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ABSTRACT

Gene and protein set enrichment analysis is a criti-
cal step in the analysis of data collected from omics
experiments. Enrichr is a popular gene set enrich-
ment analysis web-server search engine that con-
tains hundreds of thousands of annotated gene sets.
While Enrichr has been useful in providing enrich-
ment analysis with many gene set libraries from
different categories, integrating enrichment results
across libraries and domains of knowledge can fur-
ther hypothesis generation. To this end, Enrichr-KG
is a knowledge graph database and a web-server ap-
plication that combines selected gene set libraries
from Enrichr for integrative enrichment analysis and
visualization. The enrichment results are presented
as subgraphs made of nodes and links that con-
nect genes to their enriched terms. In addition, users
of Enrichr-KG can add gene-gene links, as well as
predicted genes to the subgraphs. This graphical
representation of cross-library results with enriched
and predicted genes can illuminate hidden associa-
tions between genes and annotated enriched terms
from across datasets and resources. Enrichr-KG cur-
rently serves 26 gene set libraries from different
categories that include transcription, pathways, on-
tologies, diseases/drugs, and cell types. To demon-
strate the utility of Enrichr-KG we provide several
case studies. Enrichr-KG is freely available at: https:
//maayanlab.cloud/enrichr-kg.
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INTRODUCTION

Gene and protein set enrichment analysis provides context
for genes and proteins identified in omics experiments using
prior knowledge (1). Enrichment analysis involves query-
ing a gene set against a catalog of annotated gene sets to
find significant overlap between the input set and the an-
notated prior-knowledge gene sets. The results are ranked
associated terms such as pathways, transcription factors,
small molecules, diseases and other phenotypes, cell lines,
cell types and tissues, and other biological and biomedical
terms.

Enrichr (2-4) is a widely popular search engine for gene
sets, performing enrichment analysis instantly against many
annotated gene sets. In the past 10 years, over 59 million
gene sets have been submitted as queries to Enrichr; and
as of mid-2023, Enrichr has grown to host over ~400 000
annotated gene sets from ~200 gene set libraries. Such a re-
source provides a comprehensive collection of knowledge
about genes, including their transcriptional and transla-
tional regulation, membership in pathways and biological
processes, regulation and binding to drugs, association with
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diseases and other phenotypes, and expression across cell
types, tissues, and cell lines. While Enrichr has been a valu-
able resource for hypothesis generation for many studies,
there is still an opportunity to improve its functionality by,
for example, integrating enrichment results across libraries
and domains of knowledge. This can be achieved by view-
ing results of the enrichment analysis across libraries as an
integrated network of genes and their annotations.

Network representation of biological molecular systems
have been widely applied in biomedical research for ab-
stracting connections between molecular entities (5-10).
At the same time, many widely used web-based tools
have been developed for network visualization and anal-
ysis. For example, STRING provides network visualiza-
tions of known and predicted associations between pro-
teins, including physical protein-protein interactions (11).
Genes2Networks (G2N) returns a protein interaction sub-
network that connects a set of input genes/proteins based
on known protein-protein interactions (12). Another ex-
ample is GeneMania (13) which visualizes associations be-
tween genes using evidence from across domains of knowl-
edge such as co-expression, physical interaction, pathway
membership, and shared structural domains. Other notable
examples are HumanNet (14) and the DisGeNet Cytoscape
app (15) which provide integrated network visualizations
centered on disease genes and include predictions and pri-
oritization of gene-disease associations.

