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ABSTRACT

Drug discovery, which plays a vital role in main-
taining human health, is a persistent challenge.
Fragment-based drug discovery (FBDD) is one of the
strategies for the discovery of novel candidate com-
pounds. Computational tools in FBDD could help to
identify potential drug leads in a cost-efficient and
time-saving manner. The Auto Core Fragment in sil-
ico Screening (ACFIS) server is a well-established
and effective online tool for FBDD. However, the ac-
curate prediction of protein-fragment binding mode
and affinity is still a major challenge for FBDD due to
weak binding affinity. Here, we present an updated
version (ACFIS 2.0), that incorporates a dynamic frag-
ment growing strategy to consider protein flexibil-
ity. The major improvements of ACFIS 2.0 include (i)
increased accuracy of hit compound identification
(from 75.4% to 88.5% using the same test set), (ii)
improved rationality of the protein-fragment binding
mode, (iii) increased structural diversity due to ex-
panded fragment libraries and (iv) inclusion of more
comprehensive functionality for predicting molecu-
lar properties. Three successful cases of drug lead
discovery using ACFIS 2.0 are described, including
drugs leads to treat Parkinson’s disease, cancer, and
major depressive disorder. These cases demonstrate
the utility of this web-based server. ACFIS 2.0 is
freely available at http://chemyang.ccnu.edu.cn/ccb/
server/ACFIS2/.
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INTRODUCTION

Drugs save lives and improve health; thus, the discovery of
novel drugs for various diseases is an important scientific is-
sue. However, developing a new approved drug costs $1.5-
2.0 billion and requires 10-15 years on average (1). There-
fore, developing effective approaches to improve the suc-
cess rate and reduce the cost for drug discovery is impor-
tant (2). Lead discovery is a critical stage in drug research
and development. The goal of this stage is to identify can-
didate molecules with satisfactory pharmacological activity.
Lead discovery is accomplished through multiple iterations
of compound design, synthesis, and bioassays. Surprisingly,
it is estimated that approximate 100 000 compounds are
synthesized at this stage for the development of a new drug
(3). The poor efficiency of drug lead generation fundamen-
tally restricts the progress of drug discovery. Therefore, the
exploitation and application of helpful methodologies or
tools for accelerating lead generation and optimization are
pressing needs.
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Fragment-based drug design (FBDD), a powerful
methodology to identify quality leads starting from small
sized molecules, has rapidly advanced in recent decades
(4,5). Due to the weak binding of fragments to proteins,
a variety of biophysical technologies, such as nuclear
magnetic resonance (NMR) (6), X-ray diffraction (7), and
surface plasmon resonance (SPR) (8), are more commonly
employed in FBDD. However, fragment screening using
these technologies is limited to only hundreds or thousands
due to the expense, long experimental time, and high
demand for purified raw materials (9,10). On the other
hand, computational approaches have fewer limitations
and large-scale screening (up to million) can be accom-
plished. In addition, computational approaches allow
many molecular properties, such as synthetic accessibility,
to be considered in advance. FBDD accelerated by compu-
tational tools has been successfully applied in the discovery
of six approved drugs and over 40 candidates in clinical
trials (11-13). For example, the discovery and development
of vemurafenib took only 6 years from project initiation to
approval (14). Overall, computational approaches exhibit
great strengths in screening efficiency and economic cost.

A number of FBDD-derived computational methods or
tools have been developed recently. According to the steps
of FBDD they participate in, these computational tools can
be divided into two categories: fragment screening tools
and fragment optimization tools. Fragment optimization
tools to determinate the core fragment include the fragment
docking software like SEED (15,16) and the molecular de-
composition tools like DAIM (17). Fragment optimization
tools to generate lead compound include fragment growing
tools like Frag PELE (18) and DeepFrag (19) and fragment
linking tools like DeLinker (20) and Syntalinker (21). These
tools play important roles in expediting the FBDD pro-
cess. Previously, we developed a comprehensive web server
that facilitates FBDD named Auto Core Fragment in sil-
ico Screening (ACFIS) (22). A key innovation of ACFIS is
the integration of multiple computation models to achieve
a more integral workflow from fragment screening to lead
generation. ACFIS is a useful tool that facilitates lead com-
pound identification (23-26). However, protein flexibility
was not fully estimated for the prediction of fragment bind-
ing and optimization in the previous version.

