior.

Synthetic combinatorial protein networks enable scalable multistability

Previously, most synthetic biological circuits have operated at the level of individual cells. 

However, recent advances have begun to enable the design of multicellular circuits that 

Klumpe et al. Page 10

Cell Syst. Author manuscript; available in PMC 2024 June 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



allow cells to operate in multiple states, communicate specifically with one another, and 

spatially organize into tissue-like structures. These multicellular behaviors will require 

increased computational capabilities, paralleling those that arose during the corresponding 

evolutionary transition to multicellularity. The same principles of computation by 

combinatorial protein networks could enable such synthetic circuits.

For example, we recently sought to create a synthetic cell fate control system that would 

generate multiple stable states.73 To choose a design, we were inspired by two prevalent 

features of natural cell fate control systems: First, natural systems use promiscuous 

dimerization among transcription factors, such as bHLH factors, to generate a variety 

of dimers with different DNA binding specificities and activities, including inactive 

complexes18,74,75 (Figure 2C). Second, they often include positive autoregulatory feedback 

loops in which dimers directly or indirectly activate expression of their own components. 

A minimal circuit design, termed MultiFate, embodies those two principles. It is based 

on a set of engineered zinc finger transcription factors that can promiscuously homo- and 

heterodimerize to form all possible dimers (Figure 2D, left panel). Homodimers positively 

regulate their own expression while heterodimers are inactive. Mathematical modeling 

showed that this circuit design could produce multiple stable attractors in the space of 

transcription factor concentrations (Figure 2D, right panel). Further, the number of states 

initially scales exponentially as 2N-1, where N is the number of factors. This scaling is 

enabled in part by the use of dimerization for cross-inhibition among transcription factors. 

Eventually, this scaling becomes limited by the more rapid growth of inactive heterodimers 

compared to active homodimers. Consistent with the model, adding additional transcription 

factors to an existing experimental circuit expanded the number of states without re-

engineering the existing system, with 2- and 3-factor circuits respectively generating 3 and 

7 stable states. The synthetic system also recapitulated other aspects of natural cell fate 

control systems, such as progressive and irreversible differentiation. This work shows how 

combinatorial dimerization can play a key computational role in enabling multicellularity.

Studying promiscuous protein-protein interaction systems

Many biological systems possess the elements necessary for computation through 

combinatorial binding (Figure 3A, cf. Box 1). However, predicting and controlling the 

capabilities of these systems poses particular challenges and opportunities. First, these 

systems can contain many paralogs, whose subtle functional differences are not apparent in 

their highly similar structures and sequences. Second, the large number of combinatorial 

interactions, even for modest numbers of components, requires commensurately large 

datasets for qualitative mapping and quantitative measurement. Third, design of new 

modified protein variants could potentially expand network computations, but requires 

models that relate component sequences to their interaction parameters. Initial work has 

begun to address these three issues.

Classifying inputs by their effective interactions

The maintenance of multiple protein variants within networks suggests that they could 

perform unique functions, but differences between these components can be subtle and 
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difficult to determine. Often, they have similar sequences and structures that do not provide 

obvious clues to the subtle differences in binding or activity that allow them to produce 

distinct effects. In other fields, comprehensive measurements of pairwise interactions have 

allowed functional systems-level classification of molecular components. For example, 

measuring the effects of a set of antibiotics, alone and in all pairwise combinations, on 

the growth of E. coli identified antagonistic and synergistic interactions.76 These interactions 

were then used to classify antibiotics into equivalence groups, where drugs exhibiting 

the same pattern of interactions with other drugs are grouped together. Remarkably, this 

epistatic classification scheme—lacking any direct molecular information—matched that 

based on the drugs’ known biochemical mechanisms of action.

Inspired by such studies, we asked whether a similar functional classification of BMP 

ligands could be obtained by systematically and quantitatively analyzing BMP pathway 

responses in several cell lines to 10 BMP ligands, both individually and in all pairwise 

combinations.43 In mouse embryonic stem cells (mESCs), many of the 10 ligands studied 

combined additively with one another, as if they were functionally interchangeable. 

However, even ligands that combined additively with one another sometimes interacted 

differently with other ligands. For example, BMP7 and BMP9 combined additively with 

each other, but either additively or synergistically, respectively, with BMP4, putting them 

into distinct equivalence groups. Altogether, this approach classified the full set of 10 

ligands into 5 equivalence groups, with ligands within a group sharing both a similar 

individual potency and a similar pattern of effective interactions with other ligands (Figure 

3B).

Are these equivalence groups intrinsic properties of the ligands, or are they contextual, 

depending on properties of the cell line and its receptor expression profile? In a second 

cell line, NMuMG, which exhibits a different BMP receptor expression profile, the ligands 

produced different pairwise responses. For example, BMP9 and BMP4 synergized in 

mESCs, but combined additively in NMuMG cells. More generally, NMuMG cells exhibited 

more antagonistic interactions between ligands. While the ligands could again be classified 

into five equivalence groups, these groups differed from those obtained in mES cells. 

More generally, expanding this analysis to a panel of five additional cell lines differing 

in their receptor expression profiles revealed the strong effect of receptor expression on 

ligand equivalence, with each of the 7 cell lines, some differing only in their receptor 

expression profiles, producing a distinct equivalence group classification. Evidently, cell 

context strongly impacts ligand equivalence.

This large dataset also provided insight into the effects of specific receptors on multi-ligand 

computation. For example, consistent with known ligand-receptor interactions, the BMPR1B 

receptor mediates signaling by the ligands GDF5, GDF6, and GDF7 by converting their 

antagonistic interactions to additive ones. Similarly, the ACVR1 and ACVRL1 receptors 

relieve non-additive interactions of BMP10 and BMP9, respectively. This phenotypic 

classification also proved useful in explaining previous results in the literature. For example, 

BMP9 was shown to functionally replace BMP10 during vasculature formation but not 

heart development.77 This difference in the equivalence of BMP9 and BMP10 is consistent 

with observations that only when the receptor ACVRL1 is expressed, as it is in endothelial 
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cells, do the two ligands fall into the same equivalence group. Taken together, these results 

underscore that BMP signaling is both combinatorial and contextual, as well as the power of 

effective interactions for revealing the spectrum of computational power in a given pathway 

and for individual ligands.

Mapping and quantifying protein-protein interactions

A key step in building a predictive model of combinatorial computations requires identifying 

which protein-protein complexes can form. However, even small changes in amino acid 

sequence can drastically affect protein binding affinity.78 As a result, one cannot necessarily 

predict how strongly one pair of protein variants based on the binding strengths of their 

paralogs.

For example, Wnt signaling provides powerful instructive cues during development. The 

pathway includes 10 ligand variants, each of which could potentially bind and activate 

any of 9 Fzd receptor variants. In fact, however, the signaling activities of the ligands 

differ from one another and vary across different cell contexts.11,12 To build a mechanistic 

understanding of the functional differences between Wnt ligands and Fzd receptors, 

Voloshanenko et al. engineered cells to express each Fzd receptor variant individually 

and then measured the activation of each receptor by each Wnt ligand.79 This map 

showed that each ligand activated multiple receptors and that most receptors were activated 

by multiple ligands (Figure 3C). (Note that two receptors were not activated by any 

ligand and may provide other, possibly inhibitory, functions.) Moreover, many structurally 

homologous ligands, such as Wnt9a and Wnt9b, activated different sets of receptors. Thus, 

this approach revealed counter-intuitive interactions and revealed the diverse capabilities of 

these apparently similar ligand and receptor variants.

