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BSTRACT 

llostery refers to the biological pr ocess b y which 

n effector modulator binds to a protein at a site dis- 
ant from the active site, known as allosteric site. 
dentifying allosteric sites is essential for discov- 
ring allosteric process and is considered a criti- 
al factor in allosteric drug development. To facili- 
ate related research, we developed PASSer (Protein 

llosteric Sites Server) at https://passer.smu.edu , a 

eb application for fast and accurate allosteric site 

rediction and visualization. The website hosts three 

rained and published machine learning models: (i) 
n ensemble learning model with extreme gradient 
oosting and graph convolutional neural network, 
ii) an automated machine learning model with Auto- 
luon and (iii) a learning-to-rank model with Lamb- 
aMART. PASSer accepts protein entries directly 

r om the Pr otein Data Bank (PDB) or user -uploaded 

DB files, and can conduct predictions within sec- 
nds. The results are presented in an interactive win- 
ow that displays protein and pockets’ structures, as 

ell as a table that summarizes predictions of the top 

hree pockets with the highest probabilities / scores. 
o date, PASSer has been visited over 49 000 times in 

ver 70 countries and has executed over 6 200 jobs. 
t  

t
t
u  

r
d
l
s

t
i
d  

p
d

 To whom correspondence should be addressed. Tel: +1 214 768 8802; Fax: +1 2

C The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Ac
his is an Open Access article distributed under the terms of the Creati v e Commons 

http: // creati v ecommons.org / licenses / by-nc / 4.0 / ), which permits non-commercial re
s properly cited. For commercial re-use, please contact journals .permissions@oup .co
RAPHICAL ABSTRACT 

NTRODUCTION 

llostery is a critical biological process in the regulation of 
rotein activity. It involves the transmission of the effect 
f a small molecule binding from the allosteric site to the 
cti v e site, leading to protein conformational and dynamic 
hanges ( 1 ). There are many characteristics of allosteric 
rocesses that can be harnessed in drug design: (a) allosteric 
ite is conserved and highly specific in the evolution of pro- 
eins ( 2 , 3 ), (b) allosteric drugs can activate or inhibit pro-
ein activities in a controlled manner, leading to potential 
herapeutic effects ( 4 ), and (c) once the allosteric site is sat- 
rated, ther e ar e no further therapeutic effects ( 5 ). For these
easons, the study of allosteric sites is vital in allosteric drug 

e v elopment and has gained significant attention over the 
ast decade. In fact, it has been recognized as the ‘second 

ecret of life’ ( 6 ). 
Se v eral computational methods have been developed for 

he prediction of allosteric sites based on protein dynamics 
ncluding normal mode analysis (NMA) ( 7 ) and molecular 
 ynamics (MD) simula tions ( 8 ). For instance, PARS ( 9 ) em-
loys NMA to identify protein sites that can transmit or me- 
iate allosteric signals, while SPACER ( 10 ) combines NMA 
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and MD simulations to evaluate allosteric sites. Recently,
many machine learning-based models have been demon-
strated improved prediction performance. Allosite ( 11 ) and
AlloPred ( 12 ) employ support vector machines (SVMs) to
learn the physical and chemical features of protein pock-
ets. Chen et al. ( 13 ) uses random forests (RFs) to build a
three-way model to predict allosteric, orthosteric, and non-
functional pockets. Among the prediction models , Allosite ,
PARS, and AlloPred are accessible as w e bsites. 

In this study, we introduce PASSer (Protein Allosteric
Sites Server, https://passer.smu.edu ), a w e b server that pro-
vides fast and accurate allosteric site prediction. PASSer
offers three trained and published machine learning-based
models: (a) an ensemble learning model consisting of ex-
treme gradient boosting (XGBoost) and graph convolu-
tional neural network (GCNN) ( 14 ), (b) an automated ma-
chine learning model powered by AutoGluon from Ama-
zon Web Services (AWS) ( 15 ), and (c) a learning-to-rank
model with the boosted tree version of LambdaRank ob-
jecti v e on LightGBM ( 16 ). PASSer is deployed on South-
ern Methodist Uni v ersity High-Performance Computing
(HPC) clusters that can complete prediction within seconds.
The w e bsite does not r equir e any login cr edentials. Users
can submit a Protein Data Bank (PDB) ( 17 ) ID or PDB
file, and all source files are deleted after calculation is com-
pleted. PASSer displays an interacti v e window that show-
cases the protein structure with highlighted pocket struc-
tures, along with a table summarizing the top protein pock-
ets. Users can also download a .zip file containing protein
and pocket PDB files, visualization scripts for Visual Molec-
ular Dynamics (VMD) ( 18 ) and PyMOL ( 19 ), and predic-
tion results. Since its launch in 2020, PASSer has recei v ed
over 49 000 visits and completed over 6 200 jobs. 

