
W168–W179 Nucleic Acids Research, 2023, Vol. 51, Web Server issue Published online 11 May 2023 

https://doi.org/10.1093/nar/gkad393 

Enrichr-KG: bridging enrichment analysis across 

multiple libraries 

John Erol Evangelista , Zhuorui Xie, Giacomo B. Marino , Nhi Nguyen, Daniel J.B. Clarke 

and Avi Ma’ayan 

* 

Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount 
Sinai, NY, NY, USA 

Received March 06, 2023; Revised April 23, 2023; Editorial Decision April 29, 2023; Accepted May 02, 2023 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ABSTRACT 

Gene and protein set enrichment analysis is a criti-
cal step in the analysis of data collected from omics
experiments. Enrichr is a popular gene set enrich-
ment analysis web-server search engine that con-
tains hundreds of thousands of annotated gene sets.
While Enrichr has been useful in pr o viding enrich-
ment analysis with many gene set libraries from
different categories, integrating enrichment results
across libraries and domains of knowledge can fur-
ther hypothesis generation. To this end, Enrichr-KG
is a knowledge graph database and a web-server ap-
plication that combines selected gene set libraries
from Enrichr for integrative enrichment analysis and
visualization. The enrichment results are presented
as subgraphs made of nodes and links that con-
nect genes to their enriched terms. In addition, users
of Enrichr-KG can add g ene-g ene links, as well as
predicted genes to the subgraphs. This graphical
representation of cross-library results with enriched
and predicted genes can illuminate hidden associa-
tions between genes and annotated enriched terms
fr om acr oss datasets and resour ces. Enrichr -KG cur -
rently serves 26 gene set libraries from different
categories that include transcription, pathways, on-
tologies, diseases / drugs, and cell types. To demon-
strate the utility of Enrichr -KG we pr o vide several
case studies. Enrichr-KG is freely available at: https:
//maa yanlab.c loud/enrichr -kg . 
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GRAPHICAL ABSTRACT 

INTRODUCTION 

Gene and protein set enrichment analysis provides context
for genes and proteins identified in omics experiments using
prior knowledge ( 1 ). Enrichment analysis involves query-
ing a gene set against a catalog of annotated gene sets to
find significant overlap between the input set and the an-
notated prior-knowledge gene sets. The results are ranked
associated terms such as pathways, transcription factors,
small molecules, diseases and other phenotypes, cell lines,
cell types and tissues, and other biological and biomedical
terms. 

Enrichr ( 2–4 ) is a widely popular search engine for gene
sets, performing enrichment analysis instantly against many
annotated gene sets. In the past 10 years, over 59 million
gene sets have been submitted as queries to Enrichr; and
as of mid-2023, Enrichr has grown to host over ∼400 000
annotated gene sets from ∼200 gene set libraries. Such a re-
source provides a comprehensi v e collection of knowledge
about genes, including their transcriptional and transla-
tional regulation, membership in pathways and biological
processes, regulation and binding to drugs, association with
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iseases and other phenotypes, and expression across cell 
ypes , tissues , and cell lines. While Enrichr has been a valu- 
ble r esour ce f or hypothesis generation f or man y studies,
here is still an opportunity to improve its functionality by, 
or example, integrating enrichment results across libraries 
nd domains of knowledge. This can be achie v ed by vie w-
ng results of the enrichment analysis across libraries as an 

ntegrated network of genes and their annotations. 
Network r epr esentation of biological molecular systems 

ave been widely applied in biomedical r esear ch for ab- 
tracting connections between molecular entities ( 5–10 ). 
t the same time, many widely used w e b-based tools 
av e been de v eloped for networ k visualization and anal- 
sis. For example, STRING provides network visualiza- 
ions of known and predicted associations between pro- 
eins, including physical pr otein-pr otein interactions ( 11 ). 
enes2Networks (G2N) returns a protein interaction sub- 

etwork that connects a set of input genes / proteins based 

n known pr otein-pr otein interactions ( 12 ). Another ex- 
mple is GeneMania ( 13 ) which visualizes associations be- 
ween genes using evidence fr om acr oss domains of knowl- 
dge such as co-expression, physical interaction, pathway 

embership, and shared structural domains. Other notable 
xamples are HumanNet ( 14 ) and the DisGeNet Cytoscape 
pp ( 15 ) which provide integrated network visualizations 
entered on disease genes and include predictions and pri- 
ritization of gene-disease associations. 
Recentl y, knowledge gra phs have gained popularity for 

ntegr ating and gener ating hypotheses from connected data 

 16 , 17 ). Knowledge graphs have been used for studying dis- 
ase mechanisms ( 18 , 19 ), mining small molecules for drug 

iscovery ( 20 , 21 ), and analyzing connections between au- 
hors and biomedical entities using PubMed ( 22 ). Recently, 
here was an attempt to create a massi v e knowledge graph 

ha t integra tes biomedical da ta for precision medicine ( 23 ). 
ithin knowledge graphs data is stored as triples that de- 

cribe how a subject entity is related to an object entity. 
or example, in the statement ‘Drug A’ targets ‘Protein 

