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Assessment and prediction of glioblastoma 
therapy response: challenges 
and opportunities

Dan Qi,1 Jing Li,2 C. Chad Quarles,3 Ekokobe Fonkem1,4 and Erxi Wu1,4,5,6

Glioblastoma is the most aggressive type of primary adult brain tumour. The median survival of patients with glioblast-
oma remains approximately 15 months, and the 5-year survival rate is <10%. Current treatment options are limited, and 
the standard of care has remained relatively constant since 2011. Over the last decade, a range of different treatment 
regimens have been investigated with very limited success. Tumour recurrence is almost inevitable with the current 
treatment strategies, as glioblastoma tumours are highly heterogeneous and invasive. Additionally, another challen-
ging issue facing patients with glioblastoma is how to distinguish between tumour progression and treatment effects, 
especially when relying on routine diagnostic imaging techniques in the clinic. The specificity of routine imaging for 
identifying tumour progression early or in a timely manner is poor due to the appearance similarity of post-treatment 
effects. Here, we concisely describe the current status and challenges in the assessment and early prediction of therapy 
response and the early detection of tumour progression or recurrence. We also summarize and discuss studies of ad-
vanced approaches such as quantitative imaging, liquid biomarker discovery and machine intelligence that hold excep-
tional potential to aid in the therapy monitoring of this malignancy and early prediction of therapy response, which may 
decisively transform the conventional detection methods in the era of precision medicine.
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Introduction
Glioblastoma is a biologically aggressive adult brain tumour and 
presents unique treatment challenges. Progress in understand-
ing genomic characteristics and pathophysiological characteris-
tics has generated notable insights into the next generation of 
disease management, including diagnosis, therapeutics, treat-
ment response assessment and early prediction. Genomic ana-
lysis studies have revealed a series of the most frequently 
altered genes in glioblastomas, including TP53, EGFR, CDKN2A, 
PTEN, PDGFRA, NF1, PIK3R1, PIK3CA, RB1, IDH1/2 and TERT.1–4

Among them, EGFR amplification was found in >40% of all glio-
blastoma cases;3,5,6 IDH mutations7,8 have been used in the 2016 
World Health Organization (WHO) classification, categorizing 
glioblastomas into IDH-wild-type (IDHwt), IDH-mutant (IDHmut) 
and not otherwise specified entities.9 In the recently updated 
2021 WHO classification, glioblastoma is defined as grade IV glioma 
with IDHwt (‘glioblastoma’ is no longer used in paediatric-type 
neoplasms). Three genetic alterations, including TERT promoter 
mutations, EGFR gene amplification and chromosome 7/10 status, 
have been incorporated into the criteria for glioblastoma diagnosis 
(Fig. 1).10,11

Glioblastoma is the most common primary brain malignancy in 
adults, accounting for approximately 48.6% of malignant brain and 
other CNS tumours.12–17 The overall incidence of glioblastoma is ap-
proximately 3–5 cases per 100 000 adults per year in the USA.18–21

The incidence of glioblastoma in males is slightly higher than that 
in females, overall trending up from the age of 45, and is much higher 
in the age group of 75–79 years than in other age groups.19,20 The diag-
nosis of glioblastoma uses imaging techniques, including MRI, CT and 
PET, and histological confirmation and molecular characterization 
using tumour biopsy. The current standard of care treatment for new-
ly diagnosed glioblastoma is multimodal, including surgical resec-
tion, radiation and concomitant or adjuvant chemotherapy (usually 
temozolomide, an anticancer alkylating agent).22–27 With these first- 
line therapies, almost all patients suffer from post-treatment tumour 
progression or recurrence. Treatment options for progressive or re-
current glioblastoma may include reoperation, reirradiation, chemo-
therapy, tumour treating fields (small non-invasive portable devices 
damaging DNA in rapidly dividing cells)28 and antiangiogenic therapy 
(e.g. VEGF inhibitors). With current therapy options, the median sur-
vival of glioblastoma patients is approximately 14.6 months,14,29–35

with fewer than 10% of patients surviving 5 years and only 2–3% of pa-
tients surviving 10 years beyond diagnosis, representing a very dismal 
treatment outcome.20,35,36

Glioblastoma exhibits distinct pathophysiological characteristics. 
Its tumour grows faster than other types of cancer, e.g. the doubling 
time of glioblastoma cells is about four times faster than that of breast 
cancer cells.37 Therefore, without treatment, the survival time of glio-
blastoma patients may only be a few months. According to transcrip-
tional profiling, Wang et al.38 divided glioblastomas with IDHwt 
into three subtypes, i.e. classic, proneuronal and mesenchymal, 
with the proneuronal subtype showing better survival than other 
subtypes and the mesenchymal subtype showing the worst survival. 
Hypermethylation of the MGMT (O6-methylguanine-DNA methyl-
transferase) gene promoter region, which inactivates MGMT protein, 
has been associated with better prognosis, especially for temozolo-
mide-treated patients.39,40 Glioblastoma tumour cells of origin may 
control their generation and progression. An insightful review by 
Laug et al.41 discussed gliomagenesis through the lens of development 
and proposed that the possible cell of origin for gliomas may be cells 
that retain proliferative and migratory capabilities, such as 

intermediate astrocyte precursors, oligodendrocyte progenitor cells, 
and glioma stem cells with glial precursor-like and neural stem cell- 
like properties. Current studies on astrocyte precursors and neural 
stem cells with mutations show their possibility as the origin of glio-
blastoma.41–43 However, the complexity of cell subpopulations re-
mains to be further investigated to fully understand how different 
lineages arrive at a stage of malignancy (Fig. 1).