MATERIALS AND METHODS 

Website implementation 

PASSer models are implemented in Python language and
the w e b service is built using the Python Django w e b frame-
w ork (v3.1.2). PASSer pro vides three methods for allosteric
site prediction. Below are the dependency packages and
versions for each method: (a) ensemble learning: XGBoost
package v1.3.3 ( 20 ) and DGL v0.4.3 ( 21 ); (b) automated
machine learning: AutoGluon v0.3.1 ( 22 ); (c) learning-to-
rank: LighGBM v3.3.4 ( 23 ). On the result page, an inter-
acti v e windo w po wered b y the Jav aScript frame wor k JSmol
( 24 ) is provided to visualize protein and pocket structures.
The w e bsite is hosted on SMU HPC ( https://www.smu.edu/
Provost/Data- Science- Institute/HPC ) to provide substan-
tial computing r esour ces. 

Workflow ov ervie w 

On the PASSer’s main page, users can submit jobs without
login r equir ement. They can do so by providing an exist-
ing PDB ID fr om the Pr otein Data Bank or by uploading
their own PDB files. When a PDB ID is submitted, PASSer
scrapes the corresponding PDB file from the RCSB PDB
w e bsite. Users can also specify the chain ID if there are
multiple chains in the PDB file. FPocket, a geometry-based
pocket detection package ( 25 ), is then used to detect poten-
tial protein pockets in the resulting protein structure ( 25 ).
The user-selected machine learning model is applied for
the prediction of detected pockets. In the ensemble learn-
ing method, XGBoost ( 20 ) learns 19 physical and chemi-
cal features calculated by FPocket. GCNN ( 26 ) builds an
atomic graph for each pocket to learn the local connectivity
a t a tomic le v el. The final predicted probability is the average
of probabilities generated from XGBoost and GCNN. In
the automated machine learning model, the pocket descrip-
tors are fed into a AutoGluon model ( 22 ) for prediction,
which consists of 14 base models, such as SVM and RF. A
full list of these base models is available in the supporting
information of a previous study ( 15 ). For the learning-to-
rank model, all pockets in a gi v en protein are ranked with
regard to their relevance of being allosteric sites. The en-
semble learning and automated machine learning models
r eport pr edicted probabilities of the top 3 pockets, while the
learning-to-rank model reports rank scores. A detailed de-
scription of these methods can be found in previous stud-
ies ( 14–16 ). A link is provided to download a .zip file con-
taining protein and pocket PDB files, visualization scripts,
and a list of prediction results for all detected pockets. 

RESULTS AND DISCUSSION 

Dataset collection 

Collecting and cleaning allosteric proteins is crucial to pro-
duce high-quality datasets and well-performed models ( 27 ).
Although the availability of allosteric site databases, such as
AlloSteric Database (ASD) ( 28 ), ASBench ( 29 ) and CAS-
Bench ( 30 ), provides a new opportunity to design allosteric
site prediction models, the lack of a standardized approach
for preparing machine learning-ready datasets can hinder
such de v elopment. The latest model of PASSer, i.e. the
learning-to-rank model, presents a workflow to produce
the training data with Python implementation. The scripts
are available on GitHub at https: // github.com / smu-tao-
group / PASSerRank. To our knowledge, this is the first
open-sour ce r epository to automa te the da ta prepara tion
process. This could establish a benchmark for future model
training and validation. Specifically, two datasets (ASD and
CASBench) were used in training and validating machine
learning models. 

The latest version of ASD contains 1 949 protein entries,
in which each entry includes information of protein, mod-
ulator, and allosteric residues. Following a data cleaning
workflow proposed by Huang et al. ( 11 ), those proteins were
filtered out if they (i) have low resolution ( > 3 Å ); (ii) have
missing residues in the allosteric site; or (iii) have similar
structures (sequence identity threshold ≥ 30%). 

