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ABSTRACT 

Identifying the exact epitope positions for a mono-
clonal antibody (mAb) is of critical importance yet
highly challenging to the Ab design of biomedical re-
search. Based on previous versions of SEPPA 3.0, we
present SEPPA-mAb for the above purpose with high
accuracy and low false positive rate (FPR), suitable
for both experimental and modelled structures. In
practice, SEPPA-mAb appended a fingerprints-based
patch model to SEPPA 3.0, considering the struc-
tural and physic-chemical complementarity between
a possible epitope patch and the complementarity-
determining region of mAb and trained on 860 repre-
sentative antigen-antibody complexes. On indepen-
dent testing of 193 antigen-antibody pairs, SEPPA-
mAb achieved an accuracy of 0.873 with an FPR of
0.097 in classifying epitope and non-epitope residues
under the default threshold, while docking-based
methods gave the best AUC of 0.691, and the top
epitope prediction tool gave AUC of 0.730 with bal-
anced accuracy of 0.635. A study on 36 independent
HIV glycopr oteins displa y ed a high accurac y of 0.918
and a low FPR of 0.058. Further testing illustrated
outstanding r ob ustness on new antigens and mod-
elled antibodies. Being the first online tool predicting
mAb-specific epitopes, SEPPA-mAb may help to dis-
cover new epitopes and design better mAbs for thera-
peutic and diagnostic purposes. SEPPA-mAb can be
accessed at http:// www.badd-cao.net/ seppa-mab/ . 
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GRAPHICAL ABSTRACT 

INTRODUCTION 

Monoclonal antibodies (mAbs) play important roles in
adapti v e immune protection, in vitro diagnostic, and clin-
ical therapy owing to their capacity to specifically recog-
nize and bind to the epitope residues in antigen protein
( 1 ). The recent de v elopment of BCR-sequencing and library
screening technologies have rendered rapid mAb harvesting
from the vaccinated animals ( 2 ), yet the further characteri-
zation of Ab-specific epitope positions remains highly chal-
lenging, mainly due to the intrinsic spatial nature of Ab-
antigen binding ( 3 ). Though more and more online tools to
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redict spatial epitopes have emerged, with notab le e x- 
mples of Epitopia ( 4 ), CBTOPE ( 5 ), Discotope2.0 ( 6 ),
epiPred ( 7 , 8 ) and SEPPA 3.0 ( 9 ), they usually focused on

he antigens alone, missing the information of cognate anti- 
odies. In other words, these methods forecast all antigenic 
esidues on the antigen surface, which may be targeted by 

ultiple antibody clusters, instead of a specific mAb. 
Meanwhile, docking-based strategies were also employed 

y treating the antigen-antibody interaction as a general 
r otein-pr otein interaction ( 10 , 11 ). Typical approaches in- 
luding ZDOCK ( 12 ), and ClusPro ( 13 ) calculate the com-
lementarity between biomolecules in terms of shape, elec- 
rosta tics and sta tistical potential for scoring. Usually, 
ocking-based methods predict multiple possible regions 
ithout cutoff for one mAb to bind. In addition, drasti- 

ally decreased accuracy was detected on modelled struc- 
ures from antibody sequences ( 14 ). 

Curr ently, a new tr end has emerged in attempting to 

e v elop antibody-specific epitope predictors. For instance, 
artin et al de v eloped an antibody-specific B-cell epi- 

ope predictor based on antibody-antigen protein com- 
le xes. This method di vided the surface of the antigen 

tructures into patches and used a feed-forward neural 
etwork for model construction ( 15 ). Epipred proposed a 

lobal docking-based algorithm to identify the epitope re- 
ion ( 10 ). PECAN designed an antigen-antibody interac- 
ion algorithm based on a graph convolution attention net- 
ork ( 16 ). More recentl y, AbAda pt raised an adapti v e ap-
roach to predict antibody-antigen complex structures on 

he sequence le v el ( 17 ). Xu et al. proposed a pipeline based
n AlphaFold to integra te antibod y and antigen struc- 
ural modelling with rigid docking to predict antibody- 
pecific epitopes ( 18 ). Howe v er, none of the above pro- 
ided user-accessible tools or softwar e. Her e, we pr esent 
EPPA-mAb, the first online tool for predicting mAb- 
pecific epitopes. SEPPA-mAb was composed of two mod- 
ls: SEPPA 3.0 ( 9 ), which calculated all potential antigenic 
ites based solely on antigen structure, and a fingerprint- 
ased patch model, scoring the potential complementarity 

etween epitope patch and complementarity-determining 

egion (CDR) patch. The final integration generated high 

ccuracy and a low false-positi v e rate, which may be useful 
o biomedical users. 

