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Determination of online thin 
film buckling configuration 
by parametric optimization 
for flexible sensor application
Yeoun‑Jae Kim 1, Daehan Wi 1, Jingyu Kim 2 & Jaesoon Choi 2*

A mini basket type mapping catheter consists of thin film flexible sensors and is applied in the 
medical field to measure the electrocardiography (ECG) signals in order to localize and quantize the 
physiological condition/status of heart. The flexible nature of the thin film changes the configuration 
with respect to the contact boundary conditions when it contacts a target surface. Therefore, 
to accurately localize the flexible sensor, the thin film flexible sensor’s configuration must be 
determined accurately in an on-line fashion. As a study of localizing the thin film flexible sensor, this 
study proposes an on-line thin film buckling configuration determination method using parametric 
optimization and interpolation technique. With the specific modulus of elasticity and dimensions of 
the thin film flexible sensor of the mapping catheter prototype, the buckling configuration with two 
point boundary condition under axial load can be calculated in desktop environment. The proposed 
calculation method is validated by mapping catheter sensor prototype test. The calculation/test 
results showed that the maximum overall length L, x

a
 , and y

a
 value error between the calculation 

and experiment are approximately 0.16 mm, − 0.12 mm. − 0.10 mm in 50 ms calculation time. The 
calculation result of the proposed method is also compared with that of the numerical simulation by 
FEM, which has approximately 0.44 mm y

a
 value error compared with that of the experiment.

Thin films made of polyethylene terephthalate (PET), polystyrene (PS), and cellulose nanofibers (CFG) can be 
used as flexible sensors when manufacturing through certain processes by embedding microelectrons between 
the films1,2. Because the thin film has asymmetric flexural rigidity (EI), it buckles when axial force is applied 
with various boundary conditions and restores its configuration when the axial force is released. These buckling/
restoring characteristics make the flexible sensor a good candidate for medical usage of ECG signal measure-
ment, which includes inserting the sensor in the right atrium while guiding it through right aorta with minimal 
volume and buckling it to localize and measure the ECG signals inside the right atrium3,4. The flexible sensors 
are called mapping catheters, and various types of them are used in the medical field3,4. Especially, mini-basket 
shaped high resolution mapping catheter5–7 features more clarity for precise localization.

The authors have been involved in developing an intelligent cardiovascular intervention assist robot with 
cardiac mapping system as shown in Fig. 1a, which describes a master console and slave robot. An in-vitro experi-
ment with the robotic overtube, which is installed in the end-effector of the slave robot, with three degree of 
freedom (bending, yawing, translating) is presented in Fig. 1c. Accompanied with the developed robot system, a 
mini basket type mapping catheter prototype is also developed as shown in Fig. 1b, to be inserted coaxially within 
the overtube and used for performing remote and accurate cardiac arrhythmia mapping while manipulating the 
robotic overtube with master system. The prototype consists of eight flexible printed circuit boards (PCB) that 
could adjust axial distance between the two boundaries, and it is similar to the commercialized high-resolution 
mini-basket mapping catheter used in the Rhythmia mapping system5,8. It can be manipulated manually or by 
cardiovascular intervention assist robot.

However, in order to correctly localize the ECG signal with the mapping catheter prototype, it is important 
to accurately calculate the buckled configuration of the flexible PCB in the prototype with respect to an adjusted 
axial distance. The column buckling, including thin film buckling, have been extensively studied worldwide, 
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which includes exact solution by elliptic integral9–15, exact solution approximation by perturbation theory16,17, 
and FEM(Finite Element Method) by numerical integration18–24.