From the research on glioblastoma by us and others, the chal-
lenges for glioblastoma therapy are summarized as follows: intratu-
moural heterogeneity, genetic defects and genotype–phenotype 
networks, malignant reprogramming evolution of glioblastoma 
stem cells, low or partial response to immunotherapy, crosstalk 
between oncogenic and immune response regulatory signalling 
pathways, the diffusely infiltrative nature of glioblastoma, the 
blood–brain barriers (BBBs) for delivering therapies (poor delivery of 
available drugs to the tumours in the brain), the inefficiency of cur-
rent treatment options and inevitable tumour recurrence.10,20,44–51

As mentioned before, after initial first-line treatment, glioblastoma 
patients often succumb to post-treatment progression or recurrence. 
The invasive nature of glioblastoma tumours means they easily infil-
trate normal brain regions, which impedes surgical recession of the 
entire tumour and results in a high rate of post-treatment progres-
sion and recurrence for this cancer. More effective therapeutics are 
desirable to achieve better patient outcomes. In addition to the diffi-
culties in therapy, there are also challenges regarding the monitoring 
and early prediction of treatment response for glioblastoma. The 
main method used in clinical settings to assess or predict treatment 
response is imaging, which largely helps clinicians monitor patient 
responses to therapy. However, there are also cases in which it is dif-
ficult to tell whether a radiographically suspicious lesion is a non- 
tumoural treatment effect (e.g. radiation injury) or a tumour lesion 
from conventional imaging scans, which may affect clinical decision 
making.52 Therefore, more sensitive and reliable approaches for the 
early prediction of treatment response and the early detection of tu-
mour progression are also dire, which will help guide treatment deci-
sions at an earlier time point. Tools that are capable of forecasting 
response after treatment initiation hold the premise of tailored treat-
ment enabling changes in therapy to prevent treatment ineffective-
ness or adverse events.53

Current status and challenges of treatment response 
assessment

Currently, the treatment response of glioblastoma is assessed based 
on criteria including the Macdonald criteria54 and Response 
Assessment in Neuro-Oncology (RANO), mainly depending on im-
aging techniques (e.g. MRI, CT, PET).55 The Macdonald criteria com-
bine contrast-enhancing tumour sizes with other clinical metrics to 
determine treatment response and tumour progression and categor-
ize treatment response status into complete response, partial re-
sponse, stable disease and progressive disease.54 However, the 
fundamental basis of the Macdonald criteria is enhancing lesions, 
which sometimes fail to discern post-treatment effects (e.g. pseudo-
progression, pseudoresponse, radiation necrosis) and true progres-
sive diseases (Fig. 2).

Post-treatment radiation effects, such as pseudoprogression, 
radiation necrosis, oedema and pseudoresponse, can develop in 
up to half of cases following first-line therapy, underscoring the 
clinical impact of this common diagnostic dilemma.56,57 Common 
forms of post-treatment effects have been described in detail in 
the literature, such as the RANO criteria and some review arti-
cles.55,58,59 Pseudoprogression, which usually occurs within 3–6 
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months of chemoradiation,60 is incompletely understood but char-
acterized by a mix of ‘quiescent’ tumour and non-hyalinized necro-
sis with proinflammatory mediators and cytokines yielding 
increased vascular permeability.61,62 Radiation necrosis may occur 
months to years after treatment, with damaged tumour cells and 
thickened, hyalinized vessel walls, and can progress with no clinic-
al outcome benefit. Oedema and contrast enhancement mimic tu-
mour progression63 and stabilize or resolve without further 
intervention with potential improvement in outcome.64,65

Tumour progressive diseases signify treatment failure, while 
post-treatment effects, radiation necrosis and pseudoprogression 
indicate a positive response to treatment.62,66–71 Post-treatment ef-
fects, such as pseudoprogression and radiation necrosis, pose sig-
nificant challenges for clinical diagnosis and response 
assessment, as it could be difficult to distinguish lesions of post- 
treatment effects from lesions of progressed tumours by conven-
tional imaging modalities such as contrast-enhanced MRI.61,72

RANO criteria included the evaluation of non-enhancing lesions 
from fluid-attenuated inversion recovery or T2-weighted images, 
new lesions and issues associated with post-treatment effects and 
provided detailed recommendations on therapy response assess-
ment for high-grade gliomas.55 The recent modified RANO criteria 
further included modifications such as suggestions for volumetric 
response evaluation, use of the postradiation time point as a re-
sponse assessment baseline for newly diagnosed glioblastoma, 
and ‘treatment-agnostic’ response assessment rubrics for identify-
ing post-treatment effects.54 Haider et al.,73 in a recent review, pro-
posed their idea from the clinical aspect of how to overcome the 
challenge in differentiating tumour progression from post-treat-
ment effects, which in many cases confuses clinical status assess-
ments and decisions for next-step treatments. The recommended 
methods include: (i) the generation of a rigorous definition of recur-
rent versus residual tumour in diagnostic pathology; (ii) the investi-
gation of pseudoprogression in prospective cohorts with 

standardized pathological and radiographic correlates; (iii) the mo-
lecular analysis of recurrent tumour specimens; and (iv) the inclu-
sion of assessment of tissue with post-treatment changes in 
clinical trials.