Here, we present ACFIS 2.0, an updated version based
on a dynamic fragment growing method that considers the
influence of protein flexibly. Additionally, ACFIS 2.0 inte-
grates molecular visualization and various molecular prop-
erty prediction functions into the output interface. Tested
on 122 reported cases covering 51 targets (Supplementary
Table S1), ACFIS 2.0 achieved an accuracy of 88.5%. Com-
pared to the previous version, the accuracy of ACFIS 2.0
is increased by more than 10% (Supplementary Figure S1).
In addition, the prediction results produced by ACFIS 2.0
for potential bioactive compounds are more comprehen-
sive, covering binding affinity, physicochemical properties,
drug-likeness, and synthetic accessibility. It results in bet-
ter identification of high-quality drug hits. To demonstrate
the applicability of ACFIS 2.0, the case studies of apply-
ing this tool to design monoamine oxidase B (MAO-B),
tropomyosin receptor kinase A (TRKA), and serotonin
transporter (SERT) inhibitors as Parkinson’s drug, anticar-

cinogen, and antidepressant are presented. The usability
and performance of the upgraded ACFIS is significantly im-
proved. ACFIS 2.0 could serve as a powerful platform for
FBDD research to accelerate drug discovery.

PROGRAM DESCRIPTION
Workflow overview

The overall workflow for FBDD using ACFIS 2.0 can be
divided into four steps with two modules (Figure 1A). The
starting module, named CORE_GEN, is designed to gen-
erate a core fragment from a given ligand structure. This
module is comprised of two steps: fragment deconstruc-
tion and core fragment identification. The purpose of the
second module, named CAND_GEN, is to derive candi-
date compounds from the core fragment. The CAND_GEN
module is comprised of two sequential steps: dynamic frag-
ment growing based on the core fragment (identified in
the first module) and molecular property evaluation for
candidate selection. The core process of the ACFIS 2.0
pipeline is organized based on our previously developed
pharmacophore-linked fragment virtual screening (PFVS)
method (27). The details of the four steps are described in
Supplementary Text S1.

Server usage

Input. The input requirements of the one-stop mode on
the “‘Home’ page are relatively simple (Figure 1B). First, a
protein-ligand complex structure is required by uploading
a PDB file or typing the 4-letter PDB code. The uploaded
complex structure could be experimentally-determined, or
derived from computational models (e.g. using molecular
docking approach). In some cases where experimental pro-
tein 3D structures are not available, it is feasible to obtain
docked complex structures using predicted protein struc-
tures by AlphaFold (28,29). Then, one of five fragment li-
braries is allowed to be specified for fragment growing. A
fragment library derived from approved drugs is the default
option. Optional inputs include an email address for no-
tification about the job state, job name, and password to
privatize the job. Once these initial inputs are submitted, a
‘Select Ligand’ page will appear. On this page, all ligands in
the given complex structure are shown and the user is asked
to choose a structure for virtual screening.

Inputs for the two advanced modes are slightly differ-
ent from the one-stop mode. In CORE_GEN mode, only
one protein-ligand complex structure is indispensable, and
other inputs are optional, similar to in the one-stop mode.
The ‘Select Ligand’ page appears after the initial submis-
sion in CORE_GEN. In CAND_GEN mode, the input re-
quirements for the initial page and the ‘Select Ligand’ page
are the same as the one-stop mode, but a protein-fragment
complex structure is recommended. The subsequent page
requires another input; all hydrogen atoms of the specified
ligand are automatically labeled with numbers, and the user
selects a hydrogen atom as the fragment growing point by
entering its corresponding number.

Output. The outputs of ACFIS 2.0 include a list of
compounds, a 3D visual presentation of protein-ligand
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Figure 1. Overview of the ACFIS 2.0 workflow, input, and output. (A) The flow diagram of the CORE_GEN and CAND_GEN modules in ACFIS 2.0.
(B) The panel for submission of a task on the Home page and a subsequent page for ligand selection. (C) The result page of a task in one-stop mode.
The contents include a list of newly generated ligands, an interactive viewer of protein-ligand binding modes, and the predicted results of physicochemical

properties, binding free energy, drug/pesticide-likeness evaluation and synthesis accessibility.
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binding, and three tables of molecular properties (Fig-
ure 1C). For tasks in one-stop mode, the results derived
from CAND_GEN and CORE_GEN are separately dis-
played using two subpages. On the left side of the out-
put (sub)page, a navigation list of all newly generated com-
pounds is shown. The listed compounds can be potential
drug hits derived from CAND_GEN or core fragments de-
rived from CORE_GEN, and each compound is equipped
with ‘VIEW’ and ‘DOWNLOAD’ buttons. On the right side
of the output page, a presentation of prediction results for
each compound, which varies with the click of a “VIEW’
button, is shown. The binding mode of the ligand with its
surrounding protein residues is visualized via the 3D in-
teractive viewer on the upper right of the page. The prop-
erty prediction data, including physicochemical properties,
binding free energy, drug/pesticide-likeness evaluation, is
summarized in tables at the bottom right of the output
page. All of compound structures and result tables can be
downloaded.