Timoshenko et al.9 investigated and summarized the classical solution for buckling of elastic bar with an 
axial load in clamped boundary. They analytically induced the lateral deformation and critical load with respect 
to flexural rigidity by implementing the change of variables and elliptic integral. Hubbard10,11 introduced an 
iterative numerical solution for pole vault problem, which is a large deformation of buckled bar under axial and 

(a) Master console and slave robot

(b) Buckled flexible PCBs in the mapping catheter prototype

(c) Robotic overtube in-vitro experiment snapshot

Figure 1.   The master-slave robot system and mapping catheter prototype developed for the heart arrhythmia 
surgery.
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lateral load in clamped boundary. Griner12 induced a parametric solution to the pole-vault problem, wherein 
the tabulated elliptic integral is used. There are exact solutions for other boundary conditions. Panayotounakos 
et al.13 induced closed form solution for the elastica of straight bars under uniform distributive forces. Mikata14 
induced an exact post-buckling solution of elastica for a clamped-hinged beam with its application to a carbon 
nanotube. Armanini et al.15 integrated Euler’s elastica to determine the configuration of elastica compass and 
catapult, in which the load is applied at one side and the load is slowly rotated. They compared the exact solution 
with finite-element scheme.

The exact solutions of Elastica include elliptic integral of 1st and 2nd kind. To calculate the actual configu-
ration, they must be numerically integrated25,26. Berkey16 performed an asymptotic analysis of elastic column, 
pinned at both ends and subjected to an axial thrust, with perturbation method. Wang17 suggested a buckling 
configuration approximation by perturbation theory to approximate the configuration of inclined cantilever 
beam with vertical end load. The aforementioned exact solutions and analytical approximations are rather clas-
sic and depends on mathematical rigor without any needs for large computing capability. However, FEM-based 
method is quite well established with commercialized software18–21 and opensource software22–24 with generalized 
purposes, such as structure with composite materials and complex geometry.

The mapping catheter prototype in Fig. 1b has composite structure and layers, which make it hard to apply 
the classical exact solutions and analytic approximations directly to the accurate configuration determination of 
this model. FEM based methods could be ideal for solving the buckling configuration of thin film with composite 
structure like this model. However, the commercial FEM software are usually expensive, and open source soft-
ware generally needs additional accuracy validation. Moreover, because the applied forces and moments are not 
known beforehand in calculating the configuration, inverse problem must be solved, and the forces and moments 
also must be calculated with respect to the geometric constraints and boundary conditions. Since the flexible 
PCB in the mapping catheter prototype is in a free-standing column buckling (FSCB) state when an axial load 
is applied, the compressive axial force P and maximum bending angle α are required to be determined, which is 
not feasible for the flexible PCB in the mapping catheter prototype because only the axial distance between the 
fixed boundaries are known.

Therefore, to solve these kinds of problems, a parametric optimization framework, accompanied with clas-
sical exact solution, is proposed in this study. The proposed method uses several analytical solutions by Elastica 
and gradient-based optimization algorithm. Not only does it take less time to calculate, but it can also be done 
online, which are outstanding advantages over FEM based method with large number of mesh points and inverse 
matrix calculation. Moreover, even though the isotropic material assumption in the exact solution is not accu-
rate in the mapping catheter prototype with embedded electronic circuit in Fig. 1b, the error can be absorbed 
by parametric optimization process in finding the axial force P and maximum bending angle α which best fit 
for the measured boundary conditions and geometric constraints. In this framework, a cheaper and accurate 
configuration determination can be possible. The contribution of the work are as follows. 

1.	 A method for determining accurate and inexpensive thin film buckling configuration in clamped boundary 
using a parametric optimization and classical exact solution solver is proposed. This method can be applied 
to any composite structured thin film through the optimization process, and the lumped material assump-
tion error can be offset in the inverse problem solving by the parametric optimization.

2.	 For the proposed parametric optimization, the steepest descent method is implemented first. An optimization 
variable space based divide and conquer method is proposed to solve the hunting phenomenon occurred 
during optimization process and to get accurate solution.

3.	 The feasibility of the proposed method is verified by comparing the calculation results with those of FEM 
based method using ANSYS software18 and experiments with a screen protector strip and the mapping 
catheter prototype.

The contents are organized as follows. In “Thin film buckling configuration determination method” Section, the 
problem definition and the proposed method with temporary PET film result is presented. In “Proposed method 
(algorithm 1), measurement, and fem simulation results” Section, the measurements, FEM simulations18, and the 
results of the proposed method are compared with the flexible PCB sensor in the mapping catheter prototype. 
The conclusions and future works are presented in “Conclusion” Section.

