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BSTRACT 

rug disco very, which pla ys a vital r ole in main- 
aining human health, is a persistent challenge. 
ragment-based drug discovery (FBDD) is one of the 

trategies for the discovery of novel candidate com- 
ounds. Computational tools in FBDD could help to 

dentify potential drug leads in a cost-efficient and 

ime-saving manner. The Auto Core Fragment in sil- 
co Screening (ACFIS) server is a well-established 

nd effective online tool for FBDD. Ho we ver, the ac- 
urate prediction of protein-fragment binding mode 

nd affinity is still a major challenge for FBDD due to 

eak binding affinity. Here, we present an updated 

ersion (ACFIS 2.0), that incorporates a dynamic frag- 
ent growing strategy to consider protein flexibil- 

ty. The major impr o vements of ACFIS 2.0 include (i) 
ncreased accuracy of hit compound identification 

from 75.4% to 88.5% using the same test set), (ii) 
mpr o ved rationality of the protein-fragment binding 

ode, (iii) increased structural diversity due to ex- 
anded fragment libraries and (iv) inclusion of more 

omprehensive functionality for predicting molecu- 
ar properties. Three successful cases of drug lead 

iscovery using ACFIS 2.0 are described, including 

rugs leads to treat Parkinson’s disease, cancer, and 

ajor depressive disorder. These cases demonstrate 

he utility of this web-based server. ACFIS 2.0 is 

reel y a vailab le at http://c hem y ang.ccnu.edu.cn/ccb/ 
erver/ ACFIS2/ . 
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RAPHICAL ABSTRACT 

NTRODUCTION 

rugs save lives and improve health; thus, the discovery of 
ovel drugs for various diseases is an important scientific is- 
ue. Howe v er, de v eloping a new approved drug costs $1.5– 

.0 billion and r equir es 10–15 years on average ( 1 ). There-
ore, de v eloping effecti v e appr oaches to impr ove the suc-
ess rate and reduce the cost for drug discovery is impor- 
ant ( 2 ). Lead discovery is a critical stage in drug r esear ch
nd de v elopment. The goal of this stage is to identify can- 
idate molecules with satisfactory pharmacological activity. 
ead discovery is accomplished through multiple iterations 
f compound design, synthesis, and bioassays. Surprisingly, 

t is estimated that approximate 100 000 compounds are 
ynthesized at this stage for the de v elopment of a ne w drug
 3 ). The poor efficiency of drug lead generation fundamen- 
ally restricts the progress of drug discovery. Therefore, the 
xploita tion and applica tion of helpful methodologies or 
ools for accelerating lead generation and optimization are 
ressing needs. 
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Fragment-based drug design (FBDD), a powerful
methodology to identify quality leads starting from small
sized molecules, has ra pidl y ad vanced in recent decades
( 4 , 5 ). Due to the weak binding of fragments to proteins,
a variety of biophysical technologies, such as nuclear
magnetic resonance (NMR) ( 6 ), X-r ay diffr action ( 7 ), and
surface plasmon resonance (SPR) ( 8 ), are more commonly
employed in FBDD. Howe v er, fragment screening using
these technologies is limited to only hundreds or thousands
due to the expense, long experimental time, and high
demand for purified raw materials ( 9 , 10 ). On the other
hand, computational approaches hav e fe wer limitations
and large-scale screening (up to million) can be accom-
plished. In addition, computational approaches allow
many molecular properties, such as synthetic accessibility,
to be considered in advance. FBDD accelerated by compu-
tational tools has been successfully applied in the discovery
of six approved drugs and over 40 candidates in clinical
trials ( 11–13 ). For e xample, the discov ery and de v elopment
of vemurafenib took only 6 years from project initiation to
a pproval ( 14 ). Overall, computational a pproaches exhibit
gr eat str engths in scr eening efficiency and economic cost. 

