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ABSTRACT 

Microbiome studies have become routine in biomed-
ical, agricultural and environmental sciences with di-
ver se aims, including diver sity profiling, functional
characterization, and translational applications. The
resulting complex, often multi-omics datasets de-
mand powerful, yet user -friendly bioinf ormatics tools
to reveal key patterns, important biomarkers, and
potential activities. Here we introduce Microbiome-
Analyst 2.0 to support comprehensive statistics, vi-
sualization, functional interpretation, and integrative
analysis of data outputs commonly generated from
microbiome studies. Compared to the previous ver-
sion, MicrobiomeAnalyst 2.0 features three new mod-
ules: (i) a Raw Data Processing module for amplicon
data processing and taxonomy annotation that con-
nects directly with the Marker Data Profiling mod-
ule for downstream statistical analysis; (ii) a Micro-
biome Metabolomics Profiling module to help dissect
associations between community compositions and
metabolic activities through joint analysis of paired
microbiome and metabolomics datasets; and (iii)
a Statistical Meta-Analysis module to help identify
consistent signatures by integrating datasets across
multiple studies. Other important improvements in-
clude added support for multi-factor differential anal-
ysis and interactive visualizations for popular graph-
ical outputs, updated methods for functional predic-
tion and correlation analysis, and expanded taxon set
libraries based on the latest literature. These new fea-
tures are demonstrated using a multi-omics dataset
from a recent type 1 diabetes study. MicrobiomeAn-
alyst 2.0 is freely available at microbiomeanalyst.ca. 
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INTRODUCTION 

Over the past decade, microbiome studies have experienced
tremendous gr owth acr oss di v erse disciplines with a clear
trend towar ds le v eraging multiple omics technologies for
comprehensi v e characterization of the underlying commu-
nities ( 1 , 2 ). The microbiome is now considered a key player
in human health and sustainable agriculture ( 3–6 ). Power-
ful bioinformatics pipelines and tools have been continu-
ously de v eloped and updated to help anal yze increasingl y
complex datasets ( 7–10 ). Version 1.0 of MicrobiomeAn-
alyst was de v eloped to provide a user-friendly w e b-based
platf orm f or bench r esear chers to perform compr ehensi v e
exploratory analysis on common abundance profiles and
taxonomic signatures ( 11 ). Since its release in 2017, Mi-
crobiomeAnalyst has been continuously updated based on
user feedback, with a detailed analysis protocol published in
2020 ( 12 ). Based on Google Analytics, the MicrobiomeAn-
ff.xia@mcgill.ca 

cids Research. 
ns Attribution License (http: // creati v ecommons.org / licenses / by / 4.0 / ), which 
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Figure 1. Workflow of MicrobiomeAnalyst 2.0. 
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lyst public server has processed > 125 000 jobs submitted 

rom > 30 000 users worldwide during the past 12 months. 
Microbiome data analysis is conceptually similar to other 

mics data analysis workflows, consisting of three typical 
tages: raw da ta processing, sta tistical analysis, and func- 
ional interpretation. In practice, howe v er, microbiome data 

hows much higher heterogeneity with particularly strong 

nter -individual and inter -popula tion dif ferences, causing 

tatistical issues including zero inflation, compositionality 

nd ov er dispersion ( 13–15 ). These characteristics hav e mo- 
ivated the development of a wide array of analysis methods, 
esulting in a landscape challenging for researchers who are 
ot experts in statistics or programming. The marker gene 
ata analysis has seen a shift from the traditional opera- 
ional tax onom y units (O TUs), w hich ar e clusters of r eads
ased on similarity thresholds, towards high-resolution am- 
licon sequence variants (ASVs) identified based on their 
nique biological sequences ( 16 ). Using ASVs not only 

educes the computational bottleneck associated with se- 
uence clustering but also facilita tes compara ti v e analy- 
is across different studies. In differential abundance anal- 
sis, se v eral benchmar k studies hav e shown inconsisten- 
ies among methods de v eloped specifically for microbiome 
a ta, and tha t common RN Aseq anal ysis methods are ro- 
ust and perform well ( 17 , 18 ). Finally, there is a growing
emand for easy-to-use yet fle xib le tools that can account 

or complex metadata as well as to support multi-omics in- 
egration for microbiome studies ( 19–21 ). 