NEW FEATURES AND UPDATES
Expanded fragment libraries for increased structural diversity

In ACFIS 2.0, the original two libraries have been updated
and two new libraries have been added to expand the struc-
tural diversity of generated ligands (Figure 2A). The first
version of ACFIS contained only the FDA Drug Fragment
Library and the Pesticide Fragment Library for fragment
growing. In the current version, four fragment libraries
are embedded, including the Approved Drug Fragment Li-
brary, the Approved Pesticide Fragment Library (30), the
Hotspot Binding Fragment Library (31) and the Kinase In-
hibitor Fragment Library (32).

The main updates of deployed fragments in ACFIS 2.0
include: (i) the removal of highly similar fragments from
the original two libraries based on a Tanimoto coefficient
of 0.7, (i) a supplementation with a series of novel frag-
ments extracted from recently approved drugs and pesti-
cides, (iii) the addition of 96 fragments that bind to the most
preferred hotspots of popular drug targets (experimentally
confirmed), (iv) the addition of 255 fragments that occur
at a high frequency in kinase inhibitors and (v) the inte-
gration of the aforementioned four theme-specific fragment
libraries.

Rational dynamic strategy for fragment growing

A new feature of ACFIS 2.0 is the dynamic fragment grow-
ing strategy that allows broad sampling of core fragment-
bound protein conformations (Figure 2B). In the first ver-
sion of ACFIS, only one receptor protein-core fragment
complex conformation was used as a template to link frag-
ments from the fragment library to the core fragment when
constructing new compounds. This single protein-fragment
complex conformation was originally deconstructed di-
rectly from the inputted protein-ligand complex structure
without multiple sampling. This treatment ignored protein
flexibility, probably resulting in a high probability of losing
fragment-bound protein conformations at local energy min-
ima and, thus, an unreasonable starting point for fragment

growing. In ACFIS 2.0, molecular dynamics (MD) simu-
lation of the protein-core fragment complex structure and
conformation clustering of the MD trajectory are added be-
fore fragment growing (33), enabling an ensemble of com-
plex structures at significantly different energy states (Sup-
plementary Text S1). Therefore, the subsequent fragment
growing is performed based on more than one protein-core
fragment complex conformations, resulting in the genera-
tion of more protein-ligand conformations. This refinement
of the fragment growing strategy rationalizes the previously
proposed PFVS and may improve ACFIS 2.0 performance.

Improved function of design and analysis

Interactive webpage design. The interface of ACFIS 2.0
was redesigned to make job submission and the prediction
result display more intuitive (Figure 2C). First, a function
was added to show 2D molecular graphs for all ligands in
the uploaded complex structure, allowing users to select a
ligand of interest for a FBDD task. Second, when inputting
CAND_GEN jobs, a 3D molecular graph of the core frag-
ment labeled with hydrogen atom numbers was provided to
aid users in specifying link points. Third, new compound
navigation was implemented on the output page, allow-
ing users to browse the prediction results of different com-
pounds on the same page through mouse click. Further-
more, a web-based interactive viewer was implemented to
provide 3D visualization of ligand-bound protein macro-
molecules, powered by NGL (34). In the viewer, users can
interactively manipulate the complex structures, showing
binding modes from different perspectives.

Physicochemical property analysis. New physicochemical
property prediction functions for the generated compounds
were added to ACFIS 2.0, providing basic structural in-
formation about the ligand/core fragment. The predicted
physicochemical properties include SIMLES, molecular
weight, number of heavy atoms, number of hydrogen bond
donors, number of hydrogen bond acceptors, polar surface
area, logP, number of rings, number of aromatic rings, num-
ber of rotated bonds and number of aromatic bonds.