A T ASET 

ntigen-antibody structur e complex es wer e extracted and 

urated with unique epitopes from Protein Database Bank 

PDB) ( 19 ). Surface, epitope and paratope r esidues wer e de-
ned as the same as the SEPPA series ( 9 ). Finally, 860 com-
lexes deposited before July 2017 were selected as the in- 
ernal training dataset (Supplementary Table S1), and 193 

omplexes after the date were used as the independent test- 
ng dataset (Supplementary Table S2), including 36 HIV 

nv glycoproteins (Supplementary Table S3). 

ETHODS 

he construction of SEPPA-mAb includes three steps: (i) 
alculating the antigenicity score of SEPPA 3.0, (ii) con- 
tructing the patch model and obtaining the patch model 
core at the residue le v el and (iii) consolidating the patch 

odel score with the antigenicity score based on the thresh- 
ld. 
In step two, the design of the patch model includes four 

ub-steps: (i) deriving a group of surface patches for anti- 
en, (ii) generating a series of descriptors for each surface 
atch of antigen and the CDR patch of the corresponding 

ntibod y, then pa tch complementarity (PC) score was cal- 
ulated by XGBoost classifier, (iii) mapping the patch scores 
o each surface residue and then calculating the raw residue 
core by considering all the patches that contain the tar- 
et residue, (iv) obtaining the final patch model score on 

he residue le v el through the calibration process. Detailed 

nformation on each step is described in Supplementary 

ethod 1. 

lgorithm of SEPPA-mAb 

or any query of an antigen-antibody structure pair, 
EPPA-mAb predicts which residues on the antigen surface 
an bind to the CDR of the antibody through the following 

teps. 
Step1: Generate a spatial surface patch for each surface 

esidue on the target antigen (see Design of Patch Model ); 
Step2: Generate the structure fingerprints for the surface 

atch of the antigen and CDRs patch of the antibody, and 

hen the PC score was predicted for each surface patch and 

DR patch pair (see Design of Patch Model ); 
Step3: Map the PC scores to each surface residue to ob- 

ain the raw residue score according to Equation ( 1 ); 
Step4: Calcula te the pa tch model scor es on the r esidue 

e v el by calibration and normalization of the raw residue 
cores according to Equations ( 2 ) and ( 3 ); 

Step5: Consolida te the pa tch model scores and antigenic- 
ty scor es pr edicted by SEPPA 3.0 to obtain the final list of

Ab-specific epitope residues, when both scores are over 
he thresholds. 

esign of patch model 

or the input antigen, SEPPA-mAb will automatically gen- 
ralize the spatial patch for each surface residue on anti- 
en protein and be paired with the CDR patch of the corre- 
ponding antibody. Then, the patch model will generate fin- 
erprints, and calculate the patch model score on the residue 
e v el. 

During fingerprint generation, the patch model intro- 
uced a cylinder model describing the structural la y out 
nd physic-chemical properties for each patch based on the 
efaulted pixel. Eight properties are considered to gener- 
te the 200-bit fingerprints for the antigen side and anti- 
od y side, separa tely. After being trained on 860 antigen- 
ntibody pairs through XGBoost, the patch model can pre- 
ict the PC score for each antigen patch according to the 
DR of cognate antibody ( see Supplementary Method 1 ). 
To determine whether one residue is an epitope residue 

r not, the pr edicted PC scor es ar e first mapped to the indi-
idual residue. Considering all the pa tches tha t contain the 
ame residue, the raw residue score for any residue r can be 
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calculated through Equation ( 1 ): 

r aw r es i due s core r = 

∑ 1 
1 + d ∗ P C s core i 

M 

(1)

wher e P C score i r epr esents the pr edicted PC scor e of sur-
face patch i which contains residue r, and d is the distance of
residue r to the center of patch i , while M is the total number
of patches which contains residue r . 