An accurate prediction of combinatorial computations requires knowing not only which 

complexes can form, but their relative affinities of formation and their output-producing 

activities (kij and eij in Box 1 and Figure 3A). Lucarelli et al. built such a model to predict the 

gene-specific dynamics of multiple targets of the TGFβ pathway. In TGFβ signaling, three 

variants of the Smad effector, Smad2/3/4, promiscuously assemble in different combinations 

to generate a family of 10 possible trimeric transcription factor complexes that differ in their 

genomic targets and activities. Predicting how the distribution of these trimers depends on 

the expression levels of the three components is essential for understanding computation 

within the pathway. Lucarelli et al. used mass spectrometry and co-immunoprecipitation 

to quantify the phosphorylation dynamics of Smad monomers.80 The authors then used 

these data to fit a model in which monomers undergo pairwise association and dissociation 

(Figure 3D). Because each Smad2 and Smad3 monomer can be phosphorylated on two 

sites, many molecularly distinct complexes are possible. In fitting the model, they therefore 

used a standard regularization technique81,82 to limit the number of nonzero parameters 

and focus on key Smad complexes. The resulting model predicted that three crucial Smad 

complexes, out of the possible 10, drove most target gene expression. Critically, the fit 

model could predict TGFβ activation of gene expression in other cell lines based solely 

on Smad expression levels. It could also make reverse predictions, correctly inferring that 

a tumor sample had elevated levels of Smad activation overall based on changes in its 
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gene expression. These results provide hope that limited numbers of measurements can be 

sufficient to enable predictive, mechanistic modeling of combinatorial protein networks.

Redesigning component sequence to produce new behaviors

Machine learning methods show promise for identifying subtle patterns in the behavior of 

combinatorial protein networks and guiding the design of new signaling components. A 

clear example of this is recent work with GPCRs.15 These receptors promiscuously activate 

a variety of G-proteins, via interactions with the C-terminal tail of the Gα subunit. The 

authors quantified pathway activation by all possible pairs of 148 human GPCR and 11 Gα 
C-terminal domain variants, each fused to a common backbone. The sigmoidal signaling 

response to varying ligand concentrations allowed the authors to quantify the coupling 

between each receptor and each Gα variant. Training a machine learning model with these 

data identified sequence-specific coupling features, which the authors then used to forward 

design GPCR variants that coupled with a particular Gα variant of interest (Figure 3E). 

These results demonstrated how quantitative input-output measurements contain sufficient 

information to guide the design of new signaling components. Further, even though the 

underlying system is promiscuous, these results show that comprehensive analysis of 

promiscuous interactions, together with machine learning approaches, can enable the design 

of components with greater specificity.

Conclusions and future directions

In his 1995 review, “Protein molecules as computational elements in living cells,” Dennis 

Bray wrote, “Because proteins…integrate inputs and produce outputs it seems inescapable 

that the highly interconnected network of protein-based pathways in living cells will share 

some of the properties of neural nets.”28 Here, we have seen how combinatorial protein 

networks can provide a versatile architecture for realizing neural-like computation at the 

protein level. Mounting experimental evidence shows that these systems can compute 

combinatorial functions of multiple input proteins. Furthermore, the computation can be 

reprogrammed by modulating the expression levels of circuit components. This ability 

allows cells to tailor computations to cell state and context, and support higher level 

functions such as addressing and self-avoidance. Critically, the elements necessary for 

combinatorial computation are present in a huge range of systems, the vast majority of 

which have not yet been systematically analyzed from this point of view.

In computer science, different neural network architectures have been developed to perform 

different kinds of computational tasks.83 In a similar way, different combinatorial protein 

network architectures may be optimized to perform different classes of computation. For 

example, bHLH dimers often autoregulate their own expression, introducing direct feedback 

loops that allow the generation of stable attractors, while developmental signaling systems 

like BMP can use computation to selectively respond to different ligand combinations. 

Similarly, biological pathways may also operate over multiple timescales. For example, 

BMP can transmit signals on timescales of minutes to hours. Over the longer timescales 

of differentiation, cells can alter receptor expression, dynamically changing the ligand 

combinations they sense. Analysis of single-cell trajectories in developmental time courses 
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could shed more light on such dynamic behaviors and on their potential to alter 

computational behavior.

Combinatorial protein networks differ in fundamental ways from their artificial neural 

network analogs. Because proteins have finite concentrations in cells, competition for 

binding can lead to indirect (or nonlocal) interactions across a set of promiscuously 

dimerizing proteins. That is, an increase in the level of one complex necessarily reduces 

the concentrations of alternative complexes. It would be interesting to understand how this 

architectural difference impacts the functional expressivity of the network, and whether the 

principles of combinatorial protein networks could be usefully imported into artificial neural 

networks for engineering applications.

Above, we focused on a single set, or “layer,” of promiscuously interacting proteins. 

Superficially, this contrasts with deep multi-layer neural network architectures. However, 

biological circuits can also contain multiple distinct layers of combinatorial dimerization, 

with one layer regulating the next. For example, the promiscuous ligand-receptor 

interactions in the BMP signaling system (layer 1) lead to promiscuous phosphorylation 

of a set of distinct Smad proteins by distinct signaling complexes (layer 2). These in turn 

promiscuously multimerize to form a variety of transcription factor complexes (layer 3). 

Finally, these complexes exhibit many-to-many binding relations with different target sites 

on the chromosome (layer 4). In this way, biological circuits achieve multiple layers of 

computation. It will be interesting to determine which aspects of the overall computation are 

performed at each level, and why. It may also be important to consider how computations 

are deployed across multicellular systems. Contextuality potentially allows each cell type to 

tailor the computation of a given pathway to its own needs. Experiments and models will 

both be central to exploring how computational modules within individual cells compose to 

generate more complex, and spatially extended, tissue level functions at a larger scale.84

The paradigm of combinatorial protein networks can support at least two types of potential 

applications. First, the ability to develop predictive quantitative models of these systems 

could open up the ability to control cell behaviors with greater precision. Cell atlas projects 

have revealed the receptor expression profiles of most cell types. Promiscuous pathways 

are often involved in disease and targets for drug development. For example, mutations in 

the ACVR1 BMP receptor cause the disease fibrodysplasia ossificans progressiva (FOP). 

The discovery that these mutations cause disease by changing a non-signaling ligand-

receptor complex into an signaling complex introduced important new approaches in the 

development of FOP therapeutics 44,85. Understanding how potential perturbations of this 

and other pathways in each cell type and tissue environment change ligand perception could 

enable more rational design of therapeutic interventions. A second class of applications 

of this paradigm will undoubtedly unfold in synthetic biology, where systems of ever 

greater computational capacity are needed to enable more specific and controllable cell 

therapies.86-91 The case of the MultiFate architecture discussed above shows a relatively 

simple example in which combinatorial protein networks can enable a complex dynamical 

behavior—multistability. But to program more complex multicellular systems, eventually 

rivaling those of the natural immune system, for instance, many more types of rapid protein-

level computation will be needed.
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The principal challenge in both analyzing and synthetically implementing combinatorial 

protein networks is the explosion of interactions and component expression contexts. 