Recently, knowledge graphs have gained popularity for
integrating and generating hypotheses from connected data
(16,17). Knowledge graphs have been used for studying dis-
ease mechanisms (18,19), mining small molecules for drug
discovery (20,21), and analyzing connections between au-
thors and biomedical entities using PubMed (22). Recently,
there was an attempt to create a massive knowledge graph
that integrates biomedical data for precision medicine (23).
Within knowledge graphs data is stored as triples that de-
scribe how a subject entity is related to an object entity.
For example, in the statement ‘Drug A’ targets ‘Protein
B’, ‘Drug A’ is the subject, and ‘Protein B’ is the object,
and the connection between them is described by the verb
‘targets’. Generating a collection of these triples made of
different types of entities forms a network of knowledge
that can be navigated, becoming the subject for applica-
tion of graph traversal algorithms, and graph completion
prediction algorithms. However, one of the challenges with
knowledge graphs is that their size grows rapidly and query-
ing the graph for useful applications becomes challenging.
At the same time, biomedical and biological knowledge
about genes and proteins, as well as other molecular enti-
ties, can be stored as annotated gene sets. Such gene sets
are useful for performing gene set enrichment analysis (1).
Many tools and databases have been developed for perform-
ing gene set enrichment analysis, for example, DAVID (24),
g:Profiler (25), WebGestalt (26), MSigDB-GSEA (27) and
Enrichr (3). Currently, most enrichment analysis tools and
databases store knowledge as gene set libraries. While such
a storage schema has benefits, for example, performing fast
overlap analysis across thousands of gene sets instantly, the
comparison of enrichment results across multiple gene set
libraries is not trivial. To solve this, tools such as Enrich-
mentMaps (28) visualize gene set enrichment analysis re-
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sults as ball-and-stick subgraphs that connect genes to their
enriched terms. Hence, several gene set enrichment analy-
sis tools with network visualization already exist, each pro-
viding different features and advantages. A collection of
such tools with a comparison of their features is provided
(Table 1).

Here we describe a web-server application called Enrichr
Knowledge Graph (Enrichr-KG) which combines enrich-
ment analysis with a knowledge graph data representation
to query a large collection of processed datasets made of as-
sociations between genes and many biological and biomedi-
cal terms. To create Enrichr-KG we converted selected gene
set libraries from Enrichr into triples for ingestion into a
knowledge graph database. Each triple represents the mem-
bership of a gene in an annotated gene set. Thus, performing
enrichment analysis with Enrichr-KG returns an integrated
network containing the top enriched terms from across mul-
tiple libraries connected to their overlapping genes. To pre-
serve the breadth of knowledge offered by the Enrichr li-
braries, libraries were selected by their diversity, level of
prior use, and uniqueness (Table 2).

MATERIALS AND METHODS

Collecting and processing the Enrichr libraries for knowledge
graph database ingestion

We first selected 26 gene set libraries from Enrichr (2—
4) for ingestion into the knowledge graph (Table 2). To
preserve the variety of library types, we selected rep-
resentative libraries from each Enrichr category as fol-
lows: transcription (ARCHS4 TFs (29), ChEA3 (30), FAN-
TOMG6 (31) and TRRUST (32)); pathways (KEGG (33,34),
PFOCR (35), Reactome (36), the Kinase Library (37), and
WikiPathways (38)); ontologies (Gene Ontology (39,40),
Human Phenotype Ontology (41), Jensen DISEASES (42),
and MGI Mammalian Phenotypes (43)); diseases/drugs
(Project Achilles (44), LINCS L1000 perturbation signa-
tures (45), and Drug Perturbation Proteome Atlas (46)),
cell types (CCLE (47), Descartes (48), Human Gene Atlas
(49), Tabula Muris (50), and Tabula Sapiens (51)); and other
(Pfam (52)). Persistent IDs were then assigned to each term
and gene. For genes, gene names were mapped to Entrez
gene symbols (53). Genes that do not have a matching En-
trez gene symbol, or a synonym, were discarded. The fol-
lowing method was employed for obtaining persistent iden-
tifiers for a term: (i) parsing the gene set term with a regular
expression to extract the ID from the term; (ii) parsing data
tables from the resource that was used to create the gene set
library utilizing available APIs or downloadable mapping
files; (iii) using ontologies and controlled vocabularies such
as UBERON (54), Cell Ontology (55), Cellosaurus (55,56),
PubChem (57) and Entrez Gene (53) and (iv) using the term
as the persistent ID for those terms that failed the mapping
methods described above. When possible, additional meta-
data elements were resolved from the gene set terms using
regular expressions.