Thin film buckling configuration determination method
Preliminaries and classical Solution.  The schematics and free body diagram of thin film buckling in the 
mapping catheter prototype are presented in Fig. 2a,b, respectively. 

Out of 8 buckled yellow film sensors in the mapping catheter prototype in Fig. 1b, a planar schematic of one 
yellow film sensor is presented in 2(a).

In Fig. 2a, the mapping catheter moving rod is represented in sky blue, which is assembled to the main body 
in the rightmost side of Fig. 2a and fixed horizontally. A thin film strip in Fig. 2a is represented in yellow, which 
is fixed at both ends of the moving body and its total length is 4L. If the length of the moving rod is shortened 
to δ , the configuration of thin film strip changes from a straight line to a buckled shape, with a 4xa width and a 
2ya height, respectively. The two coordinate systems in Fig. 2a represents the global coordinates ( OG − xG − yG ) 
and local coordinates (O − x − y) . The global coordinates system represents the base coordinates of the whole 
configuration of the thin film strip sensor, whereas the local coordinates system is for a quarter model of the 
thin film strip sensor, which is depicted in the red dotted rectangle in Fig. 2a. If the configuration of the quarter 
model is determined, the overall configuration in Fig. 2a can be determined by making a symmetric mirror 



4

Vol:.(1234567890)

Scientific Reports |        (2023) 13:10817  | https://doi.org/10.1038/s41598-023-37666-0

www.nature.com/scientificreports/

image with respect to point O from the quarter model and then mirroring the half model with respect to yG axis 
at ( 2xa , 0) position, which is explained in9.

The free body diagram of the quarter model of the thin film sensor strip is shown in Fig. 2b. A magnified view 
of the quarter model of thin film sensor in Fig. 2a is shown in Fig. 2b. The configuration path coordinates, s is also 
presented in Fig. 2b. The x and y values at s are also shown in Fig. 2b. The bending angle at the base is denoted by 
α and bending angle at s is denoted by θ . The overall length of a quarter model in Fig. 2b is L and its width and 
height are xa and ya , respectively. The compressive force is P and the bending momentum at s = L is M in Fig. 2b. 
Point O in Fig. 2a,b is the inflection point. The moment M in Fig. 2b is equal to −Pya by static equilibrium at s 
= L. The independent variables in Fig. 2b are α and P with fixed flexural rigidity EI. s, x, y, xa, ya and L in Fig. 2b 
are analytically determined by Timoshenko et al.9 and repeated in Eqs. (1–9) for completeness of presentation.
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(a) Schematics of thin film buckling in the mapping catheter prototype

(b) Free body diagram of a quarter model of the thin film sensor strip under axial load 9

Figure 2.   Schematics and free body diagram of a thin film strip sensor buckling in the mapping catheter 
prototype.
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k and p in Eqs. (1) and (2) are the independent variables coming from P and α . EI is the flexural rigidity of the 
thin film with respect to the z axis in Fig. 2b. The configuration (x,y) is a function of s or θ . θ is changed to φ by 
Eq. (3). With φ variable, the integral along θ = α to 0 can be changed to the integral along φ = 0 to 90◦ . K(p) and 
E(p) in Eqs. (4, 5) and (7, 8) are complete elliptic integral of first kind and second kind, respectively.

Problem definition and overall sequence of the determination of a thin film buckling configu‑
ration.  With classical results of Eqs. (4–9), the buckling configuration including xa and ya of Fig. 2b can be 
calculated with k, p, and EI values, which is a forward problem (Input: EI, k, p, Output: configuration (y(x)) 
including xa and ya)9. However, in the actual experiment using the mapping catheter prototype as presented in 
Fig. 2a, the known variables are xa and ya values but k, p values are unknown and must be determined to cal-
culate the configuration of thin film strip with Eqs. (4–9), which is an inverse problem (Input: EI, L, xa , and ya , 
Output: k, p values). The proposed thin film buckling configuration determination method can solve the inverse 
problem at discrete xa and ya values and interpolate the solutions (k and p) at discrete xa values. The overall 
sequence is represented in Fig. 3.