The criteria and basis of the guidelines for therapy response as-
sessment are continuously defined in more detail for not only the 
standard of care but also the optimization of clinical trials, includ-
ing trials for immunotherapies.74 Since, at the moment, one single 
imaging modality has insufficient specificity to conclusively differ-
entiate tumour progression from post-treatment effects, advanced 
quantitative imaging modalities for the assessment of cellularity, 
blood flow or volume and biochemistry (e.g. metabolites) have 
also been studied and applied in situations such as the differenti-
ation of tumour progression and post-treatment changes.75

Despite the wide application of these robust and standardized 
treatment assessment methods and guidelines, the insufficient 
part of current criteria based on imaging biomarkers exists, such 
as neurological assessment, response assessment for novel therap-
ies, intratumour heterogeneity (i.e. inhomogeneous response), low 
tumour specificity, reduction of imaging variability and mostly the 
inability to predict or detect early therapy responses and tumour 
progression.

Potential solutions

On the basis of recent notable basic, translational and clinical 
studies, we compendiously review and propose potential and pos-
sible minimally invasive solutions from the facets of imaging mo-
dalities, liquid biomarkers and artificial intelligence for the early 
prediction of tumour progression or early assessment of therapy 
response: namely, multidisciplinary approaches to empower the 
establishment of next-generation therapy response assessment 
tools.

Figure 1 Molecular characteristics of glioblastoma. The 2021 WHO Classification for CNS Tumour has defined glioblastoma, IDHwt, in the setting of an 
IDHwt diffuse and astrocytic glioma in adults if there is microvascular proliferation, necrosis, TERT promoter mutation or EGFR gene amplification or +7/ 
−10 chromosome copy number changes. Gene mutations are commonly seen in genes such as TP53, EGFR, CDNK2A, PIK3CA and PDGFRA. The possible cell 
of origin for gliomas is discussed by Laug et al.41 from the developmental aspect: intermediate astrocyte precursors, glioma stem cells with glial-like prop-
erties and/or neural stem cell-like properties and oligodendrocyte progenitor cells in the context of tumorigenesis. On the basis of transcriptomic profil-
ing, the molecular subtypes of glioblastomas are defined in to three subtypes: classic, proneuronal and mesenchymal. This is an updated classification 
from the previous four subtypes, in which the neural subtype is found to be non-tumour specific with low gene abnormalities and omitted in the updated 
subtypes. The common molecular features of each subtype are listed in the figure.
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Imaging modalities

While contrast-enhanced MRI represents the clinical standard for 

response assessment and detection of tumour lesions, it fails to 

distinguish progressive tumours from treatment-related changes 

such as the post-treatment radiation effects as described before. 

Tumour lesions and post-treatment effects similarly present as 

contrast-enhancing masses but represent distinct histoprognostic 

entities. Unlike contrast-enhanced MRI, physiological and metabolic 

imaging methods interrogate specific biological attributes of cancer 

and are more sensitive to glioblastoma progression and treatment 

response. At the time a suspicious enhancing lesion appears, perfu-

sion imaging with arterial spin labelling or dynamic susceptibility 

contrast MRI (DSC-MRI),76 diffusion-weighted imaging (DWI), mag-

netic resonance spectroscopy (MRS), chemical exchange saturation 

transfer (CEST) MRI and amino acid PET scans are the most widely 

available tools for lesion determination that have been validated 

with imaging-guided tissue histopathology. Given that imaging is 

the mainstay in clinics used in brain lesion diagnosis, a large body 

of literature has discussed and reported studies regarding suspicious 

enhancing lesion determination. For example, from a meta-analysis, 

van Dijken et al.77 found that MRS and perfusion MRI showed better 

accuracy than routine MRI. Huang et al.52 reviewed pitfalls of neuroi-

maging in glioblastoma management and discussed the pros and 
cons of each commonly used imaging modality in distinguishing 

non-tumoural enhancing lesions, especially treatment-related 

changes and true tumour lesions. Here, we highlight studies on ad-

vanced or multiparametric imaging and parameters derived from 

such imaging modalities in the aid of lesion differentiation and treat-
ment response assessment or prediction; the studies that also com-
bined advanced imaging with machine learning algorithms are 
discussed in a later section.

DSC-MRI is a method that relates dynamic T2-weighted changes 
to gadolinium-based contrast agent concentration and pharmaco-
kinetics.78 DSC-MRI measures of relative cerebral blood volume 
(rCBV) enable the differentiation of glioma grades, tumour types 
and identification of tumour components in non-enhancing gli-
oma,79–83 the differentiation of post-treatment effects and tumour 
progression at the time of radiographic progression (e.g. high 
rCBV for tumours and low CBV for radiation necrosis, relative to 
normal appearing white matter)56,69,84–89 and the prediction of tu-
moural response and patient survival after targeted therapy.90–94

DSC-MRI measures of peak height and percentage of signal inten-
sity recovery have also been studied for their diagnostic value in 
differentiating tumours and other treatment-related changes. A 
retrospective study analysed the peak height, CBV and percentage 
of signal intensity recovery of 57 patients with glioblastoma and 
found that relative peak height and rCBV values were higher in pro-
gressive or recurrent tumour lesions, whereas percentage of signal 
intensity recovery values were lower in tumour lesions than in 
radiation necrosis.85 Another retrospective study analysed 135 
patients with newly diagnosed glioblastoma to predict early treat-
ment response at the first and second follow-up imaging after 
initial treatment and showed that the skewness (distribution) 
and kurtosis (outliers) changes in normalized CBV may have 
predictive value to distinguish early tumour progression from 