Building the graph database

Enrichr-KG visualizes the connections between enriched
terms and genes across multiple selected gene set libraries.
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Table 1. A comparison of features from resources providing enrichment analysis with network representations. If a resource had a broken URL, its
features were taken from the relevant literature. Column values are: A: Interactive web server, B: Number of libraries, C: Statistical method, D: Cytoscape
enabled, E: Gene set augmentation/predictions, F: URL to site works, G: PPIs, H: Co-expression correlations, I: Multiple edge types, J: Different node

types in the same graph, K: Provides enrichment analysis

Resource URL PMID A B C D E F G H I J
Enrichr-KG maayanlab.cloud/enrichr-kg v' 24 Fisher exact test v v v v X v v
EnrichmentMap  baderlab.org/Software/ 21085593 x NA NA v o ox v X X x v ox
EnrichmentMap

BioGraph biograph.pa.icar.cnr.it 30458802 v 9  Fisher exact test v X X X X X v v
MELODI melodi.biocompute.org.uk 29342271 v 5 Fisher exact test X X v X X v v v
Reactome graph  reactome.org/dev/graph-database 29377902 X I NA X X v X X X X X
database

GREG www.moralab.science/GREG 32055858 v 6 NA X X X v X v v X
Bio4j bio4j.github.io NA X 5 NA v X v oV X v v X
cyNeo4j apps.cytoscape.org/apps/cyneo4j 26272981 x NA NA v X v X X v v X
DGLinker dglinker.rosalind.kcl.ac.uk 34125897 v 12 Fisher exact test X v v v v X X v
AmiGO amigo.geneontology.org/amigo 19033274 v 2 Hypergeometric v X v X X X X v
Genes2FANs actin.pharm.mssm.edu/genes2FANs 22748121 v 15 NA v X X v v X v X
STRING string-db.org 36370105 v 12 Kolmogorov— v X v v v v X v

Smirnov

GeneMANIA genemania.org 29912392 v 20 Fisher v v v v v v X v
DAVID david.nciferf.gov 35325185 v 16 EASE score v X v X X X X v
ClueGO apps.cytoscape.org/apps/cluego 19237447 X 3 Hypergeometric v X v X X X v v
Metascape metascape.org 30944313 v 24 Custom* v X v X X X v v
NetworkAnalyst ~www.networkanalyst.ca 30931480 v 11  GSEA X X v v X X v o
MSigDB-GSEA  www.gsea-msigdb.org 26771021 v 15 GSEA X X v v X X X v

*Explained in this blog post: https://metascape.org/blog/?p=122

Table 2.  Gene set libraries stored in the Enrichr-KG database, their cat-
egory, and term and gene coverage counts

files. The conversion of a gene set library into nodes and
edges CSV files requires the construction of three files: (i)
a term node CSV file containing the term identifiers, the

Gene
Resource Category Terms  coverage term string, and any additional metadata; (ii) a unified gene
Achilles (44) Diseases/Drugs 216 4779 node CSV file containing all the genes that appear in the
ARCHS4 (29) Transcription 1724 27226 gene set libraries and their respective identifiers and (iii) an
ASCT+B (103) Cell Types 777 12 531 edge CSV file that contains information on the connection
CCLE (47) Cell Types 378 11710 between the genes and the terms, not including the weights
ghEAi(“a 5 (T:rilnsTC“ptlon Z% 1 ;3531654 which are associated with the enrichment results. These files

cscartes € ypes . . . .