The remaining proteins were analyzed using FPocket. To
automate the pocket labeling process where a pocket is la-
beled as allosteric (positi v e) or non-allosteric (negati v e), we
define the pocket nearest to the modulator as the allosteric
site and all other pockets as non-allosteric sites. In each pro-
tein, the Euclidean distances between the center of masses
in its modulator and all pockets are calculated. Those pro-
teins were removed if the closest pocket to the modulator is
> 10 Å . Through the data cleaning steps above, 207 proteins
were included to train machine learning models. 

https://passer.smu.edu
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Table 1. Reported performance of machine learning models on PASSer 

Models Precision Recall F 1 score Top 1 Top 3 

Ensemble learning 0.726 0.847 0.782 60.7% 84.9% 

Automated machine 
learning 

0.850 0.616 0.701 65.1% 82.7% 

Learning-to-rank 0.662 0.662 0.662 59.5% 83.6% 
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CASBench was used as an external test set. Proteins that 
id not meet the data cleaning standards mentioned above 
er e r emoved, which leads to a test set consisting of 1 049
roteins. The ASD-trained machine learning models were 
ested on this CASBench test set. 

The processed ASD and CASBench data can be down- 
oaded from the PASSer w e bsite and users can customize 
he da ta prepara tion step using the Python scripts in the 
rovided GitHub repository. 
It should be noted that the previous two models (ensem- 

le learning and automated machine learning) were trained 

nd tested on smaller training datasets. 90 ASD proteins 
ere used to train the ensemble learning model. A full list 
f these proteins is available in the supporting information 

f Huang et al. ( 11 ). In addition to these proteins, the core-
i v ersity set of ASBench (138 proteins) were included to 

rain the automated machine learning model. After remov- 
ng duplicate records, this model was trained on 204 pro- 
eins. 

odel training 

o train the ensemble learning and automated machine 
earning models, the proteins were randomly split into a 

raining set (60%), a validation set (20%) and a test set 
20%). Models with different hyperparameter settings were 
rained on the training set with performance metrics cal- 
ulated on the validation set. The hyperparameter setting 

eading to the highest performance was selected. The test 
et was used to estimate model performance in real world 

pplications. 
In the learning-to-rank model, the ASD proteins were 

andomly split into a training set (80%) and a test set (20%). 
i v e-fold cross validation was performed on the training 

et for parameter tuning, and the best-performed param- 
ter setting was selected and used on the test set. Due to the
imited protein sample size, the n -fold cross validation was 
onsider ed mor e effecti v e than the pre vious 60 / 20 / 20 split-
ing to include more training data and can lead to better 
erformance. 
Data imbalance is a key issue in our model training, 

hich the amount of data in one class is significantly smaller 
han other classes. In allosteric site prediction, each pro- 
ein may consist of more than ten pockets while there is 
nly one positi v e (allosteric) pocket. Data imbalance may 

ause poor performance, as a model cannot learn enough 

rom the minority class ( 31 ). To address this issue, an un- 
ersampling strategy is applied to train the GCNN model 
y randomly removing negati v e pockets to keep a constant 
atio of four between the number of positi v e and nega- 
i v e pockets. The top six pockets with the highest FPocket 
cores in each protein were selected to train the automated 

achine learning model. Howe v er, discar ding pocket sam- 
les may lead to a loss of useful information for training 

 robust model. Oversampling is another strategy to rebal- 
nce datasets by duplicating old or generating new exam- 
les. One drawback is that the generated new pockets may 

ot correspond to real protein pockets , thus , lack biologi- 
al meaning. Moreover, it is more likely to introduce over- 
tting ( 32 ). Increasing the weight of the minority class is 
 third way. The weight of positi v e labels can be increased 
hrough the scale pos weight parameter in XGBoost and 

earning-to-rank models so that all data can be included in 

raining. 

odel performance 

able 1 summarizes the performance of three machine 
earning models. To compare the model performance, vari- 
us metrics were calculated, including precision, recall, and 

1 score for binary classification, and the percentage of ac- 
ual allosteric sites ranked in top 1 and 3 positions. 