To keep up with the progress and the evolving data 

nalysis needs arising from recent microbiome studies, 
e have made significant updates to the MicrobiomeAn- 
lyst platform, including three new modules: (i) a raw 

ata processing module for marker gene data that links 
ir ectly to downstr eam statistical analysis; (ii) a micro- 
iome metabolomics module for analysis of paired mi- 
robiome and metabolomics data, and (iii) a statistical 
eta-analysis module for multiple marker gene datasets. 
e have also made significant updates to the previous 
odules including support for complex metadata (meta- 

ata editor, continuous metadata, and multi-factor com- 
arison analysis), enhanced statistical approaches (func- 
ional prediction and correlation network analysis), new 

nteracti v e visualizations (stacked bar plot, heatmaps and 

 KEGG metabolic network), and expanded taxon set li- 
raries based on the latest literature. MicrobiomeAnalyst 
.0 is available freely at microbiomeanalyst.ca. It contains 
omprehensi v e tutorials, equipped with a dedicated user 
 orum (omicsf orum.ca). The underlying MicrobiomeAna- 
ystR package is also released ( https://github.com/xia-lab/ 

icrobiomeAnalystR ) to facilitate transparent and repro- 
ucible analysis. 

ROGRAM DESCRIPTION AND METHODS 

he workflow of MicrobiomeAnalyst 2.0 consists of four 
ain steps (Figure 1 ). It supports common input types in- 

luding raw amplicon sequencing data for 16S, 18S rRNA 

enes or internal transcribed spacer (ITS) region, a single 
ount table generated from maker gene or shotgun metage- 
omics, paired microbiome and metabolomic data tables 
r lists, multiple maker gene count tables from compati- 
le studies, or taxonomic signatures. After upload, all in- 
ut data follows the same general workflow of data pro- 
essing, method selection, and result exploration. Com- 
rehensi v e options and analysis support are available at 
ach step. In the following sections, we will focus primar- 
ly on the new or improved features introduced in version 

.0. 

mplicon sequencing data processing 

igh-throughput amplicon sequencing has yielded many 

nsights into the de v elopment and progression of human 

iseases ( 3 ). It has become a ubiquitous method to study 

he complexity and diversity of microbiomes. Compared to 

hotgun metagenomics sequencing, the marker gene sur- 
ey is both cost effective and computationally efficient, es- 
eciall y for highl y hetero geneous comm unities with many 

ow-abundant species. Raw reads need to be first pro- 
essed into OTUs or ASVs before downstream analysis. 

art/gkad407_f1.eps
https://github.com/xia-lab/MicrobiomeAnalystR
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Se v eral tools have been developed for raw data process-
ing including QIIME2 ( 22 ), Mothur ( 23 ) and D AD A2 ( 24 ).
Howe v er, command line skills are required to use these
tools. Micr obiomeAnalyst 2.0 intr oduces a new module
with an automated pipeline based on the well-established
D AD A2 workflow for processing amplicon sequencing
data. 

To start raw data processing, users can upload either
single or paired-end compressed FASTQ files (.gz or .zip)
from 16S / 18S / ITS sequencing. A metadata file in plain
text format (.txt or .csv) is also r equir ed for further down-
stream statistical analysis. The workflow includes filtering,
der eplication, sample infer ence, chimera identification, and
merging of paired-end reads. MicrobiomeAnalyst 2.0 pro-
vides a parameter selection page to allow users to tune pro-
cessing parameters based on quality control graphical out-
puts. Tax onom y annotation is based on se v eral r efer ence
databases, including SILVA (v138) ( 25 ), Greengenes (13.8)
( 26 ) and RDP (release 11.5) ( 27 ) databases for 16S sequenc-
ing, UNITE database ( 28 ) for ITS sequencing, and SILVA
(v132) ( 25 ) for 18S sequencing. When raw spectral process-
ing is complete, summary graphics and detailed processing
information are generated for individual samples. The re-
sulting ASV and tax onom y tables can be downloaded or
directly used as input for marker data profiling by clicking
the module r edir ection button. 

Integr ative analysis f or data fr om micr obiome metabolomics
studies 

Metabolites are key players in microbial communications
and interactions with their hosts. Metabolomics is increas-
ingly used in recent microbiome studies to connect micro-
bial community compositions and phenotypes at the le v el of
altered metabolic processes ( 1 , 2 , 29 ). Howe v er, integrating
high-dimensional microbiome and metabolomics data re-
mains a major challenge. To address this gap, Microbiome-
Analyst 2.0 introduces a new module to allow users to ex-
plor e r elationships between the micr obiome pr ofiles and
their metabolic products. 