Then, to identify the final patch model score, calibra-
tion, and normalization were introduced for the raw residue
scores. The calibration process is designed to adjust the
raw residue scores of individual residues based on the over-
all tendency of neighboring residues. The adjusted residue
score of residue r is defined by the averaged raw residue
score of all neighboring surface residues as Equation ( 2 ) il-
lustrated: 

ad j us t res i due s cor e r = 

∑ 

r aw r es i due s core j 
N 

(2)

where 
∑ 

r aw r es i due s core j r epr esents the sum of the raw
r esidue scor e of all neighboring surface r esidues within 5 Å
atom distance of target residue r , while N means the total
number of above residues. 

Finally, the normalization process is conducted to make
the results comparable between different antigens. The
ad j us t res i due s core was normalized to a range of 0–1 to
obtain the patch model score using Equation ( 3 ): 

P atc h Mode l sc or e r = 

ad just r e sidue sc or e r − min ( ad just r e sidue sc ore ) 
max ( ad just r e sidue sc ore ) − mi n ( ad jus t res i due s core ) 

(3)

where mi n ( ad j us t res i due s core ) is the minimum
ad j us t res i du e s core of residues in a gi v en antigen,
and max ( ad j us t res i due s core ) means the maximum
ad j us t res i due s core of residues in a gi v en antigen.
P atc h Mode l sc ore r means the patch model score for a
specific residue r . 

RESULTS 

Patch model construction and performance test 

On top of the antigenic sites predicted by SEPPA 3.0, we
de v elop a patch model to evaluate the physic-chemical com-
plementarity of possible contacting regions between the
antigen surface and CDR surface by reporting a patch
model score between 0 and 1. The evaluation parameters
of the area under the ROC curve (AUC) value and bal-
anced accur acy (B A) are adopted as illustr ated in SEPPA
3.0 ( 9 ). For internal validation, eight machine learning ap-
proaches ar e scr eened, including X GBoost (X GB), Sup-
port Vector Machine (SVM), Random Forrest (RF), De-
cision Tree (DT), Multi-Layer Perceptron (MLP), Gradi-
ent Descent (GD), Gaussian Na ̈ıve Bayes (GNB) and Lin-
ear Regr ession (LR) wer e evaluated thr ough 5-folds cr oss-
validation on 860 protein structures in the training dataset.
The validation indicates that XGBoost (XGB) gi v e the best
pr ediction r esults with an Ar ea Under ROC Curve (AUC)
value of 0.776, which outperforms all others. Thus, XG-
Boost (XGB) is chosen to construct the patch model. 
The performance of the patch model is tested on 193 anti-
gens and compared with available tools online including
both well-known epitope prediction methods and docking-
based methods via AUC and Balanced Accuracy (BA)
value. As Figure 1 shows, 7 tools are selected for com-
parison including 5 traditional epitope prediction tools of
Epitopia ( 4 ), CBTOPE ( 5 ), DiscoTope2.0 ( 6 ), BepiPred3.0
( 8 ) and SEPPA 3.0 ( 9 ), and two docking-based methods of
ZDOCK ( 12 ) and ClusPro ( 13 ). The test dataset containing
193 antigens was not overlapping with the training dataset
of any above state-of-the-art methods (Figure 1 A). Results
illustra te tha t the pa tch model gi v es the best results with an
AUC of 0.774 and BA of 0.681 based on the default thresh-
old. SEPPA 3.0 ( 9 ) achie v e the second best among all cur-
rent state-of-the-art methods with an AUC value of 0.730
and BA of 0.635, followed by Bepipred 3.0 with an AUC
value of 0.685 and BA of 0.628(Figure 1 B). 