’, ‘Drug A’ is the subject, and ‘Protein B’ is the object, 
nd the connection between them is described by the verb 

targets’. Generating a collection of these triples made of 
ifferent types of entities forms a network of knowledge 
hat can be navigated, becoming the subject for applica- 
ion of graph traversal algorithms, and graph completion 

rediction algorithms. Howe v er, one of the challenges with 

nowledge graphs is that their size grows ra pidl y and query- 
ng the graph for useful applications becomes challenging. 
t the same time, biomedical and biological knowledge 

bout genes and proteins, as well as other molecular enti- 
ies, can be stored as annotated gene sets. Such gene sets 
re useful for performing gene set enrichment analysis ( 1 ). 
any tools and databases have been developed for perform- 

ng gene set enrichment analysis , for example , DAVID ( 24 ), 
:Profiler ( 25 ), WebGestalt ( 26 ), MSigDB-GSEA ( 27 ) and 

nrichr ( 3 ). Currently, most enrichment analysis tools and 

atabases store knowledge as gene set libraries. While such 

 storage schema has benefits , for example , performing fast 
verla p anal ysis across thousands of gene sets instantly, the 
omparison of enrichment results across multiple gene set 
ibraries is not trivial. To solve this, tools such as Enrich- 

entMaps ( 28 ) visualize gene set enrichment analysis re- 
ults as ball-and-stick subgraphs that connect genes to their 
nriched terms. Hence, se v eral gene set enrichment analy- 
is tools with network visualization already exist, each pro- 
iding different features and advantages. A collection of 
uch tools with a comparison of their features is provided 

Table 1 ). 
Here we describe a web-server application called Enrichr 
nowledge Graph (Enrichr-KG) which combines enrich- 
ent analysis with a knowledge graph data r epr esentation 

o query a large collection of processed datasets made of as- 
ociations between genes and many biological and biomedi- 
al terms. To create Enrichr-KG we converted selected gene 
et libraries from Enrichr into triples for ingestion into a 

nowledge graph database. Each triple r epr esents the mem- 
ership of a gene in an annotated gene set. Thus, performing 

nrichment analysis with Enrichr-KG returns an integrated 

etwork containing the top enriched terms from across mul- 
iple libraries connected to their overlapping genes. To pre- 
erve the breadth of knowledge offered by the Enrichr li- 
r aries, libr aries were selected by their di v ersity, le v el of
rior use, and uniqueness (Table 2 ). 

ATERIALS AND METHODS 

ollecting and processing the Enrichr libr aries f or knowledge 
raph database ingestion 

e first selected 26 gene set libraries from Enrichr ( 2– 

 ) for ingestion into the knowledge graph (Table 2 ). To 

reserve the variety of library types, we selected rep- 
esentati v e libraries from each Enrichr category as fol- 
ows: transcription (ARCHS4 TFs ( 29 ), ChEA3 ( 30 ), FAN- 
OM6 ( 31 ) and TRRUST ( 32 )); pathways (KEGG ( 33 , 34 ),
FOCR ( 35 ), Reactome ( 36 ), the Kinase Library ( 37 ), and
ikiPathways ( 38 )); ontologies (Gene Ontology ( 39 , 40 ), 
uman Phenotype Ontology ( 41 ), Jensen DISEASES ( 42 ), 

nd MGI Mammalian Phenotypes ( 43 )); diseases / drugs 
Project Achilles ( 44 ), LINCS L1000 perturbation signa- 
ures ( 45 ), and Drug Perturbation Proteome Atlas ( 46 )), 
ell types (CCLE ( 47 ), Descartes ( 48 ), Human Gene Atlas 
 49 ), Tabula Muris ( 50 ), and Tabula Sapiens ( 51 )); and other
Pfam ( 52 )). Persistent IDs were then assigned to each term 

nd gene. For genes, gene names were mapped to Entrez 
ene symbols ( 53 ). Genes that do not have a matching En- 
rez gene symbol, or a synonym, were discarded. The fol- 
owing method was employed for obtaining persistent iden- 
ifiers for a term: (i) parsing the gene set term with a regular 
 xpression to e xtract the ID from the term; (ii) parsing data 

ables from the r esour ce that was used to create the gene set
ibrary utilizing available APIs or downloadable mapping 

les; (iii) using ontologies and controlled vocabularies such 

s UBERON ( 54 ), Cell Ontology ( 55 ), Cellosaurus ( 55 , 56 ),
ubChem ( 57 ) and Entrez Gene ( 53 ) and (iv) using the term
s the persistent ID for those terms that failed the mapping 

ethods described above. When possible, additional meta- 
ata elements wer e r esolved from the gene set terms using 

 egular expr essions. 