DisGeNET (104) Discases/Drugs 9828 17266 are ingested into the Nep4j database using the py2neq bulk
FANTOMG6 (31) Transcription 206 13 682 import function. Querying the database is achieved via the
Gene Ontology (39,40) Ontologies 6036 14 929 Cypher query language (59).
GWAS Catalog (105) Diseases/Drugs 1737 15296
Human Gene Atlas (49) Cell Types 84 12 087
Human Phenotype Ontology ~ Ontologies 1779 3077 Creating the web-server application
(41 . . .
DISEASES (42) Ontologies 1811 15 141 While Neo4j comes with a console to query the database,
KEGG (33,34) Pathways 320 8073 it is not very customizable, and it is difficult to export as
LINCS (CRISPR KO) (45)  Diseases/Drugs 5212 9440 an open web-server application that can be shared publicly
LINCS (Small Molecule) Diseases/Drugs 5425 9525 ith logi . T id blic faci
@3) without a ogin requlrement. 0 provide a public facing
MGI Mammalian Phenotype Ontologies 4601 9756 open customizable interface that enables users to interact
(43) with the data, we constructed a web application that uses
Pfam (52) Misc 608 8975 Cytoscape.js (60) to visualize the results from the Cypher
PFOCR (35) Pathways 17326 12765 queries. Next.js and React were used to build the Enrichr-
Reactome (36) Pathways 1818 10 489 . . . . .
Tabula Muris (50) Cell Types 106 3857 KG website. To provide enrichment analysis, Enrichr-KG
Tabula Sapiens (51) Cell Types 469 1509 communicates with the Enrichr API (2-4) to perform en-
TRRUST (32) Transcription 571 3126 richment analysis. The results are then queried against the
WikiPathways (38) Pathways 622 7151 Neodj database and visualized as a network.

Such visualization is achieved by storing the serialized pro-
cessed gene set libraries in a Neo4j database (58). Specifi-
cally, the gene set libraries from Enrichr are converted into
nodes and links where the nodes are either gene set terms or
genes. If a gene is part of a gene set, then an edge is added
to the network. Such information is stored in separate CSV

Adding protein-protein interactions and gene-gene co-
expression correlations

To include protein-protein interactions as an option for in-
clusion in subnetworks, human protein-protein interactions
were downloaded from the STRING database (11). The
top-scored 150 000 protein-protein interactions (PPIs) that
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share a physical complex ranked by the combined score
are included in the Enrichr-KG database. To include gene-
gene co-expression correlations, the co-expression correla-
tion matrix from ARCHS4 (29) was used. The top 10 co-
expressed genes for each gene are extracted and included in
the database. Correlations are computed and ranked by the
Pearson correlation coefficient.

Augmenting subnetworks with predicted genes

To augment the genes in the subnetworks with additional
genes based on co-expression, the genes in the subnet-
work are used as the input. These genes are submitted to
the Geneshot API (61) to obtain genes that on average
are mostly co-expressed with the genes in the subnetwork
using the co-expression matrix from ARCHS4 (29). The
Cypher query is then updated to identify connections be-
tween the augmented co-expressed genes and the enriched
terms.

Free text descriptions of subgraphs

To produce free text descriptions of the visualized subgraph,
we developed templates that describe each type of associa-
tion. The templates are then filled with the text describing
genes and gene sets. For example, for gene-structural do-
main associations from Pfam (52), the template is: ‘the gene
products ${genes} have the structural domain ${term}’.