Figure 2 Challenges of image monitoring in the clinical management of glioblastoma. Clinicians face difficulties for patients showing radiographic 
progression, a suspicious gadolinium-enhancing lesion found on contrast-enhanced imaging, and not knowing exactly whether it is a progressed tu-
mour lesion or treatment-related changes during MRI surveillance after standard first-line therapy. For some patients who undergo clinical trials, such 
as immune checkpoint inhibitor therapy, treatment-related inflammation effects may appear during MRI surveillance, which look similar to tumour 
lesions. In these cases, various imaging methods and/or further invasive brain biopsies may be needed to achieve an accurate diagnosis of the suspi-
cious lesion; however, prolonged diagnostic time may delay clinical decision making.
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pseudoprogression.95 A prospective study by Hu et al.56 analysed 13 
subjects with high-grade glioma aiming to define a threshold for 
rCBV values to robustly distinguish post-treatment radiation ef-
fects and tumours. An rCBV of 0.71 was proposed as an optimal 
threshold with tumours having greater values, achieving an accur-
acy of ∼95.9%.56 In their later study that analysed 25 patients with 
recurrent glioblastoma, an rCBV of 1.0 was found to be an optimal 
threshold to differentiate true tumours from radiation necrosis, 
and the percentage of fractional tumour burden was shown to be 
correlated with patient overall survival.96 Due to the regional varia-
tions in normalized rCBV values (normalized to a reference brain 
region defined by the user), the Hu group88 recently studied the per-
formance of standardized rCBV (without a need to define a refer-
ence region) in differentiating post-treatment effects and true 
tumour lesions by analysis of imaging metrics together with image- 
localized stereotactic biopsies in a high-grade glioma cohort of 38 
patients. The results showed a similar performance of standardiza-
tion (may be slightly superior) and normalization of rCBV and 
therefore may help optimize workflow and reduce variations.88

DWI is sensitive to the rate and direction of water movement in 
tissue. The rate and direction of diffusion in cellular tissues can be 
represented by the apparent diffusion coefficient (ADC). DWI meth-
ods have been developed to map the ADC, a parameter that has 
been shown to correlate inversely with tissue cellularity over a 
range of tumour types97,98 and detect treatment-related changes 
in cellularity before changes in tumour volume are detectable.99,100

ADC may also predict radiographic response and long-term patient 
survival within several weeks after first-line therapy, distinguish 
post-treatment effects from tumour progression101 and identify tu-
mour components in non-enhancing lesions.102,103 An increase in 
ADC after radiochemotherapy may predict a favourable response, 
whereas a decrease in ADC may indicate a progressive risk. 
Recently, a retrospective study by Song et al.104 reported a multi-
parametric MRI approach to identify the early response of recurrent 
glioblastoma treated with immune checkpoint inhibitors in 19 pa-
tients. They calculated the mean values of relative ADC and rCBV 
from a volume of interest of the enhancing tumour and determined 
stable/improved versus progressive disease at the 6-month follow- 
up based on the modified RANO criteria. Their results indicated that 
interval changes in relative ADC may have an indicative value in as-
sessing treatment response versus tumour progression following 
immune checkpoint inhibitor treatment in this small series.104

CEST imaging is a pH-weighted imaging technique that relies on 
the exchange between mobile protons in amide, amine and hydroxyl 
groups and bulk water.105,106 CEST makes MRI sensitive to the concen-
trations of endogenous metabolites and their environments.107 Amide 
CEST imaging, also termed amide proton transfer (APT) imaging, has 
shown robust performance in the assessment of ischaemia, brain tu-
mours and breast and prostate cancers.106 Recently, APT-MRI metrics 
such as the magnetization transfer ratio corresponding to the nuclear 
Overhauser effect (NOE) and amide protons were studied for their pre-
dictive value of therapy response in glioblastoma patients. Mehrabian 
et al.108 reported that changes in MTRNOE and MTRamide 2 weeks after 
therapy showed significant separation performance of tumour 
progressors and non-progressors and may also have indicative value 
even before treatment after analysing 19 patients with newly diag-
nosed glioblastoma at various time points. Another study by 
Regnery et al.109 analysed 20 previously untreated glioblastoma pa-
tients based on CEST imaging data before standard treatment predict-
ing early progression, with the Lorentzian difference (LD) of NOE 
(NOE-LD) and downfield-NOE-suppressed (dns) APT (dns-APT) show-
ing significant predictive value. Park et al.110 performed a retrospective 

study on 54 patients with recurrent glioblastoma who received beva-
cizumab (BEV) therapy and showed that early reduction of mean 
APT-MRI signal intensity at 4–6 weeks may indicate a better response 
for 12 months or longer progression free survival.