Users can upload either paired abundance tables
or paired lists. For microbiome data, the input fea-
tures can be OTUs, ASVs or KEGG Orthologs (KOs). For
metabolomics data, the input features can be metabolites
(targeted metabolomics) or LC–MS peaks (untargeted
meta bolomics). For ta ble inputs, different data filtering
and normalization methods are provided based on the
input data types. MaAsLin2 ( 19 ) and limma ( 30 ) are
employed for the statistical comparisons of microbiome
and metabolomics data, respecti v ely. Both methods rely
on general linear models to determine the associations be-
tween omics features and complex metadata, with support
for covariate adjustments. List inputs are directly submitted
to the name mapping step to pr epar e for the further inte-
gration analysis. Three strategies have been implemented
for microbiome-metabolome integration –– dimensionality
reduction, metabolic network analysis, and correlation
analysis. 

Dimensionality reduction. Two robust dimensionality re-
duction methods, Procrustes analysis (PA) ( 31 ) and data
integration analysis for biomarker discovery using latent
components (DIABLO) ( 32 ), have been implemented to
re v eal ov erall patterns between paired microbiome and
metabolomics datasets. PA is an unsupervised method that
superimposes the principal components of two datasets by
rotating the axes of one dataset until the maximum similar-
ity is achie v ed. DIABLO is a supervised method that aims
to identify multi-omics components that maximally explain
the variances of individual data and their covariance to-
gether with the metadata of inter est. The corr esponding r e-
sults ar e pr esented in an interacti v e 3D scatter plot. Users
can switch between score plots, loading plots, and biplots
to visualize high-le v el trends, highlight results with differ-
ent metadata, or identify features of interest. 

Metabolic network analysis. This module aims to offer
metabolic analysis contextualized based on the taxa or KOs
present in the uploaded microbiome profiles. Users can
customize the global metabolic networks based on statis-
tically significant taxa or all taxa detected in the micro-
biome da ta. Alterna ti v ely, users can choose the generic (un-
filtered) metabolic background based on the aggregated mi-
crobial metabolic network, or its combination with the host
metabolic netw ork. Tw o well-established algorithms - mum-
michog ( 33 ) and globaltest ( 34 ) are used to perform en-
richment analysis for LC-MS peaks and other featur es, r e-
specti v ely. The r esults ar e visualized in an interacti v e global
metabolic network, in which nodes r epr esent metabolites,
edges r epr esent enzymatic r eactions, and r eactions that fall
outside of the study-specific microbial potential or KO pro-
files are greyed out. Users can click any enriched pathway
names in the table to highlight the corresponding metabo-
lites or KOs on the network. User can also directly click
a node (metabolite) in the network to view the most associ-
ated microbes displayed as a circle plot. 

Micr obiome-metabolome corr elation analysis . This mod-
ule supports statistical, model-based and integrated correla-
tion analyses. For statistical correlation analysis, the default
option is the distance-based correlation method which can
detect both linear and non-linear correlations ( 35 ). Other
options include Pearson, Kendall, and Spearman correla-
tions and their corresponding partial correlations. The re-
sults are summarized as an interacti v e heatmap. Pairwise
correlation analysis often leads to a high number of false
positi v es, making biological interpretation difficult. To ad-
dress this issue, we implemented a model-based correlation
based on > 5000 high-quality genome-scale metabolic mod-
els (GEMs) to provide a probability heatmap between mi-
crobial taxa and their metabolites ( 36 ). Finally, users can
choose to overlay the statistical and the model-based cor-
rela tion hea tmaps to integra te da ta-dri v en and knowledge-
dri v en streams of evidence. 

Statistical meta-analysis across multiple microbiome studies 

It is notoriously challenging to achie v e reproducib le fea-
tur es across differ ent microbiome studies due to the varia-
tions in experimental design, analysis methods and quan-
titati v e assessment ( 37 , 38 ). The statistical meta-analysis
module aims to provide a frame wor k for integrating data
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a
ated taxon sets. 
rom multiple maker gene studies of the same phenotypes 
o help identify robust and reproducible features. 