A number of FBDD-deri v ed computational methods or
tools have been developed recently. According to the steps
of FBDD they participate in, these computational tools can
be divided into two categories: fragment screening tools
and fragment optimization tools. Fragment optimization
tools to determinate the core fragment include the fragment
docking software like SEED ( 15 , 16 ) and the molecular de-
composition tools like DAIM ( 17 ). Fragment optimization
tools to generate lead compound include fragment growing
tools like Frag PELE ( 18 ) and DeepFrag ( 19 ) and fragment
linking tools like DeLinker ( 20 ) and Syntalinker ( 21 ). These
tools play important roles in expediting the FBDD pro-
cess. Pre viously, we de v eloped a comprehensi v e w e b server
tha t facilita tes FBDD named Auto Core Fragment in sil-
ico Screening (ACFIS) ( 22 ). A key innovation of ACFIS is
the integration of multiple computation models to achie v e
a more integral workflow from fragment screening to lead
generation. ACFIS is a useful tool that facilitates lead com-
pound identification ( 23–26 ). Howe v er, protein fle xibility
was not fully estimated for the prediction of fragment bind-
ing and optimization in the previous version. 

Her e, we pr esent ACFIS 2.0, an updated version based
on a dynamic fragment growing method that considers the
influence of protein fle xib l y. Additionall y, ACFIS 2.0 inte-
gra tes molecular visualiza tion and various molecular prop-
erty prediction functions into the output interface. Tested
on 122 reported cases covering 51 targets (Supplementary
Ta ble S1), A CFIS 2.0 achieved an accuracy of 88.5%. Com-
pared to the previous version, the accuracy of ACFIS 2.0
is increased by more than 10% (Supplementary Figure S1).
In addition, the prediction results produced by ACFIS 2.0
for potential bioacti v e compounds are more comprehen-
si v e, cov ering binding affinity, physicochemical properties,
drug-likeness, and synthetic accessibility. It results in bet-
ter identification of high-quality drug hits. To demonstrate
the applicability of ACFIS 2.0, the case studies of a ppl y-
ing this tool to design monoamine oxidase B (MAO-B),
tropomyosin receptor kinase A (TRKA), and serotonin
transporter (SERT) inhibitors as Parkinson’s drug, anticar-
cinogen, and antidepressant are presented. The usability
and performance of the upgraded ACFIS is significantly im-
proved. ACFIS 2.0 could serve as a powerful platform for
FBDD r esear ch to accelerate drug discovery. 

PROGRAM DESCRIPTION 

Workflow ov ervie w 

The o verall w orkflow for FBDD using ACFIS 2.0 can be
divided into four steps with two modules (Figure 1 A). The
starting module, named CORE GEN, is designed to gen-
erate a core fragment from a gi v en ligand structure. This
module is comprised of two steps: fragment deconstruc-
tion and core fragment identification. The purpose of the
second module, named CAND GEN, is to deri v e candi-
date compounds from the core fragment. The CAND GEN
module is comprised of two sequential steps: dynamic frag-
ment growing based on the core fragment (identified in
the first module) and molecular property evaluation for
candidate selection. The core process of the ACFIS 2.0
pipeline is organized based on our previously developed
pharmacophore-linked fragment virtual screening (PFVS)
method ( 27 ). The details of the four steps are described in
Supplementary Text S1. 

Server usage 

Input. The input r equir ements of the one-stop mode on
the ‘Home’ page ar e r elati v ely simple (Figure 1 B). First, a
protein-ligand complex structure is r equir ed by uploading
a PDB file or typing the 4-letter PDB code. The uploaded
complex structure could be experimentally-determined, or
deri v ed from computational models (e.g. using molecular
docking approach). In some cases where experimental pro-
tein 3D structures are not available, it is feasible to obtain
docked complex structures using predicted protein struc-
tures by AlphaFold ( 28 , 29 ). Then, one of fiv e fragment li-
braries is allowed to be specified for fragment growing. A
fr agment libr ary deri v ed fr om appr oved drugs is the default
option. Optional inputs include an email address for no-
tification about the job state, job name, and password to
privatize the job. Once these initial inputs are submitted, a
‘Select Ligand’ page will appear. On this page, all ligands in
the gi v en comple x structur e ar e shown and the user is asked
to choose a structure for virtual screening. 