In addition to the aforementioned MRI methods, MRS, which 
measures tissue metabolite concentrations, also has diagnostic va-
lue in glioblastoma management.111 Lower lipid signals in MRS have 
been studied in the characterization of tumour progression.112,113

Ratios of intralesional metabolites, such as choline/creatine (Cho/ 
Cr) and choline/N-acetyl-aspartate (Cho/NAA), in MRS have been 
studied in patients to differentiate radiation changes and tumour 
progression, with high ratios being indicative of tumour cells.112

The combination of DWI, DSC-MRI and MRS shows much higher ac-
curacy in distinguishing true tumour progression in glioma.112

Higher total Cho/total NAA ratios together with low ADCmean va-
lues were shown to correlate with tumour progression/recurrence 
from MRS and DWI data of glioblastoma patients.114

Tumours are often proliferative and have higher metabolic activ-
ity, such as high glucose uptake and fast amino acid transport. By 
using tracer agents such as radiolabelled glucose analogues or amino 
acids, PET scans are also used to detect tumours. For instance, PET 
scans (e.g. 11C- and 18F- PETs) detecting the tumour-to-normal (T/N) 
ratio of suspicious lesions combined with DSC-MRI are reported to 
give higher accuracy to assess enhancing lesions than a single im-
aging modality.58 Amino acid PET, using agents such as O-(2-[18F] 
fluoroethyl)-L-tyrosine (FET) PET (FET-PET), can detect the increase 
in tumour metabolism and shows higher specificity in the assess-
ment of treatment response than conventional MRI. A prospective 
study on 21 patients with glioblastoma who received an antiangio-
genic treatment regimen with BEV and lomustine at first progression 
to determine the value of FET-PET obtained 8–10 weeks post-treat-
ment in the prediction of treatment response using overall survival 
> 9 months as a reference showed that FET metabolic tumour vo-
lumes below 5 ml survived significantly longer, while RANO criteria 
did not provide indicative values.115 Bolcaen et al.116 studied 18F fluor-
omethylcholine (18F-FCho) PET and contrast-enhanced MRI in 11 
glioblastoma patients following chemoradiation therapy to deter-
mine which modality was able to predict responders and non- 
responders early at the 6-month follow-up. They found that 
18F-FCho PET could predict response using metabolic tumour volume 
(MTV) × standardized uptake mean value 4 weeks after treatment, 
and a decrease in enhancing tumour volume on T1-weighted MRI 
(gadolinium TV) between Weeks 2 and 6 of at least 31% could predict 
response with 100% sensitivity and specificity in this cohort.116

The studies described here are summarized in Table 1. In sum-
mary, these studies highlight that biologically sensitive image 
parameters, individually or in combination, provide a more robust 
way to predict and evaluate tumour progression. Additionally, 
evaluating these image-based biomarkers dynamically and spatial-
ly can lead to further enhancements in accuracy. With a growing 
number of immunotherapy-based clinical trials, there have also 
been efforts to establish image-based biomarkers and analysis 
methods that can reliably detect treatment response and differen-
tiate pseudoprogression (e.g. therapy-induced inflamma-
tion).52,74,117 To facilitate the clinical application of physiological 
and metabolic imaging methods, federal sponsored research activ-
ities, such as the US National Cancer Institute’s Quantitative 
Imaging Network and academic–industrial partnerships, are spe-
cifically focused on funding and accelerating the validation and 
benchmarking of acquisition and analysis solutions for cancer im-
aging biomarkers. Simultaneously, the exploration and develop-
ment of alternative detection approaches are also desirable to 
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improve early prediction or detection of treatment response for 
brain tumours, especially glioblastoma.

Liquid biomarkers

Liquid biopsies have become promising media for the development 
of minimally invasive diagnostic methods.118 Human blood, in par-
ticular, is an attractive material for the identification of disease bio-
markers because of its critical role in circulation, immune response, 
metabolism, communication with cells and formation of extracel-
lular matrices in various tissues and organs in the human body, 
as well as the simplicity and less invasive nature of sample collec-
tion.119–128 Blood-based biomarkers are considered reflections of 
systemic collective cellular behaviours that underlie cancer pro-
cesses such as cancer initiation, progression, metastasis and/or re-
sponse to treatment. One unique feature of the human brain is its 
special protective structure, the BBB. The BBB is composed of tightly 
packed cells, and substances passing through the barrier are highly 
selective. However, the BBBs of brain tumour patients are disrupted 
due to the loss of tight junction proteins, e.g. a deficiency or muta-
tion in claudin-1,129–132 among other reasons. Therefore, human 
blood may act as a ‘sentinel’ that effectively reflects physiological 
and pathological changes in the brain.133

Tumour-specific materials falling into the bloodstream across 
the BBB in glioblastoma patients are supported by the following evi-
dence. First, glioblastoma can metastasize to distant organs, i.e. 
rare extracranial metastasis134–137 and lung metastasis.138,139

Second, studies exploring the detection of glioblastoma circulating 
tumour cells (CTCs) showed that glial fibrillary acidic protein posi-
tive CTCs were detected in 29 of 141 (approximately 20.6%) glio-
blastoma patient blood samples,140 and STEAM (SOX2, Tubulin 
beta-3, EGFR, A2B5 and c-MET)-positive CTCs were detected in 
13 of 33 (approximately 39.4%) glioblastoma blood specimens 
with approximately 80% accuracy via a microfluidic device 
(CTC-iChip).138,141 These studies supported the concept that se-
creted tumourous stimuli may trigger a detectable response in cir-
culating cells,142 making it possible to detect glioblastoma- 
associated circulating molecules in peripheral blood. By analysing 
EGFRvIII in patients’ tumour and plasma specimens, Salkeni 
et al.143 showed that EGFRvIII deletion was detected in both the tu-
mour sample and presurgery plasma but not in postsurgery plasma 
for glioblastoma patients who received complete tumour resection. 
Wang et al.144 identified two fusion transcripts (FGFR3-TACC3 and 
VTI1A-TCF7L2) in both tumour tissue and matched plasma samples 
from glioblastoma patients. Moreover, recent reports have shown 
that blood is affected by the existence of tumours and is sensitive 
to tumour burden (e.g. metabolites, cell-free nucleic acids, 
mRNAs in tumour-educated platelets and extracellular vesi-
cles).145–148 For instance, the blood of tumour patients may have 
elevated levels of certain types of T cells, tumour cells and microve-
sicles shed by the primary tumour mass, including glioblast-
oma.149–151 These studies provide the opportunity to develop 
blood-based biomarkers to aid in the diagnosis and management 
of glioblastoma.