Drug/pesticide-likeness evaluation. Another feature of
ACFIS 2.0 is the inclusion of drug/pesticide-likeness eval-
uation to complement the original binding affinity evalua-
tion (Figure 2D). This feature supports the identification of
computationally generated compounds that are more likely
to be drug/pesticide leads for subsequent synthesis. Three
drug-likeness rules or scoring functions are used, includ-
ing Lipinski’s drug-likeness rule (35), the drug-likeness rule
of Ghose et al. (36), and a quantitative estimate of drug-
likeness (QED) scoring (37). The pesticide-likeness rule pro-
posed by Hao et al. is employed (38). In addition, a synthetic
accessibility score based on molecular complexity and frag-
ment contributions is also provided on the output page.

RESULTS

Performance and comparison

The performance of ACFIS 2.0 in generating active lig-
ands from core fragments was assessed by ranking pre-
dicted binding affinities. The detailed validation protocol
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Figure 3. Performance and key feature of ACFIS 2.0. (A) The predictive performance of ACFIS 2.0 validated on a test set of 122 cases. (B) Comparison
of key features of ACFIS 2.0 with other computational tools for fragment-based drug discovery (FBDD). Compared to most of other tools, ACFIS 2.0 is

one of the few tools that covers the global workflow of FBDD.

was provided in Supplementary Text S2 and Figure S2. A
test dataset of 122 cases covering 51 protein targets and
a specific fragment library was used (Supplementary Ta-
ble S1 and Figure S3). These cases were carefully collected
from the literature. Sixty-one tested compounds that exhib-
ited high experimental binding affinities or in vitro activities
were considered positive samples; the remaining 61 com-
pounds showed relatively low affinities or activities were
considered negative samples. The input protein-core frag-
ment complex structures were obtained by deconstruct-
ing the protein-ligand complexes reported in the PDBbind
database (39). The CAND_GEN mode was used for test-
ing. The output rank of the tested compound among all
generated ligands was the criterion for estimating whether

this prediction is true. As shown in Figure 3A, ACFIS 2.0
achieved an accuracy of 88.5%, a precision of 87.3%, a
specificity of 86.8%, and a sensitivity value of 90.1%. Com-
pared to previous version (Supplementary Figure S1), the
accuracy of ACFIS 2.0 is increased by >10%. Thus, ACFIS
2.0 performed well in discovering fragment-derived com-
pounds with potentially high bioactivity.

A comprehensive comparison of ACFIS 2.0 with other
computational tools designed for FBDD was performed
(Figure 3B and Supplementary Table S2). Most of tools
only focus on a specific step of the FBDD workflow. SEED
(15,16) aims to improve the fragment docking accuracy to
obtain potent core fragments, while DAIM (17) and eMol-
Frag (40) were designed for structural fragmentation to ex-
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serotonin transporter inhibitor for treating depression based on vilazodone.

tract core fragment from bioactive compounds. Tools for
fragment-to-lead optimization are often organized accord-
ing to the drug design strategies. For example, Frag PELE
(18) and DeepFrag (19) are used to perform fragment grow-
ing with a predetermined core fragment. DeLinker (20),
SyntaLinker (21) and Ligbuilder (41) can link two or more
different core fragments into a new lead compound. On the
whole, ACFIS 2.0 is one of the few web-based tools to ap-
ply a one-stop workflow for FBDD, featuring pipeline pre-
sentation covering fragment library construction, core frag-
ment identification and fragment-to-lead optimization.

Case study 1: optimization of a highly potent MAQO-B in-
hibitor for treating parkinson’s disease

Inhibition of MAO-B is an effective treatment for Parkin-
son’s disease (PD) (42). The MAO-B inhibitor, safinamide,
is the only one approved Parkinson’s drug. To discover more
potent MAO-B inhibitors, Jin et al. used ACFIS 2.0 for
structural optimization starting from safinamide structure
(Figure 4A) (43). First, the crystal structure of the MAO-
B and safinamide complex (PDB ID: 2v5z) was inputted
into the CORE_GEN mode to obtain a list of computa-
tional core fragments. Fragment 1, which had the high-
est ligand efficiency (LE) among all output fragments, it
was selected as the core fragment to start the CAND_GEN

job. The complex structure of MAO-B with fragment 1
was uploaded and the Comprehensive Fragment Library
was specified for fragment growing. Then, ACFIS 2.0 pro-
vided a series of fragment 1-derived compounds as poten-
tial new MAO-B ligands. Among them, compound C3 ex-
hibited a lower calculated binding free energy than safi-
namide, which was inferred to be bioactive toward MAO-
B. Eventually, compound C3 was synthesized and assayed.
The experimentally-derived MAO-B inhibitory activity of
compound C3 (ICsyp = 21nM) was 10-fold higher than the
inhibitory activity of safinamide (ICsy = 249 nM), demon-
strating the dependability of ACFIS 2.0.