Inputs for the two advanced modes are slightly differ-
ent from the one-stop mode. In CORE GEN mode, only
one protein-ligand complex structure is indispensable, and
other inputs are optional, similar to in the one-stop mode.
The ‘Select Ligand’ page appears after the initial submis-
sion in CORE GEN. In CAND GEN mode, the input re-
quirements for the initial page and the ‘Select Ligand’ page
are the same as the one-stop mode, but a protein-fragment
complex structure is recommended. The subsequent page
r equir es another input; all hydrogen atoms of the specified
ligand are automatically labeled with numbers, and the user
selects a hydrogen atom as the fragment growing point by
entering its corresponding number. 

Output. The outputs of ACFIS 2.0 include a list of
compounds, a 3D visual presentation of protein-ligand
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Figure 1. Ov ervie w of the ACFIS 2.0 wor kflo w, input, and output. ( A ) The flo w diagram of the CORE GEN and CAND GEN modules in ACFIS 2.0. 
( B ) The panel for submission of a task on the Home page and a subsequent page for ligand selection. ( C ) The result page of a task in one-stop mode. 
The contents include a list of newly generated ligands, an interacti v e vie wer of protein-ligand binding modes, and the predicted results of physicochemical 
properties, binding free energy, drug / pesticide-likeness evaluation and synthesis accessibility. 

art/gkad348_f1.eps
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binding, and three tables of molecular properties (Fig-
ure 1 C). For tasks in one-stop mode, the results deri v ed
from CAND GEN and CORE GEN are separately dis-
played using two subpages. On the left side of the out-
put (sub)page, a navigation list of all newly generated com-
pounds is shown. The listed compounds can be potential
drug hits deri v ed from CAND GEN or core fragments de-
ri v ed from CORE GEN, and each compound is equipped
with ‘VIEW’ and ‘DOWNLOAD’ buttons. On the right side
of the output page, a presentation of prediction results for
each compound, which varies with the click of a ‘VIEW’
button, is shown. The binding mode of the ligand with its
surr ounding pr otein residues is visualized via the 3D in-
teracti v e vie wer on the upper right of the page. The prop-
erty prediction data, including physicochemical properties,
binding free energy, drug / pesticide-likeness evaluation, is
summarized in tables at the bottom right of the output
page. All of compound structures and result tables can be
downloaded. 

NEW FEATURES AND UPDATES 

Expanded fr agment libr aries f or incr eased structur al diversity

In ACFIS 2.0, the original two libraries have been updated
and two new libraries have been added to expand the struc-
tural di v ersity of generated ligands (Figure 2 A). The first
version of ACFIS contained only the FDA Drug Fragment
Library and the Pesticide Fragment Library for fragment
growing. In the current version, four fr agment libr aries
are embedded, including the Approved Drug Fragment Li-
brary, the Approved Pesticide Fragment Library ( 30 ), the
Hotspot Binding Fragment Library ( 31 ) and the Kinase In-
hibitor Fragment Library ( 32 ). 

The main updates of deployed fragments in ACFIS 2.0
include: (i) the removal of highly similar fragments from
the original two libraries based on a Tanimoto coefficient
of 0.7, (ii) a supplementation with a series of novel frag-
ments extracted from recently approved drugs and pesti-
cides, (iii) the addition of 96 fragments that bind to the most
pr eferr ed hotspots of popular drug targets (experimentally
confirmed), (iv) the addition of 255 fragments that occur
at a high frequency in kinase inhibitors and (v) the inte-
gration of the af orementioned f our theme-specific fragment
libraries. 

Rational dynamic strategy for fragment growing 

A new feature of ACFIS 2.0 is the dynamic fragment grow-
ing stra tegy tha t allows broad sampling of core fragment-
bound protein conformations (Figure 2 B). In the first ver-
sion of A CFIS , only one receptor protein-core fragment
complex conformation was used as a template to link frag-
ments from the fragment library to the core fragment when
constructing new compounds. This single protein-fragment
complex conformation was originally deconstructed di-
rectly from the inputted protein-ligand complex structure
without multiple sampling. This tr eatment ignor ed protein
fle xibility, probab ly resulting in a high probability of losing
fragment-bound protein conformations at local energy min-
ima and, thus, an unreasonable starting point for fragment
growing. In ACFIS 2.0, molecular dynamics (MD) simu-
lation of the protein-core fragment complex structure and
conformation clustering of the MD trajectory are added be-
fore fragment growing ( 33 ), enabling an ensemble of com-
plex structures at significantly different energy states (Sup-
plementary Text S1). Ther efor e, the subsequent fragment
growing is performed based on more than one protein-core
fragment complex conformations, resulting in the genera-
tion of more protein-ligand conformations. This refinement
of the fragment growing strategy rationalizes the previously
proposed PFVS and may improve ACFIS 2.0 performance.