uilding the graph database 

nrichr-KG visualizes the connections between enriched 

erms and genes across multiple selected gene set libraries. 
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Table 1. A comparison of features from resources providing enrichment analysis with network r epr esentations. If a r esour ce had a broken URL, its 
featur es wer e taken from the r elevant literatur e. Column values ar e: A : Interacti v e w e b server, B : Number of libraries, C: Statistical method, D: Cytoscape 
enabled, E: Gene set augmentation / predictions, F: URL to site works, G : PPIs, H : Co-expression correlations, I : Multiple edge types, J : Different node 
types in the same graph, K : Provides enrichment analysis 

Resource URL PMID A B C D E F G H I J K 

Enrichr-KG maayanlab.cloud / enrichr-kg � 24 Fisher exact test � � � � � × � � 

EnrichmentMap baderlab.org / Software / 
EnrichmentMap 

21085593 × NA NA � × � × × × � ×

BioGraph bio gra ph.pa.icar .cnr .it 30458802 � 9 Fisher exact test � × × × × × � � 

MELODI melodi.biocompute.org.uk 29342271 � 5 Fisher exact test × × � × × � � � 

Reactome graph 
database 

reactome.org / dev / graph-database 29377902 × 1 NA × × � × × × × ×

GREG www.moralab.science / GREG 32055858 � 6 NA × × × � × � � ×
Bio4j bio4j.github.io NA × 5 NA � × � � × � � ×
cyNeo4j a pps.cytosca pe.org / a pps / cyneo4j 26272981 × NA NA � × � × × � � ×
DGLinker dglinker.rosalind.kcl.ac.uk 34125897 � 12 Fisher exact test × � � � � × × � 

AmiGO amigo.geneontology.org / amigo 19033274 � 2 Hypergeometric � × � × × × × � 

Genes2FANs actin.pharm.mssm.edu / genes2FANs 22748121 � 15 NA � × × � � × � ×
STRING string-db.org 36370105 � 12 Kolmogorov– 

Smirnov 
� × � � � � × � 

GeneMANIA genemania.org 29912392 � 20 Fisher � � � � � � × � 

DAVID david.ncifcrf.gov 35325185 � 16 EASE score � × � × × × × � 

ClueGO a pps.cytosca pe.org / a pps / cluego 19237447 × 3 Hypergeometric � × � × × × � � 

Metascape metascape.org 30944313 � 24 Custom* � × � × × × � � 

NetworkAnalyst www.networkanalyst.ca 30931480 � 11 GSEA × × � � × × � � 

MSigDB-GSEA www.gsea-msigdb.org 26771021 � 15 GSEA × × � � × × × � 

*Explained in this blog post: https://metascape.org/blog/?p=122 

Table 2. Gene set libraries stored in the Enrichr-KG database, their cat- 
egory, and term and gene coverage counts 

Resource Category Terms 
Gene 

coverage 

Achilles ( 44 ) Diseases / Drugs 216 4779 
ARCHS4 ( 29 ) Transcription 1724 22 226 
ASCT + B ( 103 ) Cell Types 777 12 531 
CCLE ( 47 ) Cell Types 378 11 710 
ChEA3 ( 30 ) Transcription 757 18 364 
Descartes ( 48 ) Cell Types 172 9515 
DisGeNET ( 104 ) Diseases / Drugs 9828 17 266 
FANTOM6 ( 31 ) Transcription 206 13 682 
Gene Ontology ( 39 , 40 ) Ontologies 6036 14 929 
GWAS Catalog ( 105 ) Diseases / Drugs 1737 15 296 
Human Gene Atlas ( 49 ) Cell Types 84 12 087 
Human Phenotype Ontology 
( 41 ) 

Ontologies 1779 3077 

DISEASES ( 42 ) Ontologies 1811 15 141 
KEGG ( 33 , 34 ) Pathways 320 8073 
LINCS (CRISPR KO) ( 45 ) Diseases / Drugs 5212 9440 
LINCS (Small Molecule) 
( 45 ) 

Diseases / Drugs 5425 9525 

MGI Mammalian Phenotype 
( 43 ) 