Due to its anatomical structure, CSF has also become a promising 
material to develop biomarkers for patients with CNS disorders.152

For example, a recent study found that p-tau181 in blood exhibits at-
tractive diagnostic value for Alzheimer’s disease, with accuracy simi-
lar to that of Tau PET scans and p-tau181 detection in CSF, 
demonstrating the usefulness of blood tests and CSF tests in brain 
disease diagnosis.153,154 In the case of brain tumours, an early study 
reported that the detection of seven microRNAs, i.e. miR-10b, 

miR-21, miR-125b, miR-141, miR-200a, miR-200b and miR-200c, in 
CSF showed over 90% accuracy in differentiating glioblastoma from 
metastatic brain tumours.155 A meta-analysis revealed that miR-21 
was detectable in both the blood serum and CSF of several glioblast-
oma patients.156 Promoter hypermethylation in MGMT, CDKN2A, 
TIMP3 and THBS1 genes was detected in CSF, serum and tumour tis-
sue specimens in glioblastoma patients but not in healthy do-
nors.145,157 Compared with healthy donors, higher levels of 
osteopontin or its cleaved fragments were found in CSF samples of 
glioblastoma patients, which may be linked to the aberration of 
VEGF and TNFα signalling pathways in glioblastoma.,145,158,159

Another recent study showed that circulating tumour DNA reflected 
patient tumour-specific mutations in CSF samples, including muta-
tions in the genes NTRK1, JAK2, EGFR, PIK3R1, ATRX, SMARCA4, 
IDH1, TP53 and H3F3A.160 In addition, a study reported that 
CSF-derived tumour DNAs were present in 74% of 35 patients, and 
CSF-derived tumour DNAs may be useful for tracking recurrence 
after initial treatment.161

One important benefit of developing liquid biomarkers for the 
early prediction of therapy response and tumour progression is to 
mechanistically enable a better understanding of glioblastoma tu-
mour biology and its evolution, as well as the pathogenesis of post- 
treatment effects. Many studies comparing recurrent tumours and 
primary tumours have been reported; however, research focusing 
on identifying the molecular differences in post-treatment effects 
and progressed or recurrent tumours remains limited. Nevertheless, 
a few studies have touched on this area. By detecting the above-men-
tioned STEAM+ CTCs, Sullivan et al.138 reported that patients with pro-
gressive glioblastoma had approximately 11.8 cells/ml and a patient 
with metastatic tumours had 4.2 cells/ml, while patients with stable 
disease had approximately 2.1 cells/ml.162 Patients with methylated 
MGMT were shown to have higher rates of pseudoprogression (91%) 
than patients with unmethylated MGMT.163 Overexpression of p53, 
interferon regulation factor 9 and X-ray repair cross-complementing 
1 was correlated with pseudoprogression.164–166 EGFR+ microvesicle 
counts were higher in patients with recurrent glioblastoma than in 
those with pseudoprogression.167,168 A study reported that the ratio 
of HLA-DR (human leukocyte antigen – DR isotype) and VNN2 (vascu-
lar non-inflammatory molecule 2) expression on CD14-positive 
myeloid-derived suppressor cells isolated from patient peripheral 
blood monocytes may distinguish true tumours from radiation necro-
sis.169 A study assessed the expression levels of matrix metalloprotei-
nase 2 and neutrophil gelatinase-associated lipocalin in the serum 
and urine from glioblastoma patients, and the results showed that 
their preoperative levels correlated with overall survival and progres-
sion free survival but did not differentiate tumour growth and post- 
treatment effects.170 Sabedot et al.171 performed DNA methylation 
profiling using serum cfDNA and tumour tissue DNA from glioma pa-
tients and developed a score metric to optimally distinguish patients 
with or without glioma. The score metric of a glioblastoma patient 
showed an increasing trend with disease progression.

These studies (summarized in Table 2) support the idea that 
tumour-related molecules in patient blood and/or CSF may be use-
ful as indicators of treatment response or tumour progression and 
may be detected early before a suspicious lesion appears in imaging 
surveillance. Müller Bark et al.164 and Raza et al.167 also provided in-
formatic reviews of circulating biomarker studies for glioblastoma 
and blood biomarker studies in therapy response assessment for 
glioma. More studies to extend our knowledge of post-treatment ef-
fects will be helpful for the development of liquid molecular bio-
markers serving in this scenario. To this end, it is important to 
select proper patient cohorts and set up effective approaches given 
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the heterogeneity of glioblastoma. Detection of differential gene ex-
pression172 by transcriptome profiling, exploration of differential 
methylation profiles by methylome profiling, characterization of 
metabolite changes by metabolome profiling and identification of 
condition-specific extracellular vesicles in patient biofluids may 
aid in the diagnosis of tumours and their progression. It will also 
be helpful to take advantage of state-of-the-art single-cell tech-
nologies to analyse circulating blood or CSF from glioblastoma pa-
tients over the course of treatment. The molecular features of the 

treatment-related cell subsets captured from such approaches 
may complement imaging biomarkers.