Impr ov ed function of design and analysis 

Inter active w ebpag e design. The interface of ACFIS 2.0
was redesigned to make job submission and the prediction
r esult display mor e intuiti v e (Figure 2 C). First, a function
was added to show 2D molecular graphs for all ligands in
the uploaded complex structure, allowing users to select a
ligand of interest for a FBDD task. Second, when inputting
CAND GEN jobs, a 3D molecular gr aph of the core fr ag-
ment labeled with hydrogen atom numbers was provided to
aid users in specifying link points. Thir d, ne w compound
navigation was implemented on the output page, allow-
ing users to browse the prediction results of different com-
pounds on the same page through mouse click. Further-
more, a w e b-based interacti v e vie wer was implemented to
provide 3D visualization of ligand-bound protein macro-
molecules, powered by NGL ( 34 ). In the viewer, users can
interacti v ely manipulate the complex structures, showing
binding modes from different perspecti v es. 

Physicochemical pr oper ty analysis . New physicochemical
property prediction functions for the generated compounds
were added to ACFIS 2.0, providing basic structural in-
formation about the ligand / core fragment. The predicted
physicochemical properties include SIMLES, molecular
weight, number of heavy atoms, number of hydrogen bond
donors, number of hydrogen bond acceptors, polar surface
area, logP, number of rings, number of aromatic rings, num-
ber of rotated bonds and number of aromatic bonds. 

Drug / pesticide-likeness evaluation. Another feature of
ACFIS 2.0 is the inclusion of drug / pesticide-likeness eval-
uation to complement the original binding affinity evalua-
tion (Figure 2 D). This feature supports the identification of
computa tionally genera ted compounds that are more likely
to be drug / pesticide leads for subsequent synthesis. Three
drug-likeness rules or scoring functions are used, includ-
ing Lipinski’s drug-likeness rule ( 35 ), the drug-likeness rule
of Ghose et al. ( 36 ), and a quantitati v e estimate of drug-
likeness (QED) scoring ( 37 ). The pesticide-likeness rule pro-
posed by Hao et al. is employed ( 38 ). In addition, a synthetic
accessibility score based on molecular complexity and frag-
ment contributions is also provided on the output page. 

RESULTS 

Performance and comparison 

The performance of ACFIS 2.0 in generating acti v e lig-
ands from core fragments was assessed by ranking pre-
dicted binding affinities. The detailed validation protocol
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Figure 2. New features and updates of ACFIS 2.0, including ( A ) expanded fragment libraries, ( B ) a dynamic fragment strategy, ( C ) improved interacti v e 
design (C), and (D) drug likeness evaluation. 

Figure 3. Performance and key feature of ACFIS 2.0. ( A ) The predicti v e performance of ACFIS 2.0 validated on a test set of 122 cases. ( B ) Comparison 
of key features of ACFIS 2.0 with other computational tools for fragment-based drug discovery (FBDD). Compared to most of other tools, ACFIS 2.0 is 
one of the few tools that covers the global workflow of FBDD. 
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as provided in Supplementary Text S2 and Figure S2. A 

est dataset of 122 cases covering 51 protein targets and 

 specific fragment library was used (Supplementary Ta- 
le S1 and Figure S3). These cases wer e car efully collected 

rom the literature. Sixty-one tested compounds that exhib- 
ted high experimental binding affinities or in vitro activities 
er e consider ed positi v e samples; the remaining 61 com- 
ounds showed relati v ely low affinities or acti vities were 
onsidered negati v e samples. The input protein-core frag- 
ent complex structures were obtained by deconstruct- 

ng the protein-ligand complex es r eported in the PDBbind 

atabase ( 39 ). The CAND GEN mode was used for test- 
ng. The output rank of the tested compound among all 
enerated ligands was the criterion for estimating whether 
his prediction is true. As shown in Figure 3 A, ACFIS 2.0 

chie v ed an accuracy of 88.5%, a precision of 87.3%, a 

pecificity of 86.8%, and a sensitivity value of 90.1%. Com- 
ared to pre vious v ersion (Supplementary Figure S1), the 
ccuracy of ACFIS 2.0 is increased by > 10%. Thus, ACFIS 