In Fig. 3, the known parameters are L and EI. With a measurement value of xa , ya at each δ , the axial force P 
and initial bending angle α (k and p) can be calculated by the proposed method. These calculated discrete solu-
tions of the inverse problem can be interpolated with respect to xa ( δ ) and then, the configuration at any xa(δ ) 
can be calculated with the interpolated k, p value.

Proposed inverse problem solution.  Optimization solution by steepest descent method.  The inverse 
problem in Fig. 3 can be converted to the optimization problem by applying the objective function, as shown in 
Eq. (10).
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(10)f (p, k) = (K(p)− kL)2 + (2p− kya)
2
+ (2E(p)− K(p)− kxa)

2

Figure 3.   Overall sequence of a thin film strip buckling configuration determination.
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The first term in Eq. (10) is the quadratic form of the overall length difference between the analytic value and 
measurement value (L), which is derived by Eq. (4). The second and third term in Eq. (10) are also the quadratic 
forms of difference in the y a and x a values between the analytic values and measurement values ( ya , xa ), which 
are from Eqs. (5)-(6). The optimization problem definition is given in Eq. (11).

The range of p and k in Eq. (11) is determined by feasible P and α range, which are tracked by the thin film sensor 
in Fig. 2b. The steepest descent method27,28 was used first to determine the solution of Eq. (11) with the gradients 
with respect to p and k in Eqs. (12)-(13).

E′(p) and K ′(p) in Eq. (12) are also in Eqs. (14)-(15).

With Eqs. (10) and (12)-(15), the steepest descent method was temporarily tested using a screen protector of size 
0.11×4.0×16.5 mm, made of polyethylene with Table 1 conditions. In Table 1, each parameter corresponds to the 
values in Fig. 2b. xa and ya in Table 1 are calculated by Eqs. (5) and (6) with p = 0.3826, k = 98.95. For the inverse 
problem setting, which calculates k and p values at xa=14.04 and ya=7.73 in Table 1, the initial p and k value are 
set to 0.5 and 500 because they are the half of the feasible range in Eq. (11). The screen protector strip size, xa , 
and ya are decided to test the performance of the solver before applying it to the mapping catheter prototype in 
Fig. 2b, which is slightly larger than those of the mapping catheter prototype. The increment of p and k during 
the steepest descent method are set to 0.0001 and 0.1 and the terminal conditions are set to δ p ≤ 0.0001 and δ k 
≤ 0.01 in total 10000 iterations. However, after the iteration number exceeds 100, the gradients of k and p keep 
oscillating, implying that the objective function in Eq. (10) has low value differences from alternating sign in 
the vicinity of optimal k and p value.

f(p,k) value is plotted in Fig. 4 at each p and k values based on the result of oscillation. In Fig. 4, the k value 
ranges from 0 to 1000 and p value ranges from 0 to 1 as indicated in Eq. (11). The calculated optimal point is 
indicated by the white dot in Fig. 4. As described above, near the optimal point in Fig. 4, f(p,k) values have little 
value differences close to zero. Therefore, the steepest descent method is not a good candidate for solving the 
optimization (inverse) problem in this case.

Optimization solution by strip divide and conquer method.  Based on the previous result and f(p,k) surface in 
Fig. 4, a strip divide and conquer method is proposed for solving the optimization problem in Eq. (11). The strip 
divide and conquer method is divided into a horizontal direction and vertical direction, which are represented 
in Figs. 5a,b.