Further, two r epr esentati v e docking-based tools,
ZDOCK ( 12 ) and ClusPro ( 13 ) are included for com-
parison with the patch model on both experimental and
simulated structures of antibodies ( see Supplementary
Method 2 for details ). Since docking approaches output
multiple complex structures, the AUC values of top
N ranking r esults ar e calculated based on combining
r esidues from N r egions. When the r esults ar e checked
between experimental and modelled antibody structures
by ABodyBuilder ( 20 ) (see Supplementary Method 3 and
Supplementary Table S7), docking methods indeed display
an obvious performance drop on modelled structures,
agr eeing with pr evious r eports ( 14 ). As illustrated in Figure
1 c, the overall AUC value of the top 1 prediction decreased
from 0.691 to 0.589 for ZDOCK ( 12 ) and 0.680 to 0.601 for
ClusPro ( 13 ), respecti v ely. A similar drop in the top 5 and
top 10 results. Among 193 predictions, the patch model
gave better AUC prediction on 122 (63%) data points than
the top 1 prediction of ZDOCK and 120 (62%) data points
than the top 1 results of ClusPro (Supplementary Table
S4). 

In terms of the patch model, it outperforms ZDOCK ( 12 )
and ClusPro ( 13 ) on different le v els of top N comparison
(Figure 1 C). In addition, the patch model seems to show the
a bility of sta ble performance with an overall AUC of 0.741
on 193 crystalized, and an AUC of 0.730 on 193 simulated
Ab structures. Further among the 193 modelled structures,
the patch model owns better AUC values on 150 (78%) anti-
gens than the top 1 prediction of ZDOCK, and 145 (75%)
antigens than the top 1 results of ClusPro (Supplementary
Table S5), demonstrating its unique ability to tolerate struc-
ture variation. 

Performance and case study of SEPPA-mAb tool 

The patch model is designed to calculate the complementar-
ity score of interacting surfaces between the antigen and its
cogna te antibod y, while SEPPA 3.0 is designed to score the
antigenic sites on the antigen surface. Both scor es ar e nor-
malized from 0 to 1. For each residue, SEPPA-mAb simply
considers the two scores and gi v es a judgment of YES (1
for epitope) if both scores are above their default cutoffs,
otherwise NO ( −1 for non-epitope) or NOT AVAILABLE
(0 for internal residue). In this way, the prediction accuracy
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Figure 1. Performance comparison between patch model and available state-of-the-art methods. ( A ) ROC curves for traditional epitope prediction methods 
on independent test dataset containing 193 antigens. ( B ) Balanced accuracy for epitope prediction methods on independent test dataset containing 193 
antigens. ( C ) AUC distribution in violin plot on test dataset containing 193 antigens for patch model, ZDOCK and ClusPro respecti v ely. The red dot 
r epr esented the averaged AUC value for different methods. T1, T5 and T10 r epr esent the top 1, top 5 and top 10 output lists from docking approaches 
respecti v ely ov er the test dataset containing 193 antigens. The r esults obtained by experimental structur es and modelled structur es wer e color ed in r ed and 
b lue respecti v ely. 
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n the test dataset containing 193 antigens is 0.790 for the 
atch model and 0.776 for SEPPA 3.0, with an FPR of 0.196 

or the patch model and 0.206 for SEPPA 3.0, respecti v ely. 
fter integration, SEPPA-mAb significantly pushes the ac- 

uracy to 0.873 and reduced FPR to 0.097. We also exam- 
ned the well-known HIV glycoproteins in the test dataset 
ontaining 193 antigens, as they r epr esent the largest fam- 
l y of patho genic antigens. Patch model alone achie v es the
veraged AUC value of 0.835 on the 36 antigens of gp120 

Supplementary Table S3), higher than the best traditional 
pitope prediction tool of SEPPA 3.0 (AUC = 0.756) and 

he best docking approach of ClusPro (AUC < 0.65 for Top 

, Top 5 and Top 10 solutions) (Figure 2 A). Further integra- 
ion achie v es an advanced accuracy of 0.918 and an FPR of 
.058 for SEPPA-mAb. 