Analytically, one approach is based on minimal, effective biophysical models that represent 

the essential components and interactions (Box 1), and are parameterized with empirical 

measurements. This approach requires systematic characterization of components, and 

relies on approximations or simplifications that may not be universally valid across 

all cell contexts. Alternatively, machine learning approaches based on high throughput 

measurements could potentially provide a mechanism-independent way to predict behaviors. 

These, too, suffer from the need for large data sets and may be limited in their predictive 

ability by the contents of the training data set. While such statistical models may not be 

immediately interpretable, they could nevertheless be valuable for design of experiments and 

therapeutics. For both modeling approaches, a key challenge is grappling with the strong 

contextuality of dimerization networks. Different cell types express different levels of circuit 

components, potentially generating a whole repertoire of different functional behaviors. It 

will therefore be critical to ensure that models can accurately predict circuit behavior across 

cell contexts.

Synthetically, designing combinatorial protein networks faces the challenges of imposing 

defined many-to-many interactions on a set of engineered protein components, and then 

regulating those components in different cell types. Engineering of combinatorial protein 

networks will benefit from growing libraries of well-characterized protein interaction 

domains,92-94 and emerging methods to engineer complex protein-level circuits.31,95-98 

However, methods to assemble larger circuits in a more systematic way will be pivotal 

in expanding synthetic mammalian biology to multicellularity.

How “special” is the exact architecture and parameter values that characterize any given 

combinatorial protein network? At one extreme, it could be that in order to perform the 

required range of signal processing tasks within the organism, a combinatorial protein 

network needs to fine-tune its structure, affinities, activities, and other biochemical 

parameters. If one could replay the tape of evolution, in Stephen Jay Gould’s hypothetical 

metaphor, a closely equivalent network would have evolved with nearly identical 

parameters. On the other hand, it is possible that many different network topologies could 

provide the full diversity of computational functions for many or most possible parameter 

values. In this case, evolution might have stumbled upon a very different network design 

or parameter regime that nevertheless performs equivalent computations. In this case, the 

particular details of the pathways we observe would represent a contingent evolutionary 

artifact. Either way, it would be interesting to know whether the computational capacity of 

the system was more conserved or constrained than the molecular implementation.

Unlocking the full potential of promiscuous protein computation would provide a new 

lens to understand, predict, control, and ultimately program biological systems. Achieving 

this goal will require a combination of mathematical modeling, quantitative experimental 

analysis, and synthetic biology approaches. It will also require deeper analysis of the 

systems discussed above and extension of the paradigm to other systems that remain poorly 

characterized from this point of view. In the longer term, it will be interesting to see to what 
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extent a unified paradigm can explain a broad diversity of promiscuous molecular circuits, 

built out of proteins and potentially other biological molecules as well.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

H.E.K. is a Damon Runyon Fellow supported by the Damon Runyon Cancer Research Foundation (DRG-2472-22). 
J.G.-O. is supported by project PID2021-127311NB-I00 financed by the Spanish Ministry of Science and 
Innovation, the Spanish State Research Agency and FEDER (MICIN/AEI/10.13039/501100011033/FEDER), by 
the Maria de Maeztu Programme for Units of Excellence in R&D (project CEX2018-000792-M), and by the 
Generalitat de Catalunya (ICREA Academia programme). Work in the lab of MBE was supported by the National 
Institutes of Health grants R01 HD075335A and R01 MH116508, by the Paul G. Allen Frontiers Group and Prime 
Awarding Agency under Award No. UWSC10142, and by the National Science Foundation grant EF-2021552 
under subaward UWSC10278. Y.E.A is supported by the Israel Science Foundation (grant No. 1105/20) and is the 
incumbent Sygnet Career Development Chair for Bioinformatics.

References:

1. Carretero-Paulet L, Galstyan A, Roig-Villanova I, Martínez-García JF, Bilbao-Castro JR, and 
Robertson DL (2010). Genome-wide classification and evolutionary analysis of the bHLH family of 
transcription factors in Arabidopsis, poplar, rice, moss, and algae. Plant Physiol. 153, 1398–1412. 
10.1104/pp.110.153593. [PubMed: 20472752] 

2. Yan J, Ma Z, Xu X, and Guo A-Y (2014). Evolution, functional divergence and conserved 
exon–intron structure of bHLH/PAS gene family. Mol. Genet. Genomics 289, 25–36. 10.1007/
s00438-013-0786-0. [PubMed: 24202550] 

3. Wotton KR, Alcaine Colet A, Jaeger J, and Jimenez-Guri E (2013). Evolution and expression 
of BMP genes in flies. Dev. Genes Evol 223, 335–340. 10.1007/s00427-013-0445-9. [PubMed: 
23595982] 

4. Marques CL, Fernández I, Viegas MN, Cox CJ, Martel P, Rosa J, Cancela ML, and Laizé V 
(2016). Comparative analysis of zebrafish bone morphogenetic proteins 2, 4 and 16: molecular and 
evolutionary perspectives. Cell. Mol. Life Sci 73, 841–857. 10.1007/s00018-015-2024-x. [PubMed: 
26341094] 

5. Gul IS, Hulpiau P, Saeys Y, and van Roy F (2017). Evolution and diversity of cadherins and 
catenins. Exp. Cell Res 358, 3–9. 10.1016/j.yexcr.2017.03.001. [PubMed: 28268172] 

6. Granados AA, Kanrar N, and Elowitz MB (2022). Combinatorial expression motifs in signaling 
pathways. bioRxiv, 2022.08.21.504714. 10.1101/2022.08.21.504714.

7. Nickel J, and Mueller TD (2019). Specification of BMP Signaling. Cells 8. 10.3390/cells8121579.

8. Kakuda S, LoPilato RK, Ito A, and Haltiwanger RS (2020). Canonical Notch ligands and Fringes 
have distinct effects on NOTCH1 and NOTCH2. J. Biol. Chem 295, 14710–14722. 10.1074/
jbc.RA120.014407. [PubMed: 32820046] 

9. Delgoffe GM, Murray PJ, and Vignali DAA (2011). Interpreting mixed signals: the cell’s cytokine 
conundrum. Curr. Opin. Immunol 23, 632–638. 10.1016/j.coi.2011.07.013. [PubMed: 21852079] 

10. Morris R, Kershaw NJ, and Babon JJ (2018). The molecular details of cytokine signaling via the 
JAK/STAT pathway. Protein Sci. 27, 1984–2009. 10.1002/pro.3519. [PubMed: 30267440] 

11. Eubelen M, Bostaille N, Cabochette P, Gauquier A, Tebabi P, Dumitru AC, Koehler M, Gut 
P, Alsteens D, Stainier DYR, et al. (2018). A molecular mechanism for Wnt ligand-specific 
signaling. Science 361. 10.1126/science.aat1178.