In the learning-to-rank model, each pocket is predicted 

ith a rank score, which reflects the relevance, i.e. how well 
 pocket meets the characteristics of known allosteric sites 
n the training set. The pockets with high rank scores sug- 
est higher possibility of being allosteric sites and are worth 

urther study. In our anal ysis, onl y the pocket with the high- 
st rank score was labeled as positi v e in each protein, and 

hen the metrics for binary classification can be calculated. 
ince we fixed the number of predicted positi v e labels, the 
alse positi v e and false negati v e pr edictions ar e the same,
hich results the same precision and recall values. It is im- 
ortant to note that performance is not directly compara- 
le across models due to differences in the training and test 
atasets used. Going forward, the use of standardized data 

r eparation procedur es and scripts presented in this study 

nd the w e b server will enable more equitable comparison 

f machine learning models. 

odel selection guidance 

iffer ent models r equir e differ ent ex ecution time and have 
arious output types. Table 2 summarizes the execution 

peed and prediction type of three machine learning mod- 
ls. The execution time needed in each model was exten- 
i v ely estimated with multiple mid-sized proteins (100–300 

esidues). For one prediction, the ensemble learning model 
 equir es 1–2 s on average and the learning-to-rank model 
s slightly faster. The automated machine learning model 
akes around 20 seconds due to the loading of 14 base mod- 
ls. For prediction types, probabilities are generated in both 

f the ensemble learning and automated machine learn- 
ng models, and rank scores are reported in the learning- 
o-rank model. We recommend the users choosing ensem- 
le learning and learning-to-rank models for time sensiti v e 
asks, ensemble learning and automated learning models 
or good interpretability, and learning-to-rank model for 
enchmark study and performance comparison. 

ase study 

e demonstrated the functionality of PASSer with a 
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Figure 1. One example of allosteric site pr ediction r esults of the light-o xygen-v oltage domain of Phaeodactylum tricornutum Aureochrome 1a protein. 
( A ) The job submission form with protein identifier 5DKK, chain ID A, and ensemble learning model. ( B ) Predicted probabilities of the top three most 
probable pockets being allosteric sites. ( C ) An interactive window showing 5DKK protein structure with highlighted pockets. 

Table 2. Selection criteria of machine learning models on PASSer 

Models 
Execution 
time Type 

Ensemble learning Fast (1–2 s) Probability 
Automated machine 
learning 

Slow ( ∼20 s) Probability 

Learning-to-rank Fast (1–2 s) Rank score 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

known allosteric protein, the light-oxygen-voltage domain
of Phaeodactylum tricornutum Aureochrome 1a (PDB ID
5DKK) ( 33 ). On the main page (Figure 1 A), we submitted a
prediction job by inputting the protein identifier 5DKK and
chain ID A, and choosing the ensemble prediction model.
On the result page, a table (Figure 1 B) displays the predic-
tion probabilities of the top three most probable pockets as
allosteric sites. Users can click on ‘Show Residues’ to view
the corresponding pocket residues. Higher probability indi-
cates higher likelihood of the pocket being an allosteric site.
Figure 1 C displays the interacti v e window showing 5DKK
protein structure. The red pocket had a predicted probabil-
ity of 89.65%, indicating its high potential to be an allosteric
site. This result aligns well with the finding of the actual al-
losteric pocket based on previous research ( 34 ). Users can
download the results from the provided link and interact
with the protein structure and predicted pockets through
this window, which supports the functions to change back-
ground colors and show or hide specific pockets. 

PASSer w e b service has also been applied for other pur-
poses, such as the revalidation of allosteric site predic-
tion for other models and the screening of predicted al-
losteric sites. For example, PASSer was combined with Al-

losite Pro to validate the identified allosteric site of SARS-  
CoV-2 methyltr ansfer ase (MTase) ( 35 ). In another study,
PASSer was employed with the Computed Atlas of Sur-
face Topo gra phy of Proteins (CASTp) serv er to discov er the
apolipoprotein L1 (APOL1) protein ( 36 ). 

CONCLUSION 

PASSer is a user-friendly w e b applica tion tha t facilita tes
the prediction of protein allosteric sites. It provides three
pre-trained machine learning models to achie v e reliab le and
accurate performance, along with interacti v e result visual-
ization. The w e bsite is hosted on a high-performance com-
puting platform, enabling it to complete predictions within
seconds. PASSer has been widely used for the validation
of known functional pockets and the discovery of new al-
losteric sites. 

DA T A A V AILABILITY 

The PASSer w e b service is freely available at https:
//passer.smu.edu . The Python scripts to pr epar e train-
ing data is available at https://github.com/smu- tao- group/
PASSerRank and https://doi.org/10.5281/zenodo.7818017 . 
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