Ontologies 4601 9756 

Pfam ( 52 ) Misc 608 8975 
PFOCR ( 35 ) Pathways 17 326 12 765 
Reactome ( 36 ) Pathways 1818 10 489 
Tabula Muris ( 50 ) Cell Types 106 3857 
Tabula Sapiens ( 51 ) Cell Types 469 1509 
TRRUST ( 32 ) Transcription 571 3126 
WikiPathways ( 38 ) Pathways 622 7151 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Such visualization is achie v ed by storing the serialized pro-
cessed gene set libraries in a Neo4j database ( 58 ). Specifi-
cally, the gene set libraries from Enrichr are converted into
nodes and links where the nodes are either gene set terms or
genes. If a gene is part of a gene set, then an edge is added
to the network. Such information is stored in separate CSV
files. The conversion of a gene set library into nodes and
edges CSV files r equir es the construction of thr ee files: (i)
a term node CSV file containing the term identifiers, the
term string, and any additional metadata; (ii) a unified gene
node CSV file containing all the genes that appear in the
gene set libraries and their respecti v e identifiers and (iii) an
edge CSV file that contains information on the connection
between the genes and the terms, not including the weights
which are associated with the enrichment results. These files
are ingested into the Neo4j database using the py2neo bulk
import function. Querying the database is achie v ed via the
Cypher query language ( 59 ). 

Creating the web-server application 

While Neo4j comes with a console to query the database,
it is not v ery customizab le, and it is difficult to export as
an open w e b-server applica tion tha t can be shared publicly
without a login r equir ement. To provide a public facing
open customizable interface that enables users to interact
with the data, we constructed a w e b applica tion tha t uses
Cytoscape.js ( 60 ) to visualize the results from the Cypher
queries. Next.js and React were used to build the Enrichr-
KG w e bsite. To provide enrichment analysis, Enrichr-KG
communicates with the Enrichr API ( 2–4 ) to perform en-
richment analysis. The results are then queried against the
Neo4j database and visualized as a network. 

Adding pr otein-pr otein interactions and gene-gene co-
expr ession corr elations 

To include pr otein-pr otein interactions as an option for in-
clusion in subnetworks, human pr otein-pr otein interactions
were downloaded from the STRING database ( 11 ). The
top-scored 150 000 pr otein-pr otein interactions (PPIs) that

https://metascape.org/blog/?p=122
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hare a physical complex ranked by the combined score 
re included in the Enrichr-KG database. To include gene- 
ene co-expression correlations, the co-expression correla- 
ion matrix from ARCHS4 ( 29 ) was used. The top 10 co-
xpressed genes for each gene are extracted and included in 

he da tabase. Correla tions are computed and ranked by the 
earson correlation coefficient. 

ugmenting subnetworks with predicted genes 

o augment the genes in the subnetworks with additional 
enes based on co-expression, the genes in the subnet- 
ork are used as the input. These genes are submitted to 

he Geneshot API ( 61 ) to obtain genes that on average 
r e mostly co-expr essed with the genes in the subnetwork 

sing the co-expression matrix from ARCHS4 ( 29 ). The 
ypher query is then updated to identify connections be- 

ween the augmented co-expressed genes and the enriched 

erms. 

ree text descriptions of subgraphs 

o produce free text descriptions of the visualized subgraph, 
e de v eloped templa tes tha t describe each type of associa- 

ion. The templates are then filled with the text describing 

enes and gene sets. For example, for gene-structural do- 
ain associations from Pfam ( 52 ), the template is: ‘the gene 

roducts $ { genes } have the structural domain $ { term } ’. 

ESULTS 

nteracting with the Enrichr-KG web-server application 

nrichr-KG is a gene set enrichment analysis tool that vi- 
ualizes enrichment results as an interacti v e w e b-based net- 
ork that connects genes to enriched terms, for example, 
athways , biological processes , or phenotypes. To create 
nrichr-KG, we serialized gene set libraries into CSV files 

hat are ingested into a Neo4j database. The Enrichr-KG 

 e b interface is a customizable general-purpose UI that is 
uilt on top of the Neo4j database. As such, the UI compo- 
ent of Enrichr-KG can be reused for other related bioin- 

ormatics projects. The Enrichr-KG UI enables users to in- 
eract with the underlying data stored in the Neo4j database 
y performing gene set enrichment analyses on their input 
ene sets with various customization and interacti v e fea- 
ur es (Figur e 1 ). First, users can submit gene sets to per-
orm enrichment analysis against a maximum of fiv e se- 
ected gene set libraries. Input genes are validated against 
 dictionary of Entrez gene symbols and users are informed 