RESULTS
Interacting with the Enrichr-KG web-server application

Enrichr-KG is a gene set enrichment analysis tool that vi-
sualizes enrichment results as an interactive web-based net-
work that connects genes to enriched terms, for example,
pathways, biological processes, or phenotypes. To create
Enrichr-KG, we serialized gene set libraries into CSV files
that are ingested into a Neo4j database. The Enrichr-KG
web interface is a customizable general-purpose Ul that is
built on top of the Neo4j database. As such, the UI compo-
nent of Enrichr-KG can be reused for other related bioin-
formatics projects. The Enrichr-KG UT enables users to in-
teract with the underlying data stored in the Neo4j database
by performing gene set enrichment analyses on their input
gene sets with various customization and interactive fea-
tures (Figure 1). First, users can submit gene sets to per-
form enrichment analysis against a maximum of five se-
lected gene set libraries. Input genes are validated against
a dictionary of Entrez gene symbols and users are informed
in real-time whether the gene is in the database (Supplemen-
tary Figure S1). Upon pressing the submit button, Enrichr-
KG returns a subgraph that displays the top enriched terms
per library as well as the genes that overlap across these
terms (Supplementary Figure S2). Users can tweak the set-
tings to control the subgraph content by adjusting various
parameters such as the maximum node degree, maximum
subgraph size, the gene set libraries to use, and the num-
ber of top terms to include from each library. The sub-
network layout can be changed to force-directed, circular,
or hierarchical layouts. Additionally, the subnetwork can
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be downloaded as an image, as a story described in free-
text, or as a serialized CSV file. Users can also view the
enrichment results in a table or a bar chart that summa-
rizes the results across libraries (Supplementary Figure S3).
In addition, users can augment the subnetworks with addi-
tional predicted genes based on co-expression correlations;
and add to the subnetworks known gene-gene links based
on protein-protein interactions and/or co-expression corre-
lations.

The term and gene search tab in Enrichr-KG enables
users to query the database to identify specific genes or
terms. The single term or single gene search queries dis-
play the immediate neighbors of that node. For exam-
ple, known annotations for the gene APOE are displayed
as a star subnetwork (Supplementary Figure S4). APOE
is known to be associated with Alzheimer’s disease and
cholesterol metabolism (62-66). The two-term search fea-
ture of Enrichr-KG returns a subgraph that contains the
shortest paths between two nodes. Shortest paths can be
used to find connections between pairs of gene-gene, term-
term, or gene-term nodes. This type of query returns the
shared genes between two gene sets, or shared annotations
between two genes. Such queries can illuminate connections
between a gene and a gene set even if the gene is not a mem-
ber of the set. For example, the subgraph that connects the
two genes HNF1B and KCNJ11 shows their shared anno-
tations such as decreased B-cell function and decreased in-
sulin sensitivity (67) (Supplementary Figure S5). Like the
enrichment analysis subgraphs, the layout of these sub-
graphs can be changed, the subgraph can be augmented
with additional genes, enriched with known protein-protein
interactions, and made available for download as a CSV file,
or as a story written in free text.

Case study 1: exploring knowledge about the APOE4 variant

APOE is a polymorphic gene associated with the risk of
late-onset Alzheimer’s disease (AD) (62-65). To under-
stand the mechanisms of APOEA4, the highest risk polymor-
phic form of APOE, Blanchard et al. (66) performed sin-
gle cell RNA-seq profiling of post-mortem human brains
of APOE4 carriers vs. non-carriers. Their findings show
altered cell signaling of pathways involved in cholesterol
homeostasis and transport. From this study, we submit-
ted the top 100 up-regulated genes in the APOE4 carriers
compared to the non-carriers for analysis with Enrichr-KG
(Figure 2). Consistent with the reported findings, Enrichr-
KG also identifies cholesterol-related enriched pathways
from KEGG and WikiPathways. We also found enrichment
for terms related to regulation of the cell cycle and immune
activation. It is well accepted that inflammation and im-
mune response activation is the key molecular mechanism
of AD (68). The Enrichr-KG subnetwork can be used to
narrow down mechanisms to the specific genes, pathways,
transcription factors, and cell types that may be involved.

Case study 2: exploring molecular mechanisms of diabetic
nephropathy

In the US, diabetic nephropathy (DN) is a common com-
plication of diabetes that often leads to end-stage renal dis-
ease (ESRD) (69). Several studies examined the progression
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Figure 1. The Enrichr-KG workflow. Enrichr gene set libraries were serialized to nodes and edges where a gene is connected to a term if it is a member of
the annotated gene set. The resulting network is made of links that connect genes to drugs, diseases, cell types, pathways, transcription factor regulators,
and biological processes. A public facing web interface is provided to interact with the data. The interface enables users to input gene sets to perform
integrated gene set enrichment analysis. The returned result is a subnetwork containing the top enriched terms from the libraries selected connected to
the overlapping genes across libraries. Bar graphs and tables are also provided to visualize the top enriched terms. Gene and term search functionality
can be used to query the immediate neighbors of a node. This is useful for finding shortest paths between two genes, two terms, or a gene and a term. All
subnetworks can be downloaded as CSV files containing the nodes and edges of the subnetwork, as well as a free text description of the contents of the

subnetwork.