(11)
min
p,k

f (p, k)

0 < p < 1, 0 < k < 1000

(12)

∂f (p, k)

∂p
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+ 2(2E(p)− K(p)− kxa)(2E
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∂f (p, k)

∂k
= −2(K(p)− kL)L− 2(2p− kya)ya

− 2(2E(p)− K(p)− kxa)xa

= −2K(p)L − 2xa(2E(p)− K(p))− 4p+ 2(L2 + x2a + y2a)k

(14)K ′(p) =
E(p)

p(1− p2)
−

K(p)

p

(15)E′(p) =
E(p)− K(p)

p

Table 1.   Calculation condition—screen protector (thickness = 0.11 mm, width = 4.0 mm, Polyethylene 
material).

Variables E (Pa) I (109mm2) P (N) α (deg)

Values 19607843 26.04 0.005 45.0

Variables k p L (mm) xa (mm)

Values 98.95 0.3826 16.50 14.04

Variables ya (mm)

Values 7.73
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Figure 4.   f(p,k) in Eq. (10) at p, k values.

(a) Vertical divide and conquer

(b) Horizontal divide and conquer

Figure 5.   Schematics of strip divide and conquer method.
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In the vertical direction divide and conquer in Fig. 5a, f(p,k) surface in Fig. 4 is viewed from top and divided 
into fives equal sized strips vertically, numbered strip 1-5. The horizontal black lines in Fig 5a represent the center 
p value at each strip. The f(p,k) values of the black lines are averaged and compared to each other to eliminate the 
highest valued strip. In this manner, one of the five strips in Fig. 5a is eliminated. Similarly, one vertical strip can 
be eliminated by the horizontal divide and conquer, as shown Fig. 5b. By alternating the horizontal and vertical 
divide and conquer, the vertical and horizontal strips in Fig. 5 will gradually become smaller width strips, and 
eventually, the cross point of the narrow downed vertical and horizontal strips (p value in horizontal strip and 
k value in vertical strip in Fig. 5) is the optimal p, k value in the lowest f(p,k).

The pseudo-code is shown in the Algorithm 1 below, where the vertical divide and conquer, and the hori-
zontal divide and conquer are located at the upper and lower if statements, respectively. With the initial setting 
of variables, each if statement in the algorithm compares the current and previous p(k) values. If the absolute 
value of their difference exceeds δp or ( δk), the comparison of each 5 stripes in Fig. 5a,b are performed by com-
pare_averaged_cost_function_value_at_p() (compare_averaged_cost_function_value_at_k()). If the comparison 
is valid, the highest stripe is eliminated by eliminate_p_range() (eliminate_k_range()) and update of p(k). Then, 
the re-division of p range (k range) are sequentially performed by update_p() (update_k()) and divide_p_range() 
(divide_k_range()) functions. The if statement in the lower of Algorithm 1 is a breaking statement.

The result of Algorithm 1 with Table 1 condition is k = 98.954446 and p = 0.382684 (P = 0.00499999 N and 
α = 45.00007◦ ), which are almost equivalent to the answer k = 98.95522 and p = 0.382686 in Table 1. Through 
Algorithm 1, the k and p values (P and α ) can be calculated at various xa and ya measurement pairs at an incre-
ment of approximately 0.25 mm xa and each calculated p, k values is linearly interpolated with respect to xa , 
which are presented in the next section.

Proposed method (algorithm 1), measurement, and FEM simulation results
Screen protector strip.  The screen protector strip in Table 1 is used for the preliminary test. Thickness and 
width of the strip is the same as that described in Table 1 (0.11 mm, 4.0 mm). However, L in Fig. 2a is set to 12.5 
mm and xa is changed from 12.25 mm to 10.00 mm with an increment of the 0.25 mm (in 10 measurements) 
to make it deflect incrementally. In the measurements, the strip is placed on a small ruler to set the xa value at 
a specified length and each of its ends is fixed with tape. At each increment, the ya value is measured through 
graphical analysis. The FEM simulations are performed with ANSYS Workbench 22 R118. The thin film is mod-
eled as a thin plate with 600 mesh elements. To meet the predefined xa value, the boundary condition is simply 
supported at the left end and the force is applied to the right end of the film. Because the thin film has superelas-
tic characteristics, plain buckling solver cannot simulate superelastic large deflection. Therefore, a coupling of 
structural and buckling solvers are used to make an initial buckling state, and the structural solver is used alone 
to deflect it according to the xa value after the initial buckling.