To better illustrate the benefits to integrate the patch 

odel with SEPPA 3.0, the r efer ence epitope in hemag- 
lutinin (HA) antigen targeted by antibody C05 (PDB ID: 
D0U, Chain: G) was shown in Figure 2 B. Results showed 

hat SEPPA 3.0 predicts many spreading antigenic sites 
Figure 2 C), while the patch model suggests two major 
 egions r elati v ely complemented to antibody C05 (Figure 
 D). The final integration of SEPPA-mAb efficiently re- 
oves those false positive r esidues, pr esenting the best can- 
idate positions as C05-targeted epitopes (Figure 2 E). 
The pandemic of COVID-19 in 2020 provided an oppor- 

unity to test model performance on completely new anti- 
ens ne v er seen by SEPPA-mAb. Here, 31 pairs of spike 
ntigens and their cognate Abs were tested with detailed 

DB ID listed in Supplementary Table S6. The average ac- 
uracy of 0.753 with an average FPR of 0.224 is achie v ed by
EPPA-mAb. As the accuracy is calculated at the individual 
esidue le v el w hich is highl y stringent, we examined w hether
EPPA-mAb can predict the correct epitope area for each 

ntibody (30% residue overlapping between predicted and 

rystalized epitope positions). The result shows our model 
an successfully suggest 23 out of 31 epitope areas, indicat- 
ng the outstanding ability on completely new antigens. 

SAGE 

nput 

EPPA-mAb ( http://www.badd- cao.net/seppa- mab ) ac- 
epts input files of antigen-antibody pair in the below 

ormat: (i) existing PDB IDs with chain name, and (ii) local 
les in PDB format. Similar to SEPPA 3.0 ( 9 ), users are 

http://www.badd-cao.net/seppa-mab
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Figure 2. Performance and case study of SEPPA-mAb. ( A ) AUC values for patch and current state-of-the-art methods on the independent testing dataset 
of 36 gp120 antigens. T1, T5, and T10 r epr esent the average AUC value of the top 1, top 5 and top 10 solutions for docking approaches respecti v ely. ( B ) 
Reference epitope targeted by antibody C05 (PDB ID: 6D0U, Chain: G). ( C ) Predicted epitope residues for HA by SEPPA 3.0 with the gradient illustration 
under default cutoff. Red, salmon, pink, white, and grey color illustrate those candidates from high score to low scor e. ( D ) Pr edicted epitope r esidues for 
HA by Patch Model with gradient illustration under default cutoff. Red, salmon and white colors illustrate those candidates from high scores to low scores. 
( E ) Combined epitope residues by incorporating SEPPA 3.0 with Patch Model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

recommended to select subcellular localization of protein
antigen and species of immune host if available. Also, batch
query submission is encouraged. During the batch query,
users can submit multiple entries including specified PDB
IDs, subcellular localization, species of immune host, and
chain name. After successful submission, each residue of
antigen protein will be processed by patch model with the
information of the corresponding antibody to calculate
a score of possible Ab interaction, and by SEPPA 3.0 to
obtain the antigenicity score respecti v ely. 

Output 

The output results of SEPPA-mAb will either be presented
in .html format by browsing the progress of calculation via
job-id or sent back to users via email. The .html format will
provide a result summary from three aspects: (i) submis-
sion information, including model parameters, sequence of
antigen, and sequence of antibody, as well as the predicted
epitope information, including the residue positions of the
input antigen. Predicted epitope residues are presented in
red capital letters and the non-surface amino acids are pre-
sented in lowercase letters (Figure 3 A); (ii) epitope 3-D vi-
sualiza tion, facilita ting users to observe the spatial distribu-
tion of epitopes. The 3D model of the antigen is created via
Jmol. The amino acid is labelled in different colors based
on the SEPPA-mAb scores (Figure 3 B) and (iii) download-
able results in .txt format, which includes the query infor-
mation, SEPPA 3.0 score, patch model score, and SEPPA-
mAb score for each residue (Figure 3 C). More information
can be found on the HELP page of SEPPA-mAb. 

DISCUSSION 

Predicting the Ab-specific epitopes for protein antigens
is highly desired but no tool is available online. In this
study, we de v eloped SEPPA-mAb for this purpose, based
on the previous antigenicity prediction server of SEPPA
3.0, appended by a new patch model calculating the physic-
chemical complementarity between antigen-antibody in-
teraction surface. Compared with current state-of-the-
art methods of traditional epitope prediction tools and
docking-based algorithms, the patch model alone shows
outstanding performance on both Ab-specific interface pre-
diction and robustness on varied structure variation. More
importantly, the integrated tool of SEPPA-mAb can effi-
ciently increase the accuracy and reduce the FPR, with
the best ability to tolerate structure variation of computer
modelling. 