of DN in hopes of finding targets and therapeutics to inter-
vene with the progression of the disease to prevent or post-
pone ESRD (70-74). In a recent study, Fan et. al. (70) com-
pared the transcriptomics profiles of early stage DN to ad-
vanced DN. 270 genes were identified to have lower expres-
sion level during early stage DN compared to the advanced
stage, while 148 genes are up-regulated in early DN but are
lowly expressed in advanced DN. The authors concluded
that up-regulated genes in late DN are mainly related to in-
flammation and increased immune response. On the other
hand, several genes that are downregulated in the late stage
are reno-protective with RDHS, RDH12 and RBP4 being
part of the retinoic acid pathway. The results from this study
suggest that increasing the expression of these genes may
help in preventing the progression of diabetic nephropa-
thy. To further demonstrate the functionality of Enrichr-
KG, we submitted the 148 genes that are down-regulated
in advanced DN compared with early DN for analysis with
Enrichr-KG. To perform the pathway enrichment analysis
of these genes, we selected the KEGG and WikiPathways
gene set libraries. Consistent with the published study, we
find that the genes RDHS8, RDH12 and RBP4, as well as
CYP2E1 are enriched for the Vitamin A and carotenoid
metabolism pathways; meanwhile RDHS, RDH12 and
UGTI1A7 overlapped with the retinol metabolism path-
way in KEGG (Figure 3). Interestingly, we found that the
148 genes are also enriched for alanine, aspartate, and
glutamate metabolism (GPT, NAT8L and AGXT), ala-
nine and aspartate metabolism (GPT, and AGXT), trypto-
phan metabolism (CYP2E1, CYP4F12, and CYP2J2), and
steroid hormone biosynthesis (CYP2E1, UGT1A7, and

HSD3B1). It has been shown that a high ratio between as-
partate aminotransferase to alanine aminotransferase can
be a risk factor for DN (75). Furthermore, low levels of
tryptophan were also identified as a prognostic marker for
DN (76). Another study reported that impairment of re-
nal steroidogenesis has a probable role in diabetes related
kidney damage in rats (77). Lastly, selecting the SigCom
LINCS (45) L1000 chemical perturbation consensus sig-
natures resource, Enrichr-KG reports small molecules that
may up-regulate the reno-protective genes. These genes in-
clude RDH8, RDH12, RBP4 and GLP1R from the original
paper, as well as CYP2E1 and UGT1A7 that also overlap
with the vitamin A and retinol related pathways. We found
three small molecules that up-regulate some of these genes
(Figure 3). One of them is Pinitol, a known anti-diabetic
agent extracted from the plant Bougainvillea spectabilis. It
has been shown to improve glycaemic control in mice (78).
Recently, it has been shown to also have a reno-protective
effect on diabetic rats (79). Another compound that up-
regulates the reno-protective genes is the ChEBI classified
SA-1938862 (CHEBI:126863, BRD-K21368140-001-01-0)
which is a harmala alkaloid (CHEBI:61379) (80). Harmala
alkaloids are alkaloids extracted from the Peganum har-
mala plant (81). It has been shown that seed extracts from
Peganum harmala mitigate kidney damage in diabetic rats
(82). In addition, the anti-inflammatory drug bethameta-
sone is also enriched for up regulating the reno-protective
genes. It is known that bethametasone causes spikes in
blood sugar (83). However, in general, glucocorticoids have
been used alone or in combination with other drugs to treat
glomerular diseases (84).
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Figure 2. Subnetwork from the APOE4 case study. Enrichment analysis was performed on the top 100 up-regulated genes of postmortem brains from
APOEA4 carriers compared with the non-carriers extracted from the Blanchard et al. study. The KEGG Pathways, WikiPathways, DISEASES, DisGeNET
and MGI Mammalian Phenotype gene set libraries were selected for the analysis. A subnetwork that connects the top enriched terms and the up-regulated
genes that appear in at least two libraries is shown. The query can be accessed via the following URL: https://maayanlab.cloud/turl/199918c6.