12. Nusse R, and Clevers H (2017). Wnt/β-Catenin Signaling, Disease, and Emerging Therapeutic 
Modalities. Cell 169, 985–999. 10.1016/j.cell.2017.05.016. [PubMed: 28575679] 

13. Ornitz DM, and Itoh N (2015). The Fibroblast Growth Factor signaling pathway. Wiley Interdiscip. 
Rev. Dev. Biol 4, 215–266. 10.1002/wdev.176. [PubMed: 25772309] 

Klumpe et al. Page 17

Cell Syst. Author manuscript; available in PMC 2024 June 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



14. Trenker R, and Jura N (2020). Receptor tyrosine kinase activation: From the ligand perspective. 
Curr. Opin. Cell Biol 63, 174–185. 10.1016/j.ceb.2020.01.016. [PubMed: 32114309] 

15. Inoue A, Raimondi F, Kadji FMN, Singh G, Kishi T, Uwamizu A, Ono Y, Shinjo Y, Ishida S, 
Arang N, et al. (2019). Illuminating G-Protein-Coupling Selectivity of GPCRs. Cell 177, 1933–
1947.e25. 10.1016/j.cell.2019.04.044. [PubMed: 31160049] 

16. Rodríguez-Martínez JA, Reinke AW, Bhimsaria D, Keating AE, and Ansari AZ (2017). 
Combinatorial bZIP dimers display complex DNA-binding specificity landscapes. Elife 6. 
10.7554/eLife.19272.

17. Lambert SA, Jolma A, Campitelli LF, Das PK, Yin Y, Albu M, Chen X, Taipale J, Hughes 
TR, and Weirauch MT (2018). The Human Transcription Factors. Cell 172, 650–665. 10.1016/
j.cell.2018.01.029. [PubMed: 29425488] 

18. Neuhold LA, and Wold B (1993). HLH forced dimers: tethering MyoD to E47 generates a 
dominant positive myogenic factor insulated from negative regulation by Id. Cell 74, 1033–1042. 
10.1016/0092-8674(93)90725-6. [PubMed: 7691411] 

19. Balemans W, and Van Hul W (2002). Extracellular regulation of BMP signaling in vertebrates: a 
cocktail of modulators. Dev. Biol 250, 231–250. [PubMed: 12376100] 

20. Feng S, Rastogi C, Loker R, Glassford WJ, Tomas Rube H, Bussemaker HJ, and Mann 
RS (2022). Transcription factor paralogs orchestrate alternative gene regulatory networks 
by context-dependent cooperation with multiple cofactors. Nat. Commun 13, 3808. 10.1038/
s41467-022-31501-2. [PubMed: 35778382] 

21. Sotomayor M, Gaudet R, and Corey DP (2014). Sorting out a promiscuous superfamily: towards 
cadherin connectomics. Trends Cell Biol. 24, 524–536. 10.1016/j.tcb.2014.03.007. [PubMed: 
24794279] 

22. Wojtowicz WM, Vielmetter J, Fernandes RA, Siepe DH, Eastman CL, Chisholm GB, Cox 
S, Klock H, Anderson PW, Rue SM, et al. (2020). A Human IgSF Cell-Surface Interactome 
Reveals a Complex Network of Protein-Protein Interactions. Cell 182, 1027–1043.e17. 10.1016/
j.cell.2020.07.025. [PubMed: 32822567] 

23. Carrillo RA, Özkan E, Menon KP, Nagarkar-Jaiswal S, Lee P-T, Jeon M, Birnbaum ME, 
Bellen HJ, Garcia KC, and Zinn K (2015). Control of Synaptic Connectivity by a Network 
of Drosophila IgSF Cell Surface Proteins. Cell 163, 1770–1782. 10.1016/j.cell.2015.11.022. 
[PubMed: 26687361] 

24. Tsai TY-C, Sikora M, Xia P, Colak-Champollion T, Knaut H, Heisenberg C-P, and Megason SG 
(2020). An adhesion code ensures robust pattern formation during tissue morphogenesis. Science 
370, 113–116. 10.1126/science.aba6637. [PubMed: 33004519] 

25. Hertz J, Krogh A, and Palmer RG (2018). Introduction. Introduction to the Theory of Neural 
Computation, 1–10. 10.1201/9780429499661-1.

26. Marr D (1982). Vision: A computational investigation into the human representation and 
processing of visual information (W. H. Freeman and Company).

27. Arkin A, and Ross J (1994). Computational functions in biochemical reaction networks. Biophys. J 
67, 560–578. 10.1016/S0006-3495(94)80516-8. [PubMed: 7948674] 

28. Bray D (1995). Protein molecules as computational elements in living cells. Nature 376, 307–312. 
10.1038/376307a0. [PubMed: 7630396] 

29. Gerhart J, and Kirschner M (1997). Cells, Embryos and Evolution (John Wiley & Sons, 
Incorporated).

30. Jones TS, Oliveira SMD, Myers CJ, Voigt CA, and Densmore D (2022). Genetic circuit design 
automation with Cello 2.0. Nat. Protoc 17, 1097–1113. 10.1038/s41596-021-00675-2. [PubMed: 
35197606] 

31. Chen Z, Linton JM, Zhu R, and Elowitz MB (2022). A synthetic protein-level neural network in 
mammalian cells. bioRxiv, 2022.07.10.499405. 10.1101/2022.07.10.499405.

32. Steinbacher T, Kummer D, and Ebnet K (2018). Junctional adhesion molecule-A: functional 
diversity through molecular promiscuity. Cell. Mol. Life Sci 75, 1393–1409. 10.1007/
s00018-017-2729-0. [PubMed: 29238845] 

Klumpe et al. Page 18

Cell Syst. Author manuscript; available in PMC 2024 June 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



33. Schröter C, Ares S, Morelli LG, Isakova A, Hens K, Soroldoni D, Gajewski M, Jülicher F, Maerkl 
SJ, Deplancke B, et al. (2012). Topology and dynamics of the zebrafish segmentation clock core 
circuit. PLoS Biol. 10, e1001364. 10.1371/journal.pbio.1001364. [PubMed: 22911291] 

34. Ammeux N, Housden BE, Georgiadis A, Hu Y, and Perrimon N (2016). Mapping signaling 
pathway cross-talk in Drosophila cells. Proc. Natl. Acad. Sci. U. S. A 113, 9940–9945. 10.1073/
pnas.1610432113. [PubMed: 27528688] 

35. Galstyan V, Funk L, Einav T, and Phillips R (2019). Combinatorial Control through Allostery. J. 
Phys. Chem. B 123, 2792–2800. 10.1021/acs.jpcb.8b12517. [PubMed: 30768906] 

36. Yan SF, D’Agati V, Schmidt AM, and Ramasamy R (2007). Receptor for Advanced Glycation 
Endproducts (RAGE): a formidable force in the pathogenesis of the cardiovascular complications 
of diabetes & aging. Curr. Mol. Med 7, 699–710. [PubMed: 18331228] 

37. Agliari E, Altavilla M, Barra A, Dello Schiavo L, and Katz E (2015). Notes on stochastic 
(bio)-logic gates: computing with allosteric cooperativity. Sci. Rep 5, 9415. 10.1038/srep09415. 
[PubMed: 25976626] 

38. de Ronde W, Rein ten Wolde P, and Mugler A (2012). Protein logic: a statistical mechanical 
study of signal integration at the single-molecule level. Biophys. J 103, 1097–1107. 10.1016/
j.bpj.2012.07.040. [PubMed: 23009860] 