The calculation, measurement and FEM simulation result pictures are presented in Figs. 6a–c at xa = 12.25, 
11.75, and 10.00 mm, respectively. As shown in Fig. 6a–c, the deflected configurations are almost identical in 
calculation, experiment and FEM simulation. With the experimentally measured ya values, the k and p values 
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(P and α values) are calculated by Algorithm 1. With the calculated k, p values, L, xa , and ya values are calculated 
by Eqs. (4–6) as presented in Calculation by Algorithm 1 column Table 2. Additionally, the experimental and 
FEM simulation results are presented in the 1st and 3rd column of Table 2.

The L and xa values in Experiment and Simulation by FEM columns in Table 2 are exactly the same due to 
the same boundary conditions. However, those in Calculation by Algorithm 1 columns in Table 2 are a little bit 
different compared to others because Algorithm 1 minimizes the objective function in Eq. (10), in which the 
three terms in Eq. (10) are not zero at the obtained k and p value.

Figure 6.   Screen protector strip deflection calculations, measurements and FEM simulations.
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Even though the optimization process cause very tiny difference in the L and xa values, the difference in ya 
value between the experiment and calculation (yellow line) is much smaller than that between the experiment 
and simulation (green line). In Fig. 7, the ya value decreases as xa value increases, which can also be observed 
in Fig. 6a–c.

Mapping catheter sensor prototype.  The mapping catheter sensor prototype, depicted in Fig. 1b has 
eight sensor strips, each of which has eight nodes to measure the ECG signal. The thickness and width of the 
strip are 0.13 mm and 0.9375 mm, respectively. L in Fig. 2b is set to 6.5 mm and xa is changed from 6.25 to 5.0 
mm by an increment of 0.25 mm (total 5 measurements) to deflect it incrementally. The modulus of elasticity 
and Poisson’s ratio of the mapping catheter sensor prototype, which were measured through a tensile test by the 
local vendor, are 4.29 GPa and 0.34, respectively. The FEM simulations are performed as the same procedure as 
that of the screen protector strip.

By solving Eq. (11) with Algorithm 1, k and p values are obtained with the lumped material property, which 
is an error with respect to the true composite materials. However, this optimization process offsets the lumped 
material property error and calculates k, p values which best fit L and xa , and measured ya values with the lumped 
material property. This is why L and xa values in Calculation by Algorithm 1 column in Table 3 are not exactly 
the same as those in Experiment and Simulation by AYSYS columns. Even though these offset makes L and xa 
values in exact, ya values at each xa and L values are superior compared to the following FEM results.

The calculation, measurement and FEM simulation result pictures are presented in Figs. 8a–c at xa = 6.0, 
5.5, and 5.0 mm, respectively. As shown in Fig. 8a–c, the deflection configurations of the experiment are close 
to that of the calculation and FEM simulation. The L, xa , and ya values are calculated by Eqs. (4–6) to compare 
with experimental and FEM simulation results as presented in the Calculation by Algorithm 1 column Table 3.

ya value comparison between experiment, Algorithm 1, and FEM simulation for mapping catheter sensor 
strip is presented in Fig. 9. As shown in Fig. 9, the ya value difference between calculation and experiment (yellow 
line) is much smaller than that between the simulation and experiment (green line), which is similar to Fig. 7. 

Table 2.   Screen protector strip results (L = 12.5 mm, 10 ≤ xa ≤ 12.25, 0.25 mm increment) [mm].