Case study 3: exploring phenotypes, kinases, and drugs re-
lated to type 2 diabetes mellitus utilizing the gene set aug-
mentation feature of Enrichr-KG

Type 2 diabetes mellitus is a common metabolic disease
characterized by an inability to secrete insulin by pancre-
atic beta cells, and/or a loss in the ability of cells and tis-
sues to respond to insulin (85). We can examine genes as-
sociated with type 2 diabetes mellitus with Enrichr-KG by
using the gene set search feature in the input form of the ap-
plication. Searching for ‘type 2 diabetes’ in the term search
feature of Enrichr-KG, we identified a gene set sourced from
ClinVar (86) which provides a list of genes with mutations
and other various are known to be associated with the dis-
ease. Next, we selected the MGI Mammalian Phenotype Li-
brary (43) to view mouse phenotypes associated with this
gene set, the Kinase Library (37) to view related kinases that
phosphorylate gene products from the gene set, and the Pro-
teomics Drug Atlas (46) to prioritize drugs that may induce
or suppress the expression of the genes in the set (Figure
4). Examining the resultant subgraph, we observe pheno-
types such as decreased pancreatic beta cell number, hyper-
glycemia, and impaired glucose tolerance. These terms are
connected to the IRS2 gene, which encodes the insulin re-
ceptor substrate. IRS2 is also the substrate of multiple ki-
nases including MEKK6, MAP3K 15, PDK1 and CKIA.
Impaired IRS2 function is crucial in the development of

type 2 diabetes (87,88). Additionally, the drug AZDS8055 is
identified as an up-regulator of IRS2, IRS1 and TCF7L2
at the protein level. AZDS8055 is an mTOR inhibitor that
was shown to induce insulin resistance in vivo (89). It is un-
clear how this seemingly conflicting evidence is resolved.
Selecting the ‘augment gene set’ feature of Enrichr-KG, we
can add co-expressed genes into the displayed subnetwork.
One of the genes that are added to the network is USHI1C.
This gene was identified to play a role in hearing and vi-
sion (90), but the observation that it is highly co-expressed
with the genes in the subnetwork, and the observation that
mice with this gene knocked out display a decrease in circu-
lating insulin levels, suggest that it is likely also playing an
important role in diabetes. Vision impairments are a known
phenotype of type 2 diabetes, and USH1C function is likely
involved.

Case study 4: exploring phenotypes, drugs, genes and kinases
related to cellular senescence

Cellular senescence is a state of permanent cell cycle ar-
rest of somatic cells (91) and is implicated in aging-related
pathologies and cancer (92,93). A gene set containing 301
genes called SenoRanger was established by identifying
genes upregulated in RNA-seq profiles of senescent cells
from a variety of studies compared to expression from mul-
tiple atlases containing normal expression, retaining genes
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Figure 3. Enriched terms for the diabetic nephropathy case study. 148 genes that are down-regulated in advanced stage DN compared with early stage
were submitted to Enrichr-KG with the selected gene set libraries: KEGG pathways, WikiPathways and LINCS L1000 consensus chemical perturbations.
Genes appear as green nodes, WikiPathways pathways are pink nodes, KEGG pathways are in light purple, and LINCS L1000 compounds are in turquoise
and light blue. Small molecules that up regulate a gene are linked to the gene via a red link, and those that down-regulate the genes are in blue. The query
can be accessed via the following URL: https://maayanlab.cloud/turl/d9e0a6f3.