39. Marzen S, Garcia HG, and Phillips R (2013). Statistical Mechanics of Monod–Wyman–Changeux 
(MWC) Models. J. Mol. Biol 425, 1433–1460. 10.1016/j.jmb.2013.03.013. [PubMed: 23499654] 

40. Massagué J (1990). The transforming growth factor-beta family. Annu. Rev. Cell Biol 6, 597–641. 
10.1146/annurev.cb.06.110190.003121. [PubMed: 2177343] 

41. Antebi YE, Linton JM, Klumpe H, Bintu B, Gong M, Su C, McCardell R, and Elowitz MB 
(2017). Combinatorial Signal Perception in the BMP Pathway. Cell 170, 1184–1196.e24. 10.1016/
j.cell.2017.08.015. [PubMed: 28886385] 

42. Mueller TD, and Nickel J (2012). Promiscuity and specificity in BMP receptor activation. FEBS 
Lett. 586, 1846–1859. 10.1016/j.febslet.2012.02.043. [PubMed: 22710174] 

43. Klumpe H, Langley MA, Linton JM, Su CJ, Antebi YE, and Elowitz MB (2022). The context-
dependent, combinatorial logic of BMP signaling. Cell Systems. 10.1016/j.cels.2022.03.002.

44. Aykul S, Huang L, Wang L, Das NM, Reisman S, Ray Y, Zhang Q, Rothman N, Nannuru 
KC, Kamat V, et al. (2022). Anti-ACVR1 antibodies exacerbate heterotopic ossification in 
fibrodysplasia ossificans progressiva (FOP) by activating FOP-mutant ACVR1. J. Clin. Invest 
132. 10.1172/JCI153792.

45. Olsen OE, Wader KF, Hella H, Mylin AK, Turesson I, Nesthus I, Waage A, Sundan A, and Holien 
T (2015). Activin A inhibits BMP-signaling by binding ACVR2A and ACVR2B. Cell Commun. 
Signal 13, 27. 10.1186/s12964-015-0104-z. [PubMed: 26047946] 

46. Hiepen C, Jatzlau J, Hildebrandt S, Kampfrath B, Goktas M, Murgai A, Cuellar Camacho JL, Haag 
R, Ruppert C, Sengle G, et al. (2019). BMPR2 acts as a gatekeeper to protect endothelial cells 
from increased TGFβ responses and altered cell mechanics. PLoS Biol. 17, e3000557. 10.1371/
journal.pbio.3000557. [PubMed: 31826007] 

47. Escalante-Chong R, Savir Y, Carroll SM, Ingraham JB, Wang J, Marx CJ, and Springer M (2015). 
Galactose metabolic genes in yeast respond to a ratio of galactose and glucose. Proc. Natl. Acad. 
Sci. U. S. A 112, 1636–1641. 10.1073/pnas.1418058112. [PubMed: 25605920] 

48. Grosswendt S, Kretzmer H, Smith ZD, Kumar AS, Hetzel S, Wittler L, Klages S, Timmermann 
B, Mukherji S, and Meissner A (2020). Epigenetic regulator function through mouse gastrulation. 
Nature 584, 102–108. 10.1038/s41586-020-2552-x. [PubMed: 32728215] 

49. He P, Williams BA, Trout D, Marinov GK, Amrhein H, Berghella L, Goh S-T, Plajzer-Frick 
I, Afzal V, Pennacchio LA, et al. (2020). The changing mouse embryo transcriptome at whole 
tissue and single-cell resolution. Nature 583, 760–767. 10.1038/s41586-020-2536-x. [PubMed: 
32728245] 

50. The COVID Tissue Atlas Consortium, Granados AA, Bucher S, Agrawal A, Song H, Chen 
AT, Peng T, Neff N, Pisco AO, Huang F, et al. (2022). Comprehensive characterization of the 
transcriptional response to COVID-19 in multiple organs reveals shared signatures across tissues. 
bioRxiv, 2022.05.31.493925. 10.1101/2022.05.31.493925.

Klumpe et al. Page 19

Cell Syst. Author manuscript; available in PMC 2024 June 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



51. Consortium TTM, The Tabula Muris Consortium, Coordination, O., Coordination, L., Organ 
collection and processing, Library preparation and sequencing, Analysis, C.D., Annotation, C.T., 
Writing group, Supplemental text writing group, et al. (2018). Single-cell transcriptomics of 
20 mouse organs creates a Tabula Muris. Nature 562, 367–372. 10.1038/s41586-018-0590-4. 
[PubMed: 30283141] 

52. Travaglini KJ, Nabhan AN, Penland L, Sinha R, Gillich A, Sit RV, Chang S, Conley SD, Mori Y, 
Seita J, et al. (2020). A molecular cell atlas of the human lung from single-cell RNA sequencing. 
Nature 587, 619–625. 10.1038/s41586-020-2922-4. [PubMed: 33208946] 

53. Maslov S (2008). Topological and Dynamical Properties of Protein Interaction Networks. In 
Protein-protein Interactions and Networks: Identification, Computer Analysis, and Prediction A. 
Panchenko and Przytycka T, eds. (Springer London), pp. 115–137. 10.1007/978-1-84800-125-1_7.

54. Pickholtz RL, Milstein LB, and Schilling DL (1991). Spread spectrum for mobile communications. 
IEEE Trans. Veh. Technol 40, 313–322. 10.1109/25.289412.

55. Stüber GL Principles of Mobile Communication (Springer International Publishing) 
10.1007/978-3-319-55615-4.

56. Morsut L, Roybal KT, Xiong X, Gordley RM, Coyle SM, Thomson M, and Lim WA (2016). 
Engineering Customized Cell Sensing and Response Behaviors Using Synthetic Notch Receptors. 
Cell 164, 780–791. 10.1016/j.cell.2016.01.012. [PubMed: 26830878] 

57. Su CJ, Murugan A, Linton JM, Yeluri A, Bois J, Klumpe H, Antebi YE, and Elowitz 
MB (2022). Ligand-receptor promiscuity enables cellular addressing. Cell Systems. 10.1016/
j.cels.2022.03.001.

58. Lawrence Zipursky S, and Grueber WB (2013). The Molecular Basis of Self-Avoidance. Annu. 
Rev. Neurosci 36, 547–568. 10.1146/annurev-neuro-062111-150414. [PubMed: 23841842] 

59. Schreiner D, and Weiner JA (2010). Combinatorial homophilic interaction between γ-
protocadherin multimers greatly expands the molecular diversity of cell adhesion. Proc. Natl. 
Acad. Sci. U. S. A 107, 14893–14898. 10.1073/pnas.1004526107. [PubMed: 20679223] 

60. Thu CA, Chen WV, Rubinstein R, Chevee M, Wolcott HN, Felsovalyi KO, Tapia JC, Shapiro 
L, Honig B, and Maniatis T (2014). Single-cell identity generated by combinatorial homophilic 
interactions between α, β, and γ protocadherins. Cell 158, 1045–1059. 10.1016/j.cell.2014.07.012. 
[PubMed: 25171406] 

61. Mountoufaris G, Canzio D, Nwakeze CL, Chen WV, and Maniatis T (2018). Writing, Reading, 
and Translating the Clustered Protocadherin Cell Surface Recognition Code for Neural Circuit 
Assembly. Annu. Rev. Cell Dev. Biol 34, 471–493. 10.1146/annurev-cellbio-100616-060701. 
[PubMed: 30296392] 

62. Vu VH, Rahil Z, Sullivan BG, and Leckband DE (2020). Cadherin Complexes are Combinatorial 
Mechano-Switches that Differentially Regulate Cell Mechanics. Biophys. J 118, 250a.