.0 performed well in discovering fragment-derived com- 
ounds with potentially high bioactivity. 
A comprehensi v e comparison of ACFIS 2.0 with other 

omputational tools designed for FBDD was performed 

Figure 3 B and Supplementary Table S2). Most of tools 
nly focus on a specific step of the FBDD workflow. SEED 

 15 , 16 ) aims to improve the fragment docking accuracy to 

btain potent core fragments, while DAIM ( 17 ) and eMol- 
rag ( 40 ) were designed for structural fragmentation to ex- 
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Figure 4. Three cases of fragment-based drug discovery applications using ACFIS 2.0. ( A ) Design of a monoamine oxidas-B inhibitor for treating Parkin- 
son’s disease based on safinamide. ( B ) Design of a tropomyosin receptor kinase inhibitor for cancer therapies based on larotrectinib. ( C ) Design of a 
serotonin transporter inhibitor for treating depression based on vilazodone. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tract core fragment from bioacti v e compounds. Tools for
fragment-to-lead optimization are often organized accord-
ing to the drug design str ategies. For example, Fr ag PELE
( 18 ) and DeepFrag ( 19 ) are used to perform fragment grow-
ing with a pr edetermined cor e fragment. DeLinker ( 20 ),
SyntaLinker ( 21 ) and Ligbuilder ( 41 ) can link two or more
differ ent cor e fragments into a new lead compound. On the
whole, ACFIS 2.0 is one of the few w e b-based tools to ap-
ply a one-stop workflow for FBDD, featuring pipeline pre-
sentation covering fragment library construction, core frag-
ment identification and fragment-to-lead optimization. 

Case study 1: optimization of a highly potent MAO-B in-
hibitor for treating parkinson’s disease 

Inhibition of MAO-B is an effecti v e treatment for Parkin-
son’s disease (PD) ( 42 ). The MAO-B inhibitor, safinamide,
is the only one approved Parkinson’s drug. To discover more
potent MAO-B inhibitors, Jin et al. used ACFIS 2.0 for
structural optimization starting from safinamide structure
(Figure 4 A) ( 43 ). First, the crystal structure of the MAO-
B and safinamide complex (PDB ID: 2v5z) was inputted
into the CORE GEN mode to obtain a list of computa-
tional core fr agments. Fr agment 1 , which had the high-
est ligand efficiency (LE) among all output fragments, it
was selected as the core fragment to start the CAND GEN
job. The complex structure of MAO-B with fragment 1
was uploaded and the Comprehensi v e Fragment Library
was specified for fragment growing. Then, ACFIS 2.0 pro-
vided a series of fragment 1 -deri v ed compounds as poten-
tial new MAO-B ligands. Among them, compound C3 ex-
hibited a lower calculated binding free energy than safi-
namide, which was inferred to be bioacti v e towar d MAO-
B. Eventually, compound C3 was synthesized and assayed.
The e xperimentally-deri v ed MAO-B inhibitory activity of
compound C3 (IC 50 = 21nM) was 10-fold higher than the
inhibitory activity of safinamide (IC 50 = 249 nM), demon-
strating the dependability of ACFIS 2.0. 

Case study 2: design of a less drug-resistant TRK inhibitor
for cancer therapies 

Tropomyosin receptor kinases (TRKs) are an important
class of anti-tumor targets ( 44 ). Larotrectinib was the
first approved TRK drug ( 45 ), but patients develop re-
sistance problem induced by protein mutations, such as
TRKA 

G595R ( 46 ). To seek for less drug-resistant TRK in-
hibitors, Wang et al. performed FBDD using ACFIS 2.0
(Figure 4 B) ( 32 ). First, the structure of the TRKA 