n real-time whether the gene is in the database (Supplemen- 
ary Figure S1). Upon pressing the submit button, Enrichr- 
G returns a subgraph that displays the top enriched terms 
er library as well as the genes that overlap across these 
erms (Supplementary Figure S2). Users can tweak the set- 
ings to control the subgraph content by adjusting various 
arameters such as the maximum node degree, maximum 

ubgraph size, the gene set libraries to use, and the num- 
er of top terms to include from each library. The sub- 
etwork la y out can be changed to f or ce-dir ected, cir cular,
r hierarchical la y outs. Additionally, the subnetwork can 
e downloaded as an image, as a story described in free- 
ext, or as a serialized CSV file. Users can also view the 
nrichment results in a table or a bar chart that summa- 
izes the results across libraries (Supplementary Figure S3). 
n addition, users can augment the subnetworks with addi- 
ional predicted genes based on co-expression correlations; 
nd add to the subnetworks known gene-gene links based 

n pr otein-pr otein interactions and / or co-expr ession corr e- 
ations. 

The term and gene search tab in Enrichr-KG enables 
sers to query the database to identify specific genes or 
er ms. The single ter m or single gene search queries dis- 
lay the immediate neighbors of that node. For exam- 
le, known annotations for the gene APOE are displayed 

s a star subnetwork (Supplementary Figure S4). APOE 

s known to be associated with Alzheimer’s disease and 

holesterol metabolism ( 62–66 ). The two-term search fea- 
ur e of Enrichr-KG r eturns a subgraph that contains the 
hortest paths between two nodes. Shortest paths can be 
sed to find connections between pairs of gene-gene, term- 
er m, or gene-ter m nodes. This type of query returns the 
hared genes between two gene sets, or shared annotations 
etween two genes. Such queries can illuminate connections 
etween a gene and a gene set e v en if the gene is not a mem-
er of the set. For example, the subgraph that connects the 
wo genes HNF1B and KCNJ11 shows their shared anno- 
ations such as decreased ß-cell function and decreased in- 
ulin sensitivity ( 67 ) (Supplementary Figure S5). Like the 
nrichment anal ysis subgra phs, the la y out of these sub- 
raphs can be changed, the subgraph can be augmented 

ith additional genes, enriched with known pr otein-pr otein 

nteractions, and made available for download as a CSV file, 
r as a story written in free text. 

ase stud y 1: e xploring knowledge about the APOE4 variant 

POE is a polymorphic gene associated with the risk of 
ate-onset Alzheimer’s disease (AD) ( 62–65 ). To under- 
tand the mechanisms of APOE4, the highest risk polymor- 
hic form of APOE, Blanchard et al. ( 66 ) performed sin- 
le cell RNA-seq profiling of post-mortem human brains 
f APOE4 carriers vs . non-carriers . Their findings show 

ltered cell signaling of pathways involved in cholesterol 
omeostasis and transport. From this study, we submit- 
ed the top 100 up-regulated genes in the APOE4 carriers 
ompared to the non-carriers for analysis with Enrichr-KG 

Figure 2 ). Consistent with the reported findings, Enrichr- 
G also identifies cholesterol-related enriched pathways 

rom KEGG and WikiPathways. We also found enrichment 
or terms related to regulation of the cell cycle and immune 
ctivation. It is well accepted that inflammation and im- 
une response activation is the key molecular mechanism 

f AD ( 68 ). The Enrichr-KG subnetwork can be used to 

arro w do wn mechanisms to the specific genes , pathways , 
ranscription factors, and cell types that may be involved. 

ase stud y 2: e xploring molecular mechanisms of diabetic 
ephropathy 

n the US, diabetic nephropathy (DN) is a common com- 
lication of diabetes that often leads to end-stage renal dis- 
ase (ESRD) ( 69 ). Se v eral studies e xamined the progression 
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Figure 1. The Enrichr-KG workflow. Enrichr gene set libraries were serialized to nodes and edges where a gene is connected to a term if it is a member of 
the annotated gene set. The resulting network is made of links that connect genes to drugs , diseases , cell types , pathways , transcription factor regulators, 
and biological processes. A public facing w e b interface is provided to interact with the data. The interface enables users to input gene sets to perform 

integrated gene set enrichment analysis. The returned result is a subnetwork containing the top enriched terms from the libraries selected connected to 
the overlapping genes across libraries. Bar graphs and tables are also provided to visualize the top enriched terms. Gene and term search functionality 
can be used to query the immediate neighbors of a node. This is useful for finding shortest paths between tw o genes, tw o terms, or a gene and a term. All 
subnetworks can be downloaded as CSV files containing the nodes and edges of the subnetwork, as well as a free text description of the contents of the 
subnetwork. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