63. Grove CA, De Masi F, Barrasa MI, Newburger DE, Alkema MJ, Bulyk ML, and Walhout 
AJM (2009). A multiparameter network reveals extensive divergence between C. elegans bHLH 
transcription factors. Cell 138, 314–327. 10.1016/j.cell.2009.04.058. [PubMed: 19632181] 

64. Pourquié O (2011). Vertebrate segmentation: from cyclic gene networks to scoliosis. Cell 145, 
650–663. 10.1016/j.cell.2011.05.011. [PubMed: 21620133] 

65. Riedel-Kruse IH, Müller C, and Oates AC (2007). Synchrony dynamics during initiation, 
failure, and rescue of the segmentation clock. Science 317, 1911–1915. 10.1126/science.1142538. 
[PubMed: 17702912] 

66. Ochi S, Imaizumi Y, Shimojo H, Miyachi H, and Kageyama R (2020). Oscillatory expression of 
Hes1 regulates cell proliferation and neuronal differentiation in the embryonic brain. Development 
147. 10.1242/dev.182204.

67. Boareto M, Iber D, and Taylor V (2017). Differential interactions between Notch and ID factors 
control neurogenesis by modulating Hes factor autoregulation. Development 144, 3465–3474. 
10.1242/dev.152520. [PubMed: 28974640] 

68. Cinquin O (2007). Repressor dimerization in the zebrafish somitogenesis clock. PLoS Comput. 
Biol 3, e32. 10.1371/journal.pcbi.0030032. [PubMed: 17305423] 

Klumpe et al. Page 20

Cell Syst. Author manuscript; available in PMC 2024 June 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



69. Zinani OQH, Keseroğlu K, Dey S, Ay A, Singh A, and Özbudak EM (2022). Gene copy number 
and negative feedback differentially regulate transcriptional variability of segmentation clock 
genes. iScience 25, 104579. 10.1016/j.isci.2022.104579. [PubMed: 35789861] 

70. Zinani OQH, Keseroğlu K, Ay A, and Özbudak EM (2021). Pairing of segmentation clock genes 
drives robust pattern formation. Nature 589, 431–436. 10.1038/s41586-020-03055-0. [PubMed: 
33361814] 

71. Amoutzias GD, Pichler EE, Mian N, De Graaf D, Imsiridou A, Robinson-Rechavi M, Bornberg-
Bauer E, Robertson DL, and Oliver SG (2007). A protein interaction atlas for the nuclear 
receptors: properties and quality of a hub-based dimerisation network. BMC Syst. Biol 1, 34. 
10.1186/1752-0509-1-34. [PubMed: 17672894] 

72. Amoutzias GD, Robertson DL, Van de Peer Y, and Oliver SG (2008). Choose your partners: 
dimerization in eukaryotic transcription factors. Trends Biochem. Sci 33, 220–229. 10.1016/
j.tibs.2008.02.002. [PubMed: 18406148] 

73. Zhu R, Del Rio-Salgado JM, Garcia-Ojalvo J, and Elowitz MB (2022). Synthetic multistability in 
mammalian cells. Science 375, eabg9765. 10.1126/science.abg9765. [PubMed: 35050677] 

74. Osborn DPS, Li K, Hinits Y, and Hughes SM (2011). Cdkn1c drives muscle differentiation through 
a positive feedback loop with Myod. Dev. Biol 350, 464–475. 10.1016/j.ydbio.2010.12.010. 
[PubMed: 21147088] 

75. Bhattacharya A, and Baker NE (2011). A network of broadly expressed HLH genes regulates 
tissue-specific cell fates. Cell 147, 881–892. 10.1016/j.cell.2011.08.055. [PubMed: 22078884] 

76. Yeh P, Tschumi AI, and Kishony R (2006). Functional classification of drugs by properties of their 
pairwise interactions. Nat. Genet 38, 489–494. 10.1038/ng1755. [PubMed: 16550172] 

77. Chen H, Brady Ridgway J, Sai T, Lai J, Warming S, Chen H, Roose-Girma M, Zhang G, 
Shou W, and Yan M (2013). Context-dependent signaling defines roles of BMP9 and BMP10 in 
embryonic and postnatal development. Proc. Natl. Acad. Sci. U. S. A 110, 11887–11892. 10.1073/
pnas.1306074110. [PubMed: 23812757] 

78. Marti-Solano M, Crilly SE, Malinverni D, Munk C, Harris M, Pearce A, Quon T, Mackenzie AE, 
Wang X, Peng J, et al. (2020). Combinatorial expression of GPCR isoforms affects signalling and 
drug responses. Nature 587, 650–656. 10.1038/s41586-020-2888-2. [PubMed: 33149304] 

79. Voloshanenko O, Gmach P, Winter J, Kranz D, and Boutros M (2017). Mapping of Wnt-Frizzled 
interactions by multiplex CRISPR targeting of receptor gene families. FASEB J. 31, 4832–4844. 
10.1096/fj.201700144R. [PubMed: 28733458] 

80. Lucarelli P, Schilling M, Kreutz C, Vlasov A, Boehm ME, Iwamoto N, Steiert B, Lattermann 
S, Wäsch M, Stepath M, et al. (2018). Resolving the Combinatorial Complexity of Smad 
Protein Complex Formation and Its Link to Gene Expression. Cell Syst 6, 75–89.e11. 10.1016/
j.cels.2017.11.010. [PubMed: 29248373] 

81. Merkle R, Steiert B, Salopiata F, Depner S, Raue A, Iwamoto N, Schelker M, Hass H, Wäsch 
M, Böhm ME, et al. (2016). Identification of Cell Type-Specific Differences in Erythropoietin 
Receptor Signaling in Primary Erythroid and Lung Cancer Cells. PLoS Comput. Biol 12, 
e1005049. 10.1371/journal.pcbi.1005049. [PubMed: 27494133] 

82. Steiert B, Timmer J, and Kreutz C (2016). L1 regularization facilitates detection of cell type-
specific parameters in dynamical systems. Bioinformatics 32, i718–i726. 10.1093/bioinformatics/
btw461. [PubMed: 27587694] 

83. LeCun Y, Bengio Y, and Hinton G (2015). Deep learning. Nature 521, 436–444. 10.1038/
nature14539. [PubMed: 26017442] 

84. Regot S, Macia J, Conde N, Furukawa K, Kjellén J, Peeters T, Hohmann S, de Nadal E, Posas 
F, and Solé R (2011). Distributed biological computation with multicellular engineered networks. 
Nature 469, 207–211. 10.1038/nature09679. [PubMed: 21150900] 

85. Williams E, Bagarova J, Kerr G, Xia D-D, Place ES, Dey D, Shen Y, Bocobo GA, Mohedas AH, 
Huang X, et al. (2021). Saracatinib is an efficacious clinical candidate for fibrodysplasia ossificans 
progressiva. JCI Insight 6. 10.1172/jci.insight.95042.