G595R

mutant protein was constructed by computationally mutat-
ing key residues on the holo-TRK crystal structure (PDB
ID: 4aoj). The complex structure of Larotrectinib and

art/gkad348_f4.eps
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G595R , which built through molecular docking, was 
ubmitted for a CORE GEN job. Fragment 2 computa- 
ionally exhibited high binding affinity and the highest LE 

alue. Thus, fragment 2 was used as the core fragment. 
AND GEN was then employed to generate compounds 
ased on fragment 2 and the Comprehensi v e Fragment Li- 
rary. Dozens of compounds were generated, and the YT3 

tructure had the highest binding affinity score. Experimen- 
al results demonstrated that YT3 inhibited both wild-type 
RKA (IC 50 = 4.4 nM) and TRKA 

G595R (IC 50 = 1.02 nM). 

ase study 3: discovery of a novel SERT inhibitor with im- 
r ov ed drug bioavailability for treating depression 

he serotonin transporter (SERT) is an important pharma- 
ological target for treating major depressi v e disor der ( 47 ). 
he SERT inhibitor, vilazodone, is a commercially avail- 
ble anti-depressant drug with insufficient oral bioavailabil- 
ty ( F = 47.45%). To design novel anti-depressants with im- 
roved bioavailability, Wang et al. performed SERT-based 

rug design with the aid of ACFIS 2.0 (Figure 4 C) ( 48 ). The
rystal structure of the vilazodone-SERT complex (PDB 

D: 7lwd) was uploaded to launch a CORE GEN oper- 
tion. Fragment 3 had an acceptable binding free energy 

nd drug-likeness score for fragment optimization. To opti- 
ize the interaction between the core fragment and SERT, 

he adipose chain of fragment 3 was shortened to obtain 

ragment 4 as the final core fr agment. Fr agment growing 

as performed for fragment 4 using CAND GEN , and the 
ewly generated compound DH4 with a high binding affin- 

ty was identified for subsequent structural modification. 
ompound DH4 exhibits similar binding affinity and sig- 
ificantly improved oral bioavailability ( F = 83.28%) com- 
ared with vilazodone, proving the successful performance 
f ACFIS 2.0 in this design. 

IMIT A TIONS 

espite the enhanced features of ACFIS 2.0, se v eral limita- 
ions need to be considered. For instance, the current AC- 
IS version relies on protein-ligand complex structures to 

mplement core fragment or compound generation. Thus, 
CFIS 2.0 cannot be used fail to work when the protein 

tructur e of inter est is unknown or not available. In addi- 
ion, the performance of a job may be negati v ely affected 

f the starting complex structures have low accurate bind- 
ng modes. Further, the workflow of ACFIS 2.0 relies on 

he assumption that adding a new fragment did not affect 
he binding mode of the core fra gment, b ut sometimes the 
pposite is true. 

ONCLUSION AND OUTLOOK 

n summary, ACFIS 2.0 is an upgraded w e b server that 
rovides a computational pipeline to implement FBDD. 
hile based on the core functionality of ligand generation 

rom the original version, ACFIS 2.0 was optimized by in- 
orporating improved dynamic fragment growing function- 
lity. In addition, the expanded fr agment libr aries, com- 
rehensi v e molecular properties analysis, and user-friendly 
isualization enable users to investigate generated com- 
ounds as potential hits, facilitating more comprehen- 
i v e drug / pesticide molecular exploration. ACFIS 2.0 was 
8.5% accurate in generating expected compounds with 

ppropriate binding affinity rankings when tested on 122 

ases. Three typical cases of ACFIS 2.0 applications, im- 
roving the designs of MAO-B, SERT and TRK inhibitors, 
emonstrated the applicability of the serv er. The ne w up- 
rades make ACFIS 2.0 more powerful and user-friendly 

or FBDD. In the future, further improvements to AC- 
IS 2.0 will be made, including the addition of a protein- 

ragment binding scoring function to improve fragment 
creening performance and the addition of a fragment link- 
ng strategy to generate more di v erse compounds. ACFIS 

.0 benefited from users’ feedback and our upgrade efforts 
rovide better service. 

A T A A V AILABILITY 

CFIS 2.0 is freely available at http://chemyang.ccnu.edu. 
n/ccb/server/ACFIS2/ . The datasets used for the perfor- 
ance validation are provided in the Supplementary data. 
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