Artificial intelligence technologies

Artificial intelligence simulates natural intelligence, including hu-
man intelligence, using computer algorithms to execute tasks.173,174

In the era of artificial intelligence-based medicine, machine learning 
algorithms are making an immense impact on healthcare,175

Figure 3 Potential approaches that may assist in the early prediction of therapy response and tumour progression. Patient data, including demograph-
ics, tumour tissue samples, liquid specimens and imaging data, can be collected and comprehensively analysed by using a machine learning method. 
Longitudinally collected patient data at various time points (t1, t2, …, tj) will allow the establishment of a dynamic machine learning model, such as by 
using a deep learning neural network approach. Patient (1, 2, …, n) represents samples included in the patient cohort, and patient data (input) can be 
summarized as features (a, b, …, i). High-dimensional features could then be analysed for optimal selection and model building. The resulting predict-
ive model will be used for validation and adjustment. Such an approach may enable a more accurate assessment of radiographic suspicious lesions and 
achieve a reliable prediction of progression risk at an early time point (output). Empty circles represent neurons in layers of a neural network. I and II 
represent random patients with glioblastoma. Dx = diagnosis.
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especially on the development of novel computational tools for the 
stratification, grading, classification and prognostication of patients 
using large-scale patient datasets.176–180 The fundamental principle 
of machine learning is to establish a mapping between significant 
features (e.g. image representation, gene expression changes, genet-
ic alterations, histological characteristics) and a given outcome (e.g. 
disease type, tumour grade, risk group) from training datasets; the 
trained mapping (also known as a model) would then allow for pre-
dicting the outcome variables for new patients. One evident advan-
tage of machine intelligence is its capability of handling big data and 
drawing insights that are difficult to obtain by human intelligence. 
Additionally, machine learning allows accurate classification and 
clustering using high-dimensional feature selection181,182 and 
computer-based data analysis, making it a promising tool to address 
clinical challenges. The way in which artificial intelligence, particu-
larly machine intelligence, is applied and transforming healthcare 
has been discussed in many publications, such as Esteva et al.175

and Rajkomar et al.177 Here, we will mainly focus on the applications 
of machine learning in glioblastoma studies.

Medical imaging and genomic datasets have high dimensional-
ity and complex structures and thus have garnered considerable at-
tention from the research community to develop machine learning 
algorithms, including deep learning (a subset of machine learning 
algorithm-based neural networks), to enable automatic data ana-
lysis to facilitate clinical decision making. For instance, a study de-
veloped a machine learning model for predicting the risk of 
developing breast cancer based on mammography images and im-
proved the accuracy compared with the current model making it 
ready-to-use along with clinical imaging acquisition.183 A study 
using swarm learning, a machine learning approach, analysed per-
ipheral blood mononuclear cell transcriptomes from >12 000 indivi-
duals to predict leukaemia and achieved high accuracy.184 Podnar 
et al.185 curated routine blood test data from 15 176 neurological pa-
tients and built a machine learning predictive model for the detec-
tion of brain tumours with a sensitivity and specificity of 96% and 
74%, respectively.

In addition, machine learning algorithms have been developed 
to combine data from imaging modalities, histopathology and/or 
genomics to improve the predictive power for diseases. Research 
has been performed on the optimal fusion of features186–188 and 
data fusion with modality-wise missing patterns.189 Optimal fusion 
of multiple imaging modality data is considered to provide superior 
accuracy over the use of a single modality in the early detection of 
diseases, such as discerning subtypes of migraine190 and dissolving 
genomic and molecular heterogeneity of glioblastoma.191–194 Hu 
et al.193 built a patient-specific transfer learning (building algo-
rithms based on models established from other datasets) predictive 
model using rCBV data obtained from DSC-MRI and individual pa-
tient histological data. They demonstrated that this model provides 
an improved performance for quantifying regional cell density in 
glioblastoma tumour tissue and detecting interpatient tumour 
variabilities compared to other reported models. By using support 
vector machine and random forest classifiers (approaches used in 
machine learning), a study assessed the predictive power of the 
built model to predict MGMT methylation status in preoperative 
glioblastoma tumours using MRI texture features and achieved an 
area under the curve (AUC) of 0.85.195 Another study using the sup-
port vector machine approach to classify brain tumour types by 
analysing MRS metabolite data and microarray gene expression 
data achieved an enhanced classification accuracy compared to 
each single-omics dataset.196 Chang et al.197 used the random forest 
method and generated a classifier using pre- and post-therapy MRI 

data to predict overall survival and showed high potential to assist 
in the clinical decision of recurrent glioblastoma.197 Pan et al.198

used glioblastoma patient data from The Cancer Imaging Archive 
(TCIA) and built a machine learning model that generated a multi-
parametric and multiregional radiomics signature with eight se-
lected features (three textures, one shape and four intensity 
features). The model predicted overall survival with a concordance 
index of 0.7, which increased to 0.76 after the model was further 
combined with preoperative clinical risk factors.198 Han et al.199

studied data from 55 patients with high-grade glioma from a local 
hospital and 128 patients with glioblastoma from the The Cancer 
Genome Atlas (TCGA). They used a deep learning-based method 
to conduct feature selection from 384 handcrafted radiomics fea-
tures and 8192 deep features from a pretrained convolutional neur-
al network (a deep learning approach) and successfully classified 
long- and short-term survivor groups.