of DN in hopes of finding targets and therapeutics to inter-
vene with the progression of the disease to pre v ent or post-
pone ESRD ( 70–74 ). In a recent study, Fan et. al. ( 70 ) com-
pared the transcriptomics profiles of early stage DN to ad-
vanced DN. 270 genes were identified to have lower expres-
sion le v el during early stage DN compared to the advanced
stage, while 148 genes ar e up-r egulated in early DN but are
lowly expressed in advanced DN. The authors concluded
tha t up-regula ted genes in la te DN ar e mainly r elated to in-
flammation and increased immune response. On the other
hand, se v eral genes that are downregulated in the late stage
ar e r eno-protecti v e with RDH8, RDH12 and RBP4 being
part of the retinoic acid pathway. The results from this study
suggest that increasing the expression of these genes may
help in pre v enting the progression of diabetic nephropa-
thy. To further demonstrate the functionality of Enrichr-
KG, we submitted the 148 genes that are down-regulated
in advanced DN compared with early DN for analysis with
Enrichr-KG. To perform the pathway enrichment analysis
of these genes, we selected the KEGG and WikiPathways
gene set libraries. Consistent with the published study, we
find that the genes RDH8, RDH12 and RBP4, as well as
CYP2E1 are enriched for the Vitamin A and carotenoid
metabolism pathways; meanwhile RDH8, RDH12 and
UGT1A7 overlapped with the retinol metabolism path-
way in KEGG (Figure 3 ). Interestingly, we found that the
148 genes are also enriched for alanine , aspartate , and
glutamate metabolism (GPT, NAT8L and AGXT), ala-
nine and aspartate metabolism (GPT, and AGXT), trypto-
phan metabolism (CYP2E1, CYP4F12, and CYP2J2), and
steroid hormone biosynthesis (CYP2E1, UGT1A7, and
HSD3B1). It has been shown that a high ratio between as-
partate aminotr ansfer ase to alanine aminotr ansfer ase can
be a risk factor for DN ( 75 ). Furthermore, low le v els of
tryptophan were also identified as a prognostic marker for
DN ( 76 ). Another study reported that impairment of re-
nal steroidogenesis has a probable role in diabetes related
kidney damage in rats ( 77 ). Lastly, selecting the SigCom
LINCS ( 45 ) L1000 chemical perturbation consensus sig-
natur es r esour ce, Enrichr-KG r eports small molecules that
may up-regulate the reno-protecti v e genes. These genes in-
clude RDH8, RDH12, RBP4 and GLP1R from the original
paper, as well as CYP2E1 and UGT1A7 that also overlap
with the vitamin A and r etinol r ela ted pa thwa ys. We f ound
three small molecules that up-regulate some of these genes
(Figure 3 ). One of them is Pinitol, a known anti-diabetic
agent extracted from the plant Bougainvillea spectabilis. It
has been shown to improv e gly caemic control in mice ( 78 ).
Recently, it has been shown to also have a reno-protecti v e
effect on diabetic rats ( 79 ). Another compound that up-
r egulates the r eno-protecti v e genes is the ChEBI classified
SA-1938862 (CHEBI:126863, BRD-K21368140-001-01-0)
which is a harmala alkaloid (CHEBI:61379) ( 80 ). Harmala
alkaloids are alkaloids extracted from the Peganum har-
mala plant ( 81 ). It has been shown that seed extracts from
Peganum harmala mitigate kidney damage in diabetic rats
( 82 ). In addition, the anti-inflammatory drug bethameta-
sone is also enriched for up regulating the reno-protecti v e
genes. It is known that bethametasone causes spikes in
b lood sugar ( 83 ). Howe v er, in general, glucocorticoids have
been used alone or in combination with other drugs to treat
glomerular diseases ( 84 ). 
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Figure 2. Subnetwork from the APOE4 case study. Enrichment analysis was performed on the top 100 up-regulated genes of postmortem brains from 

APOE4 carriers compared with the non-carriers extracted from the Blanchard et al. study. The KEGG P athways, WikiP athways, DISEASES, DisGeNET 

and MGI Mammalian Phenotype gene set libraries were selected for the analysis. A subnetwork that connects the top enriched terms and the up-regulated 
genes that appear in at least two libraries is shown. The query can be accessed via the following URL: https://maayanlab.cloud/turl/199918c6 . 