86. Wu M-R, Jusiak B, and Lu TK (2019). Engineering advanced cancer therapies with synthetic 
biology. Nat. Rev. Cancer 19, 187–195. 10.1038/s41568-019-0121-0. [PubMed: 30837696] 

Klumpe et al. Page 21

Cell Syst. Author manuscript; available in PMC 2024 June 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



87. Kitada T, DiAndreth B, Teague B, and Weiss R (2018). Programming gene and engineered-cell 
therapies with synthetic biology. Science 359. 10.1126/science.aad1067.

88. Cubillos-Ruiz A, Guo T, Sokolovska A, Miller PF, Collins JJ, Lu TK, and Lora JM (2021). 
Engineering living therapeutics with synthetic biology. Nat. Rev. Drug Discov 20, 941–960. 
10.1038/s41573-021-00285-3. [PubMed: 34616030] 

89. Scheller L, and Fussenegger M (2019). From synthetic biology to human therapy: engineered 
mammalian cells. Curr. Opin. Biotechnol 58, 108–116. 10.1016/j.copbio.2019.02.023. [PubMed: 
30933864] 

90. Johnson MB, March AR, and Morsut L (2017). Engineering multicellular systems: using 
synthetic biology to control tissue self-organization. Curr Opin Biomed Eng 4, 163–173. 10.1016/
j.cobme.2017.10.008. [PubMed: 29308442] 

91. Markson JS, and Elowitz MB (2014). Synthetic biology of multicellular systems: new platforms 
and applications for animal cells and organisms. ACS Synth. Biol 3, 875–876. 10.1021/sb500358y. 
[PubMed: 25524091] 

92. Boyken SE, Chen Z, Groves B, Langan RA, Oberdorfer G, Ford A, Gilmore JM, Xu C, DiMaio 
F, Pereira JH, et al. (2016). De novo design of protein homo-oligomers with modular hydrogen-
bond network-mediated specificity. Science 352, 680–687. 10.1126/science.aad8865. [PubMed: 
27151862] 

93. Chen Z, Boyken SE, Jia M, Busch F, Flores-Solis D, Bick MJ, Lu P, VanAernum ZL, 
Sahasrabuddhe A, Langan RA, et al. (2019). Programmable design of orthogonal protein 
heterodimers. Nature 565, 106–111. 10.1038/s41586-018-0802-y. [PubMed: 30568301] 

94. Lebar T, Lainšček D, Merljak E, Aupič J, and Jerala R (2020). A tunable orthogonal coiled-coil 
interaction toolbox for engineering mammalian cells. Nat. Chem. Biol 16, 513–519. 10.1038/
s41589-019-0443-y. [PubMed: 31907374] 

95. Chen Z, and Elowitz MB (2021). Programmable protein circuit design. Cell 184, 2284–2301. 
10.1016/j.cell.2021.03.007. [PubMed: 33848464] 

96. Gao XJ, Chong LS, Kim MS, and Elowitz MB (2018). Programmable protein circuits in living 
cells. Science 361, 1252–1258. 10.1126/science.aat5062. [PubMed: 30237357] 

97. Chung HK, Zou X, Bajar BT, Brand VR, Huo Y, Alcudia JF, Ferrell JE Jr, and Lin MZ (2019). A 
compact synthetic pathway rewires cancer signaling to therapeutic effector release. Science 364. 
10.1126/science.aat6982.

98. Fink T, and Jerala R (2022). Designed protease-based signaling networks. Curr. Opin. Chem. Biol 
68, 102146. 10.1016/j.cbpa.2022.102146. [PubMed: 35430555] 

Klumpe et al. Page 22

Cell Syst. Author manuscript; available in PMC 2024 June 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Box 1:

Mathematical model of computation by promiscuous protein dimerization 
networks

Promiscuous protein dimerization networks can implement diverse computations. To see 

how this works, consider a minimal system, inspired by signaling pathways, where one 

set of protein variants, Ai, analogous to ligands, acting as inputs, can bind to a second set 

of components, Bj, analogous to receptors, to form a combinatorial set of binary signaling 

complexes, Cij. A similar formalism can represent other combinatorial dimerization and 

more complex multimerization networks. More specifically, we consider a system with 

two A and two B variants, generating four binding reactions (Box Figure 1A):

A1 + B1 C11, A1 + B2 C12, A2 + B1 C21, A2 + B2 C22 .

At equilibrium, these reactions lead to the equations AiBj = kijCij where kij denotes 

the affinity of binding of Ai with Bj. We also assume that the total abundances of 

the components are at steady-state, i.e. that complex formation and dissociation are 

fast compared to the timescales of protein production and removal. Additionally, for 

analytical simplicity, we consider a regime in which the A variants are supplied at a fixed 

concentration in a large extracellular volume, as could occur in the context of signaling, 

so that their concentrations are negligibly perturbed by binding to B variants. However, 

similar functional behaviors can be obtained without this assumption. We then have the 

following conservation laws for the total B abundances, B1T and B2T:

B1 + C11 + C21 = B1T B2 + C12 + C22 = B2T .

From these equations, we obtain expressions for the concentrations of the free B proteins 

as a function of the A concentrations:

B1 = B1T

1 + k11A1 + k21A2
, B2 = B2T

1 + k12A1 + k22A2
. (1)

Assuming each complex, Cij signals with a specific activity, eij, the total output signal, S, 

is the sum of contributions from each complex,

S = e11C11 + e12C12 + e21C21 + e22C22 .

Finally, using the conservation laws (1), the expression for free receptors (2), and the 

equilibrium equations above, we can express the system output, S, in terms of the 

concentrations of the A variants and the total abundances of B1 and B2.
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S = e11B1Tk11A1

1 + k11A1 + k21A2
+ e12B2Tk12A1

1 + k12A1 + k22A2
+ e21B1Tk21A2

1 + k11A1 + k21A2

+ e22B2Tk22A2

1 + k12A1 + k22A2
.

(2)

This simple model can represent at least four different classes of computation: additive, 

ratiometric, balance and imbalance responses (Box Figure 1B). For instance, when the 

activities of C12 and C21 are small compared to those of C11 and C22 (when each A 

component strongly activates a distinct B component), the system response can be 

approximated by the sum of two increasing functions, each hyperbolically increasing 

with one A variant and cross-inhibited by the other:

S ≈ e11B1Tk11A1

1 + k11A1 + k21A2
+ e22B2Tk22A2

1 + k12A1 + k22A2

In this limit, when the affinity coefficients have similar values, the system performs an 

additive computation (see Box Figure 1B, left). On the other hand, when the values of 

these coefficients differ from each other, and are chosen appropriately, the system can 

exhibit a balance or an imbalance response (Box Figure 1B, center). When e21 and e22 are 

small, the response of the circuit depends approximately on the ratio between A2 and A1:

S ≈ e11B1Tk11A1

1 + k11A1 + k21A2
+ e12B2Tk12A1

1 + k12A1 + k22A2
≈ e11B1Tk11 + e12B2Tk12

k11 + k21(A2 ∕ A1)

where we have considered that k11 = k12 and k21 = k22, and have assumed kijAk ≫ 1. This 

behavior corresponds to a ratiometric computation (see Box Figure 1B, right).