Specifically related to this paper, machine learning has been 
studied by researchers to distinguish post-treatment effects and 
tumour progression using clinical and imaging data (studies dis-
cussed in this review are listed in Table 3). Jang et al.200 investigated 
the feasibility of machine learning algorithms to distinguish pseu-
doprogression from tumour progression in patients with glioblast-
oma by incorporating MRI data and clinical features with an AUC 
score of 0.83 and an F1-score of 0.74. Patel et al.201 performed a retro-
spective study of building machine learning-based models combin-
ing clinical, radiomic and molecular data to distinguish true 
progression from pseudoprogression in 76 patients with early en-
hancing disease following the standard of care. They showed that 
the top selected features by bootstrapped cross validation were 
age, MGMT methylation status, two shape-based features from 
the enhancing mask, three radiomic features from the enhancing 
mask on ADC and one radiomic feature from the perilesional oe-
dema mask on T2-weighted images. The model built using these 
features resulted in an AUC of 0.8, a sensitivity of 78.2%, a specificity 
of 66.7% and an accuracy of 73.7% by 5-fold cross validation.201 By 
using quantitative MRI, Chan et al.202 built a multivariable least ab-
solute shrinkage and selection operator model and identified a 
CEST/magnetization transfer approach showing potential in distin-
guishing early- from late-progression cohorts after standard che-
moradiation therapy for glioblastoma patients. Akbari et al.203

evaluated suspicious radiographic changes in 63 glioblastoma pa-
tients and extracted quantitative characteristics from multipara-
metric MRI. They reported that imaging features reflecting higher 
angiogenesis, higher cellularity and lower water concentration sug-
gest true progression over pseudoprogression.203 Elshafeey et al.204

retrospectively studied imaging data of 98 glioblastoma patients 
and used a support vector machine to build a classifier based on 
radiomic features of both the volume transfer constant (Ktrans) 
and rCBV maps. The model discriminated pseudoprogression and 
progressive diseases with an accuracy of 90.82%.204 Considering 
that non-enhancing lesions are not frequently removed during sur-
gery, Kim et al.205 retrospectively studied preoperative MRI scans 
from 83 glioblastoma patients and reported that a diagnostic model 
combining four fractional anisotropy features and six CBV features 
presented a better predictive value for the prediction of 6-month lo-
cal progression in patients with glioblastoma. By analysing imaging 
data from 61 glioblastoma patients obtained within 3 months post- 
treatment, Kim et al.206 established a least absolute shrinkage and 
selection operator model that incorporated 12 significant radiomic 
features, including three from conventional MRI, two from DWI and 
seven from perfusion MRI, to robustly identify pseudoprogression 
with an AUC of 0.9.
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As described before, a massive number of studies have applied 
machine learning in the diagnosis, prognosis and therapy response 
prediction of glioblastoma patients using their histological and im-
aging data, sometimes juxtaposed with their genomic and demo-
graphic data. These studies unequivocally support the idea that 
machine learning will be an indispensable tool in future persona-
lized clinical care for glioblastoma patients. Currently, more effect-
ive treatment regimens need to be developed to treat glioblastoma, 
specifically killing tumour cells while protecting healthy brain tis-
sue to maintain normal brain function for patients with glioblast-
oma. To this end, more advanced assessment and prediction 
strategies for glioblastoma therapy response must be exploited.

Perspective

Glioblastoma is a challenging deadly disease with a high recurrence 
rate attributed, in part, to the lack of sensitive diagnostic tools and 
effective treatment strategies. The inter- and intra-patient hetero-
geneity makes this cancer even harder to detect earlier and treat 
better. A more in-depth understanding of glioblastoma tumour het-
erogeneity (e.g. clonal development) and its microenvironment 
(e.g. immune infiltration) will certainly help in the development 
of new effective therapeutics. Sensitive and reliable tools for diag-
nosis, prognosis, therapy response assessment and early predic-
tion of tumour progression are also in great need to improve the 
survival outcomes of patients with this malignancy. Many efforts 
have been made using machine learning-based methods to analyse 
non-specific imaging data and in combination with clinical data 
and histological data owing to advances in computer vision. More 
research will be needed to discover reliable liquid biomarkers and 
develop therapy assessment and early prediction tools based on 
features specific to a given disease condition, such as tumour pro-
gression or pseudoprogression.

Integration of patient medical history and demographic data, 
tumour molecular features (e.g. histopathological data), longitudin-
ally collected imaging metrics and liquid biomarker signatures re-
flecting individual patient characteristics and tumour evolution 
patterns, which will generate a wealth of patient-specific data, 
may provide a more comprehensive and accurate assessment of 
treatment response at time points far earlier in the course of ther-
apy (Fig. 3). Advanced analytic strategies using artificial intelli-
gence, particularly machine learning, will enable automatic 
sifting through these data, discovery of image patterns and com-
binatory biomarker signatures, quantification of their interactive 
and dynamic evolutions and optimal combination of multiple mo-
dalities, providing an up-and-coming opportunity to improve the 
early prediction of therapy response and tumour progression for 
glioblastoma. Meanwhile, challenges still exist, such as missing 
data handling, data standardization across hospitals and institu-
tions, optimized study design for algorithms and representation 
generalization. Moving forward, rigorous evaluation, prospective 
clinical validation of machine learning models and generalization 
of such models across sites will be of vital importance to ultimately 
establish standard operation protocols and policy frameworks in 
clinical settings and guide clinical decisions in both standard of 
care and clinical trials.
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