Case study 2: design of a less drug-resistant TRK inhibitor
for cancer therapies

Tropomyosin receptor kinases (TRKs) are an important
class of anti-tumor targets (44). Larotrectinib was the
first approved TRK drug (45), but patients develop re-
sistance problem induced by protein mutations, such as
TRKAS?R (46). To seek for less drug-resistant TRK in-
hibitors, Wang et al. performed FBDD using ACFIS 2.0
(Figure 4B) (32). First, the structure of the TRKASY*R
mutant protein was constructed by computationally mutat-
ing key residues on the holo-TRK crystal structure (PDB
ID: 4ao0j). The complex structure of Larotrectinib and
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TRKAGR which built through molecular docking, was
submitted for a CORE_GEN job. Fragment 2 computa-
tionally exhibited high binding affinity and the highest LE
value. Thus, fragment 2 was used as the core fragment.
CAND_GEN was then employed to generate compounds
based on fragment 2 and the Comprehensive Fragment Li-
brary. Dozens of compounds were generated, and the YT3
structure had the highest binding affinity score. Experimen-
tal results demonstrated that YT3 inhibited both wild-type
TRKA (ICsp = 4.4nM) and TRKASR (IC59 = 1.02 nM).

Case study 3: discovery of a novel SERT inhibitor with im-
proved drug bioavailability for treating depression

The serotonin transporter (SERT) is an important pharma-
cological target for treating major depressive disorder (47).
The SERT inhibitor, vilazodone, is a commercially avail-
able anti-depressant drug with insufficient oral bioavailabil-
ity (F = 47.45%). To design novel anti-depressants with im-
proved bioavailability, Wang et al. performed SERT-based
drug design with the aid of ACFIS 2.0 (Figure 4C) (48). The
crystal structure of the vilazodone-SERT complex (PDB
ID: 7lwd) was uploaded to launch a CORE_GEN oper-
ation. Fragment 3 had an acceptable binding free energy
and drug-likeness score for fragment optimization. To opti-
mize the interaction between the core fragment and SERT,
the adipose chain of fragment 3 was shortened to obtain
fragment 4 as the final core fragment. Fragment growing
was performed for fragment 4 using CAND_GEN, and the
newly generated compound DH4 with a high binding affin-
ity was identified for subsequent structural modification.
Compound DH4 exhibits similar binding affinity and sig-
nificantly improved oral bioavailability (F = 83.28%) com-
pared with vilazodone, proving the successful performance
of ACFIS 2.0 in this design.

LIMITATIONS

Despite the enhanced features of ACFIS 2.0, several limita-
tions need to be considered. For instance, the current AC-
FIS version relies on protein-ligand complex structures to
implement core fragment or compound generation. Thus,
ACFIS 2.0 cannot be used fail to work when the protein
structure of interest is unknown or not available. In addi-
tion, the performance of a job may be negatively affected
if the starting complex structures have low accurate bind-
ing modes. Further, the workflow of ACFIS 2.0 relies on
the assumption that adding a new fragment did not affect
the binding mode of the core fragment, but sometimes the
opposite is true.

CONCLUSION AND OUTLOOK

In summary, ACFIS 2.0 is an upgraded web server that
provides a computational pipeline to implement FBDD.
While based on the core functionality of ligand generation
from the original version, ACFIS 2.0 was optimized by in-
corporating improved dynamic fragment growing function-
ality. In addition, the expanded fragment libraries, com-
prehensive molecular properties analysis, and user-friendly
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visualization enable users to investigate generated com-
pounds as potential hits, facilitating more comprehen-
sive drug/pesticide molecular exploration. ACFIS 2.0 was
88.5% accurate in generating expected compounds with
appropriate binding affinity rankings when tested on 122
cases. Three typical cases of ACFIS 2.0 applications, im-
proving the designs of MAO-B, SERT and TRK inhibitors,
demonstrated the applicability of the server. The new up-
grades make ACFIS 2.0 more powerful and user-friendly
for FBDD. In the future, further improvements to AC-
FIS 2.0 will be made, including the addition of a protein-
fragment binding scoring function to improve fragment
screening performance and the addition of a fragment link-
ing strategy to generate more diverse compounds. ACFIS
2.0 benefited from users’ feedback and our upgrade efforts
provide better service.
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