Prediction B-cell epitopes for a cognate binding or neu-
tralizing antibody have r eceived incr easing attention in re-
cent years. As more and more antibodies are deri v ed from
one antigen, it is becoming apparent that essentially dif-
fer ent surface r egions of an antigen may be r ecognized
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Figure 3. Illustration of SEPPA-mAb output results. ( A ) Result summary for epitope prediction of query antigen. ( B ) 3D visualization of query antigen. 
( C ) Results predicted for each residue in queried antigen including scores from SEPPA 3.0, patch model score, and SEPPA-mAb. 
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nd bound by antibodies ( 21 , 22 ). Missing the informa- 
ion of a cogna te antibod y, wha t those traditional algo- 
ithms ( 4 , 7 , 9 ) calculate are actually kind of pan-antigenic
ites. Then se v eral pioneers reformulated the question from 

redicting pan-antigenic sites to mAb-specific epitope sug- 
estion ( 15 , 22 ). For instance, Rapberger et al proposed 

hat the antigen epitope should geometrically and elec- 
rosta tically ma tch the antibod y structur e ( 23 ). Mor e r e-
ently, the Ab-specific epitope predictor by Martin et al. 
ivided the antigen surface residues into multiple patches 
o generate 471 features including 237 for antigen patch 

nd 234 for antibod y para tope ( 15 ). Though no acces- 
ible tools are provided to biomedical users, the above 
rought enlightening guidance for the de v elopment of 
EPPA-mAb. 
The performance of SEPPA-mAb mainly benefits from 

oth the successful prediction of potential antibody- 
omplimentary regions from the patch model, and the 
an-antigenic sites predicted by SEPPA 3.0. Importantly, 
ur patch model is designed with se v eral nov elty aspects. 
he first is the patch-based structural and physicochemi- 
al fingerprints deri v ed from the cylinder model. Via cylin- 
er ( Supplementary Method 1 ), the layers of local micro- 
nvironmental variations can be fully considered for a sur- 
ace residue under the neighborhood influence of both sur- 
ace and internal r esidues. Secondly, differ ent from the pre- 
ious patch conception where all residues in the patch are 
qually treated, we gi v e patch residues weighted scaling ac- 
ording to their distance to the patch center. In this way, the 
esidual la y out and subsequent physic-chemical properties 
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can be well captured from both sides of the interaction in-
terface describing the complex nature of antigen-antibody
interactions. Thirdly, all calculation is made on the residue
le v el, instead of the detailed atom coordinates in docking
methods. This coarse-grained description enables rapid sur-
face scanning patch-pairing, also toler ating structur al vari-
ation caused by computer modelling. Finally, a calibra-
tion process is elaborated to further reduce FPR by con-
sidering the neighboring influence. In summary, SEPPA-
mAb consolidated the results from pan-antigenic sites pre-
dicted by SEPPA 3.0, and mAb CDR-complementary sur-
face predicted by patch model, enhancing the prediction
performance from baseline (accuracy of 0.776–0.790, FPR
of 0.196–0.206) to a le v el with high accuracy of 0.873 and
low FPR of 0.097. 

Be noted that, the current model aims to recommend the
best epitope positions in antigen surface being recognized
by its cognate antibodies. Any input antibody is regarded
as interacting with input antigen by expectation. Mecha-
nistically, SEPPA-mAb employed more information from
antigens rather than antibodies, leading to its insensitivity
to antibodies. In fact, it is more sensiti v e to antigen muta-
tion and structural variation. As SEPPA-mAb conducts the
calculation based on the structure files, incomplete struc-
tures may reduce their performance. Further, SEPPA-mAb
considered the influence of glycosylation through SEPPA
3.0. Other forms of post-translational modifications such
as phosphoryla tion, ubiquitina tion, methyla tion, and so
on, have not been considered in the current version. Also,
single-chain antibodies are not applicable for now. In the
future, with the rapid accumulation of structures generated
through experiments and AI technologies, as well as the de-
velopment of deep learning algorithms, improved versions
can be expected for antibody-specific epitope prediction,
which may better assist antibody design in therapeutic and
diagnostic purposes. 
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