In summary, this minimal model shows that specific sets of parameter values enable even 

simple promiscuous protein networks to operate in different computational modes. In 

particular, the four computational modes described above (additive, ratiometric, balance, 

and imbalanced) can be reached by selecting subsets of B components from a pool of 

only four variants, which interact with a single pair of A components (Box Figure 1C,D). 

This feature can be visualized by smoothly varying B levels and observing the resulting 

changes in computation (Supplementary Movie 1). In that way, computations in the A 

space depend on the context defined by the B levels. This model highlights the central 

importance of differences in parameters such as affinity, activity, and expression levels, 

which can be mediated by diverse mechanisms such as post-translational modification 

and expression-mediated feedbacks. Importantly, our model is not sensitive to the 

exact mechanism determining these parameters and can be expanded to explore more 

complicated protein binding architectures that lead to an even wider array of functions.

This simple model also reveals a feature of promiscuous protein networks that sets 

these computational systems apart from traditional neural networks. Specifically, because 

of the stoichiometric nature of the biochemical reactions, reflected in the conservation 

laws above, a change in the total abundance of one individual component can lead 

to a redistribution of other complexes (Box Figure 1E). This effect can be direct, 
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affecting complexes containing the component whose abundance was perturbed, or 

indirect, impacting complexes in which the perturbed component does not appear. The 

resulting redistribution of components across complexes is absent in neural networks, 

whose components are not subject to conservation laws, but functions to strengthen the 

computational capabilities of promiscuous protein interaction networks.
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Box figure: Mathematical model of computation by promiscuous protein dimerization 
networks
(A) In a minimal promiscuous protein dimerization network, two A-type components 

(circles) interact with two B-type components (squares) to form complexes that induce a 

response. The binding affinities of the components Ai and Bj to form the complex Cij are 

denoted by kij, and their response activity levels are denoted by eij.

(B) Heatmaps representing the response of the minimal network as a function of 

the A concentrations. Parameter values are indicated by line weights, as indicated 

in the legend (a.u. = arbitrary units). All levels of B-type components are set at 

10 a.u. The code to generate these plots can be found at https://github.com/dsb-lab/

MinimalPromiscuousCircuit.

(C) All four distinct classes of computations shown in (B) can be generated by a 

single model with specific biochemical parameters using only four B-type components. 

Parameter values are indicated by line weights as in (B).
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(D) By changing the expression levels of the B-type components the model can transition 

smoothly between the four computation classes. See also Movie S1.

(E) When the concentration of a ligand is increased (blue circles), the stoichiometric 

nature of the biochemical reaction results in a global redistribution of complexes. Outline 

bars and shaded bars show the amount of each complex before and after the increase 

in ligand, respectively. The increase results in direct effects on complexes containing 

the varying ligand (marked ‘Direct’). Additionally, the redistribution of complexes has 

indirect effects on complexes that do not contain the varying ligand (marked ‘Indirect’).
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Figure 1: Diverse cellular pathways exhibit many-to-many interactions among protein families.
(A) Extant pathways, such as signaling from one component (circle) to another (square) 

can evolve from simpler ancestral pathways through gene duplications, resulting in many-to-

many interaction networks (right).

(B) Different cell types (gray) typically express different protein variant profiles (schematic 

bar plots).

(C) Intercellular communication systems often comprise multiple ligand (upper) and 

receptor (lower) variants that interact in a many-to-many fashion, with each ligand binding 

to multiple receptors and each receptor binding to multiple ligand variants.

(D) In signal transduction systems, receptor variants (upper) interact with variant 

intracellular signal transducers, or effectors, in a many-to-many fashion.

(E) In cell adhesion processes, protocadherin variants interact with other protocadherins in 

adjacent cells, also in a many-to-many fashion.

(F) Eukaryotic transcription factor variants can often bind to one another to form a large 

repertoire of distinct dimers, each with distinct DNA binding specificities.
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Figure 2: Many-to-many interaction systems can provide key functional capabilities.
(A) In cell-cell signaling, many-to-many interactions between ligands and receptors allow 

ligands mixtures to “address” messages to specific cell types, rather than broadcasting 

messages to any cell expressing receptors (left). This works by generating responses in 

specific regions of a multi-dimensional ligand concentration space. A model of BMP 

signaling showed that particular parameters for receptor-ligand interactions allow a single 

ligand pair to activate up to 8 distinct receptor configurations, depending on the ligand 

concentrations (middle, right). In each plot, the x- and y-axes show concentrations of two 

ligands, L1 and L2.

(B) In cell-cell adhesion, combinations of Pcdh isoforms (different colors) can encode 

cellular identity, allowing neurons to distinguish self from non-self.

(C) In gene regulation circuits, dimerization of bHLH transcription factors partitions the 

protein variants into active and inactive dimers. Perturbations of monomer expression can 

thus alter dimer abundance to produce nuanced effects on target gene expression.

(D) Naturally occurring protein-protein dimerization networks can guide the design of 

synthetic circuits for more complex computations. For example, the MultiFate-2 system 

includes a synthetic transcription mechanism that, like bHLH transcription factors, includes 

dimerization, DNA binding, and transcriptional activation domains. These programmed 
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interactions (left) give rise to diverse stable cell states (right) defined by concentrations of 

active transcription factor dimers, analogous to differentiated cell states.
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Figure 3: Strategies to understand and control combinatorial complexity of protein dimerization 
networks.
(A) In combinatorial protein dimerization networks, one set of protein variants (Ai) binds 

combinatorially to another set of protein variants (Bj); the resulting complexes produce 

a common output (S). Global parameters describe the protein-protein binding (kij) and 

complex activity (eij) parameters. The output of the network depends on the complex levels, 

and thus on the abundance of various components (Ai, Bj), which can vary between cell 

contexts.

(B) The functional differences between protein variants are often unclear because of the 

variants’ high sequence similarity. For example, the highly homologous BMP ligands 

activate a common output (pSmad), but can produce distinct effects in combinations. 

Mapping pairwise responses allows individual ligands to be classified by their effective 
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interactions, highlighting functional differences between the ligands 43. These differences 

are not global, but can vary between cell contexts.

(C) While all dimerizations are possible in principle, they do not necessarily produce output. 

For example, in the Wnt pathway, not all Wnt ligands bind and activate the associated 

receptors (Fzd). Exposing cell lines engineered to express only a single Fzd receptor to each 

Wnt ligand revealed patterns of receptor-ligand preferences that were not clear from protein 

sequence alone79.

(D) Quantitatively predicting the output produced by protein-protein interactions requires 

careful parameterization of binding affinity and overall activity (i.e. kij, eij). Combining 

measurements of component abundance (Ai, Bj) with output dynamics (S) allows the 

inference of these parameters. For example, quantifying expression of Smad proteins and the 

expression of their downstream target genes fit a model that predicted target gene expression 

from Smad expression, and vice versa80.

(E) Redesigning a given component’s sequence can alter its protein-protein interactions and, 

in some cases, produce entirely new responses and computations. The coupling interactions 

of 148 GPCRs with 11 Gα subunits were used to train a machine learning predictor of 

coupling strength. This model then guided the design of a less promiscuous GPCR, by 

generating GPCR sequences predicted to couple uniquely to a given Gα subunit15.
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