C
l
m

T
c
a  

s
s
u
p
f
C
a
e
b
g  

p
t
o
4
t
g
c
c
n
I

t
i
a
w  

c
S
c
O
T
s
w
m
l
i
p
i

C
r

C
r
p
g
g
f
t

ase stud y 3: e xploring phenotypes, kinases, and drugs re- 
ated to type 2 diabetes mellitus utilizing the gene set aug- 
entation feature of Enrichr-KG 

ype 2 diabetes mellitus is a common metabolic disease 
haracterized by an inability to secrete insulin by pancre- 
tic beta cells, and / or a loss in the ability of cells and tis-
ues to respond to insulin ( 85 ). We can examine genes as- 
ociated with type 2 diabetes mellitus with Enrichr-KG by 

sing the gene set search feature in the input form of the ap- 
lication. Searching for ‘type 2 diabetes’ in the term search 

eature of Enrichr-KG, we identified a gene set sourced from 

linVar ( 86 ) which provides a list of genes with mutations 
nd other various are known to be associated with the dis- 
ase. Next, we selected the MGI Mammalian Phenotype Li- 
rary ( 43 ) to view mouse phenotypes associated with this 
ene set, the Kinase Library ( 37 ) to view related kinases that
hosphorylate gene products from the gene set, and the Pro- 
eomics Drug Atlas ( 46 ) to prioritize drugs that may induce 
r suppress the expression of the genes in the set (Figure 
 ). Examining the resultant subgraph, we observe pheno- 
ypes such as decr eased pancr eatic beta cell number, hyper- 
lycemia, and impaired glucose tolerance. These terms are 
onnected to the IRS2 gene, which encodes the insulin re- 
eptor substrate. IRS2 is also the substrate of multiple ki- 
ases including MEKK6, MAP3K15, PDK1 and CK1A. 
mpaired IRS2 function is crucial in the de v elopment of 
ype 2 diabetes ( 87 , 88 ). Additionally, the drug AZD8055 is 
dentified as an up-regulator of IRS2, IRS1 and TCF7L2 

t the protein le v el. AZD8055 is an mTOR inhibitor that 
as shown to induce insulin resistance in vivo ( 89 ). It is un-

lear how this seemingly conflicting evidence is resolved. 
electing the ‘augment gene set’ feature of Enrichr-KG, we 
an add co-expressed genes into the displayed subnetwork. 
ne of the genes that are added to the network is USH1C. 
his gene was identified to play a role in hearing and vi- 

ion ( 90 ), but the observation that it is highly co-expressed 

ith the genes in the subnetwork, and the observation that 
ice with this gene knocked out display a decrease in circu- 

ating insulin le v els, suggest that it is likely also playing an 

mportant role in diabetes. Vision impairments are a known 

henotype of type 2 diabetes, and USH1C function is likely 

nvolved. 

ase study 4: exploring phenotypes, drugs, genes and kinases 
elated to cellular senescence 

ellular senescence is a state of permanent cell cycle ar- 
est of somatic cells ( 91 ) and is implicated in aging-related 

athologies and cancer ( 92 , 93 ). A gene set containing 301 

enes called SenoRanger was established by identifying 

enes upregulated in RNA-seq profiles of senescent cells 
rom a variety of studies compared to expression from mul- 
iple atlases containing normal expr ession, r etaining genes 
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Figure 3. Enriched terms for the diabetic nephropathy case study. 148 genes that are down-regulated in advanced stage DN compared with early stage 
were submitted to Enrichr-KG with the selected gene set libraries: KEGG pa thways, WikiPa thways and LINCS L1000 consensus chemical perturbations. 
Genes appear as green nodes, WikiPathways pathways are pink nodes, KEGG pathways are in light purple, and LINCS L1000 compounds are in turquoise 
and light blue. Small molecules that up regulate a gene are linked to the gene via a red link, and those that down-regulate the genes are in blue. The query 
can be accessed via the following URL: https://maayanlab.cloud/turl/d9e0a6f3 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

identified in multiple of these comparisons ( 94 ). To identify
mouse phenotypes enriched in the SenoRanger gene set, we
submitted it to Enrichr-KG (Figure 5 ) and selected the MGI
mouse phenotypes ( 43 ) gene set library. Se v eral phenotypes
related to skin appear in the subnetwork, namely, ‘abnor-
mal cutaneous collagen fibril morphology MP:0008438’,
‘decreased skin tensile strength MP:0003089’, and ‘abnor-
mal dermal layer morphology MP:0001243’. At the same
time, using the SigCom LINCS r esour ce ( 45 ), maxacalci-
tol, a deri vati v e of vitamin D used to treat skin disor ders
( 95 ) is identified as the only drug tha t up-regula tes many of
the genes in the subnetwork. This observation is in concor-
dance with prior literature where vitamin D analogs have
been shown to cause DNA damage and cellular senescence
in epithelial type II cells ( 96 ). 