Experiment
Calculation by 
algorithm 1 Simulation by FEM

L xa ya L xa ya L xa ya
12.50 12.25 2.56 12.53 12.21 2.55 12.50 12.25 2.32

12.50 12 3.57 12.57 11.93 3.54 12.50 12 3.22

12.50 11.75 4.30 12.59 11.66 4.26 12.50 11.75 3.89

12.50 11.5 4.95 12.63 11.38 4.89 12.50 11.5 4.45

12.50 11.25 5.28 12.60 11.16 5.22 12.50 11.25 4.93

12.50 11 5.57 12.57 10.93 5.53 12.50 11 5.36

12.50 10.75 6.32 12.68 10.59 6.21 12.50 10.75 5.74

12.50 10.5 6.86 12.76 10.29 6.69 12.50 10.5 6.09

12.50 10.25 6.96 12.69 10.10 6.82 12.50 10.25 6.40

12.50 10 7.68 12.86 9.74 7.42 12.50 10 6.70

Figure 7.   ya value comparison between experiment, calculation by Algorithm 1, and FEM simulation for the 
screen protector strip (Experiment—Calculation (yellow) and Experiment—Simulation (green) graphs are 
plotted against left axis).
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The ya value difference between the experiment and calculation (yellow line) in Figs. 7 and 9 is lower than that 
between the experiment and simulation (green line) at all range of xa value, which means that the calculation by 
Algorithm 1 has superior than that of FEM simulation. The difference in xa , ya , L values between the calculation 
and experiment at each xa value are summarized in Table 4. As shown in Table 4, the maximum L, xa , and ya 
difference between the calculation and experiment are 0.1643 mm, − 0.1221 mm, and − 0.1093 mm at Experi-
ment xa = 5.25 mm, which are 2–3% at each overall measurement range. The RMSE of L, xa , and ya in Table 4 
are 0.1157, 0.08936, and 0.07405, respectively.

Figure 8.   Mapping catheter sensor strip deflection calculation, measurements and FEM simulations.
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Conclusion
This study proposes an online thin film buckling configuration calculation using a parametric optimization for 
the mapping catheter prototype sensor application. To solve the inverse problem occurred in the practical use of 
the sensor, the divide and conquer type optimization algorithm is proposed, and it also overcome the fluctuation 
problem in gradient steepest descent algorithm. With the proposed framework, the lumped material properties 
errors and sensor strip defects are absorbed in the optimization procedure, which makes the configuration of the 
mapping catheter sensor strip prototype more accurate than those calculated from FEM software. Experiments 
and FEM simulations with a screen protector strip and the mapping catheter prototype sensor strip are performed 
and compared with the calculation result of the proposed method. The results confirmed that calculation results 
are closer to the experimental result than the FEM simulation result in that maximum difference of L, xa , and 
ya values between the proposed method and the experiment are 0.1643 mm, − 0.1221 mm, and − 0.1093 mm, 
which are considered to have enough accuracy for flexible sensor applications of medical usage.

Table 3.   Mapping catheter sensor strip results (L = 6.25 mm, 5.0 ≤ xa ≤ 6.0, 0.25 mm increment) [mm].

Experiment
Calculation by 
Algorithm 1

Simulation by 
FEM 1

L xa ya L xa ya L xa ya
6.25 6.0 2.01 6.32 5.92 1.98 6.25 6.0 1.64

6.25 5.75 2.56 6.33 5.67 2.52 6.25 5.75 2.21

6.25 5.5 2.90 6.31 5.44 2.86 6.25 5.5 2.72

6.25 5.25 3.52 6.41 5.12 3.42 6.25 5.25 3.08

6.25 5.0 3.75 6.39 4.89 3.64 6.25 5.0 3.39

Figure 9.   ya value comparison between experiment, calculation by Algorithm 1, and FEM simulation for the 
mapping catheter sensor prototype (Experiment—Calculation (yellow) and Experiment—Simulation (green) 
graphs are plotted against left axis).

Table 4.   L, xa , and ya difference between the calculation and experiment for the mapping catheter sensor 
prototype [mm].

Experiment Calculation—Experiment

xa L xa ya
6 0.0784 − 0.0715 − 0.0303

5.75 0.0871 − 0.0755 − 0.0430

5.5 0.0692 − 0.0579 − 0.0394

5.25 0.1643 − 0.1221 − 0.1093

5.0 0.1467 − 0.1042 − 0.1056

RMSE 0.1157 0.08936 0.07405
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Data availability
All datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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