identified in multiple of these comparisons (94). To identify
mouse phenotypes enriched in the SenoRanger gene set, we
submitted it to Enrichr-KG (Figure 5) and selected the MGI
mouse phenotypes (43) gene set library. Several phenotypes
related to skin appear in the subnetwork, namely, ‘abnor-
mal cutaneous collagen fibril morphology MP:0008438’,
‘decreased skin tensile strength MP:0003089’, and ‘abnor-
mal dermal layer morphology MP:0001243°. At the same
time, using the SigCom LINCS resource (45), maxacalci-
tol, a derivative of vitamin D used to treat skin disorders
(95) is identified as the only drug that up-regulates many of
the genes in the subnetwork. This observation is in concor-
dance with prior literature where vitamin D analogs have
been shown to cause DNA damage and cellular senescence
in epithelial type II cells (96).

The SenoRanger genes were also enriched for genes
downregulated in several CRISPR KO signatures including
those of GPR25, RGS1, CLCNKB, and LICAM. RGSI is
a regulator of T-cell migration and exhaustion and has been
investigated as a target for treating multiple cancers (97).

Its knockdown in cervical cancer cell lines led to increased
apoptosis and inhibition of cell proliferation and migra-
tion (98). LICAM, a cell adhesion molecule, has been pre-
viously identified as an overrepresented cell surface maker
in senescence cells. Additionally, its expression is associated
with metabolic changes and enhanced migration and ad-
hesion (99). Finally, selecting the Kinase Library (37) we
observed multiple significantly enriched kinases including
TGFBR2, ANKRD3, GRK1, GRK2 and ALK4. GRK2 s
involved in cell cycle regulation and progression and its in-
creased expression may induce cellular senescence through
cell cycle arrest mediated by increased p53 phosphorylation
(100,101). Additionally, TGFRBR2, the TGF-3 receptor,
was identified and included in the subnetwork. TGF-f sig-
naling plays an important role in cellular senescence as well
as age-related pathologies such as obesity and Alzheimer’s
disease (102). Overall, this and the other use cases demon-
strate how Enrichr-KG can be used to confirm existing
knowledge and to form new hypotheses via integrative anal-
ysis and visualization.
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DISCUSSION

Here, we present Enrichr-KG, a web-server application
that extends Enrichr’s gene set enrichment analysis by
bridging results from across multiple gene set libraries. To
achieve this, we converted gene set libraries into a bipar-
tite graph where genes are connected to their annotation
terms. Such a representation can be ingested into a knowl-
edge graph database for fast querying. Importantly, to dis-
till the most useful information from this knowledge graph,
the queries are coupled with gene set enrichment analy-
sis results. The networked approach facilitates querying for
paths between genes and annotation terms that might oth-
erwise be difficult to extract. Some of the features avail-
able from Enrichr-KG that are not part of Enrichr are infu-
sion of known gene-gene associations from protein interac-
tions and co-expression resources, augmentation with ad-
ditional relevant genes based on co-expression, and textual
summaries of the contents of the subnetworks produced by
Enrichr-KG.

Because Enrichr-KG relies on Enrichr for the gene set
enrichment analysis component, it also shares some of the
limitations of Enrichr. First, human and mouse genes are
merged to simplify the gene search space, which could be
a disadvantage for some analysis contexts. While the En-
richr API supports the upload of a gene set background,
this feature is not currently implemented for Enrichr-KG.
In addition, Enrichr-KG currently contains a small subset
of all the gene set libraries available from Enrichr. Apart
from these limitations, which will be mitigated in future re-
leases, we also plan on extending the knowledge graph’s
functionality by better predicting additional links using
more sophisticated graph completion machine learning al-
gorithms. Such functionality will further assist with hypoth-
esis generation. In addition, we also plan on utilizing ex-
isting large language models (LLM) to produce improved
textual descriptions with references to better describe the re-
sultant subnetworks extracted from the enrichment analysis
results.
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