The SenoRanger genes were also enriched for genes
downregulated in se v eral CRISPR KO signatures including
those of GPR25, RGS1, CLCNKB, and L1CAM. RGS1 is
a regulator of T-cell migration and exhaustion and has been
investigated as a target for treating multiple cancers ( 97 ).
Its knockdown in cervical cancer cell lines led to increased
apoptosis and inhibition of cell proliferation and migra-
tion ( 98 ). L1CAM, a cell adhesion molecule, has been pre-
viously identified as an overr epr esented cell surface maker
in senescence cells. Additionally, its expression is associated
with metabolic changes and enhanced migration and ad-
hesion ( 99 ). Finally, selecting the Kinase Library ( 37 ) we
observed multiple significantly enriched kinases including
TGFBR2, ANKRD3, GRK1, GRK2 and ALK4. GRK2 is
involved in cell cycle regulation and progression and its in-
cr eased expr ession may induce cellular senescence through
cell cycle arrest mediated by increased p53 phosphorylation
( 100 , 101 ). Additionally, T GFRBR2, the T GF- � receptor,
was identified and included in the subnetw ork. T GF- � sig-
naling plays an important role in cellular senescence as well
as age-related pathologies such as obesity and Alzheimer’s
disease ( 102 ). Overall, this and the other use cases demon-
strate how Enrichr-KG can be used to confirm existing
knowledge and to form new hypotheses via integrati v e anal-
ysis and visualization. 
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Figure 4. Subnetwork for the type 2 diabetes mellitus case study. A gene set made of 28 genes was fetched from the ClinVar 2019 gene set library with the 
annotation term ‘diabetes mellitus type 2’ and was submitted to Enrichr-KG. The MGI Mammalian Phenotype, the Kinase Library, and the Proteomics 
Drug Atlas gene set libraries were selected for the analysis. The resultant subnetwork that connects the top enriched terms and the up-regulated genes 
that appear in at least two libraries is visualized. Gene set augmentation was selected to add highly co-expressed genes. The query can be accessed via the 
following URL: https://maayanlab.cloud/turl/8b005a41 . 
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results. 
ISCUSSION 

er e, we pr esent Enrichr-KG, a w e b-server application 

hat extends Enrichr’s gene set enrichment analysis by 

ridging results from across multiple gene set libraries. To 

chie v e this, we converted gene set libraries into a bipar- 
ite graph where genes are connected to their annotation 

erms. Such a r epr esentation can be ingested into a knowl- 
dge graph database for fast querying. Importantly, to dis- 
ill the most useful information from this knowledge graph, 
he queries are coupled with gene set enrichment analy- 
is results. The netw ork ed approach facilitates querying for 
aths between genes and annotation terms that might oth- 
rwise be difficult to extract. Some of the features avail- 
ble from Enrichr-KG that are not part of Enrichr are infu- 
ion of known gene-gene associations from protein interac- 
ions and co-expression resources, augmentation with ad- 
itional relevant genes based on co-expression, and textual 
ummaries of the contents of the subnetworks produced by 

nrichr-KG. 
Because Enrichr-KG relies on Enrichr for the gene set 
nrichment analysis component, it also shares some of the 
imitations of Enrichr. First, human and mouse genes are 

erged to simplify the gene search space, which could be 
 disadvantage for some analysis contexts. While the En- 
ichr API supports the upload of a gene set background, 
his feature is not currently implemented for Enrichr-KG. 
n addition, Enrichr-KG currently contains a small subset 
f all the gene set libraries available from Enrichr. Apart 
rom these limitations, which will be mitigated in futur e r e- 
eases, we also plan on extending the knowledge graph’s 
unctionality by better predicting additional links using 

ore sophisticated graph completion machine learning al- 
orithms. Such functionality will further assist with hypoth- 
sis generation. In addition, we also plan on utilizing ex- 
sting large language models (LLM) to produce improved 

extual descriptions with r efer ences to better describe the re- 
ultant subnetwor ks e xtracted from the enrichment analysis 
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Figure 5. Subnetwork for the cellular senescence case study. A gene set containing 301 genes called SenoRanger [Deng et al. in press] was established by 
identifying genes upregulated in RNA-seq profiles of senescent cells from se v eral in-vitro studies. The set of 301 genes was submitted to Enrichr-KG for 
analysis. The MGI Mammalian Phenotype, the Kinase Library, and SigCom LINCS gene set libraries were selected for the analysis. A subnetwork that 
connects the top enriched terms and the up-regulated genes that appear in at least two libraries is automa tically genera ted. The query can be accessed via 
the following URL: https://maayanlab.cloud/turl/43025ee5 . 
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