The data upload and processing steps are similar to the 
ingle marker data profiling workflow, with an additional 
erification step to ensure that all datasets and metadata are 
onsistent. After processing, batch correction is performed 

o adjust for potential technical variations to increase the 
omparability of different microbiome studies ( 13 ). After 
his step, three meta-analysis strategies are offered - visual 
 xploration, biomar ker meta-analysis, and di v ersity meta- 
nalysis. 

 isual explor ation. This appr oach pr o vides stack ed 

rea / bar plot and principal coordinate analysis (PCoA) 
lot to gi v e an ov ervie w of high-le v el patterns, while
till allowing users to investigate sample-level details. 
tacked area / bar plot offers a sample-le v el profiling of 
axa abundance across all datasets to better understand 

axonomic composition, while PCoA provides an ov ervie w 

f the similarities / dissimilarities in microbial composition 

etween samples and datasets. Please note that the previous 
Projection to Public Data’ module has been migrated to 

his page. 

iomar k er meta-anal ysis. The objecti v e of this approach 

s to integrate the results from differential abundance testing 

f individual datasets to identify common microbial signa- 
ures associated with phenotype(s) of interest. The method 

s composed of two parts: abundance testing in individual 
a tasets using multivaria te linear r egr ession followed by the 

ntegration of effect size using a random effects model based 

n the MMUPHin R package ( 13 ). The results are pre- 
ented in the form of a bar plot displaying the top significant 
eatures along with a detailed table containing the statistical 
ummaries of all features across individual studies. 

iversity meta-anal ysis. The a pproach integrates alpha 

nd beta di v ersity indices across datasets. Common alpha 

i v ersity indices are computed for each study, and users 
an view ratios of indices between experimental groups us- 
ng box plots and forest plots. Beta di v ersity indices are 
ntegrated by performing PCoA on common distance ma- 
rices from each study. Multiple statistical tests such as 
ERMANOVA ( 39 ), ANOSIM ( 40 ), PERMDISP ( 40 ) and 

iRKAT ( 41 ) are available to measure significances on 

he effect of phenotype on community composition. Both 

raphical summaries and detailed tables are provided for al- 
ha and beta di v ersity meta-analysis. 

ther features 

ulti-factor anal ysis f or comple x metadata. Microbiome 
atasets continue to increase in size with more complex ex- 
erimental designs, and ther efor e mor e complex metadata. 
n addition, complex metadata are especially important for 
bservational studies, where both continuous and categor- 

cal covariates are often measured. Therefore, we have in- 
ested significant effort to enhance metadata support in Mi- 
robiomeAnalyst 2.0. A metadata panel was implemented 

n the data integrity check page for users to inspect and 

dit metadata variables, including specifying whether they 
re continuous or categorical. Users can also specify the or- 
er of group labels for ca tegorical metada ta. A multi-factor 
omparison tool based on general linear models was imple- 
ented using the MaAsLin2 R package ( 19 ). Users spec- 

fy their primary metadata of interest, and can include co- 
ariates such as age, sex or technical factors to adjust for. 
ovariates can be modelled as either fixed or random ef- 

ects. A linear model containing the primary metadata and 

ll covariates are fit to each feature, and then statistics are 
xtracted from the model for the primary metadata. 

mpr oved corr elation analysis and function pr ediction. Sev- 
ral functions for marker gene profiling have been updated 

ased on recent de v elopments in the field. MicrobiomeAn- 
lyst 2.0 now offers se v en correlation methods for users to 

xplore microbial relationships, including the recent Sparse 
stima tion of Correla tions among Microbiomes (SECOM) 
ethod which provides measures of both linear and nonlin- 

ar relationships between microbes ( 10 ). For prediction of 
unctional capacities from 16S rRNA gene abundance table, 
he previous version offered PICRUSt and Tax4Fun based 

n GreenGenes and SILVA tax onom y annotation, respec- 
i v ely. In v ersion 2.0, we hav e upda ted the da tabase for PI-
RUSt to support annotation of > 200 000 OTUs against 
7000 KOs. Tax4Fun2 is also available to allow users to 

redict potential functions directly from ASV sequences. 

nhanced visualizations for lar g e data explor ation. We 
mplemented interacti v e plots for stacked bar / area plots 
nd clustering heatmaps – those features are among the 
ost fr equent r equests from our users for visual explo- 

ation of large datasets. Both mouse-over and zoom-in ef- 
ects are supported to allow users to get details of the 
ea tures / pa tterns of interest. Another improvement is the 
pdated KEGG metabolic network (Release 105.0) for im- 
roved visualization and functional analysis. 

xpanded taxon set libr aries . The Taxon Set Enrichment 
nalysis (TSEA) module was created to allow r esear chers 

o identify taxonomic signatures characterized by their 
hared functions or associations with specific phenotypes 
o facilita te da ta interpreta tion and hypothesis genera tion. 
SEA performs hypergeometric tests against a taxon set li- 
rary of interest to detect the most frequently represented 

ignatures from an input list of microbial features. In ver- 
ion 2.0, we have integra ted da ta from popular databases 
uch as gutMDisorder ( 42 ), GIMICA ( 43 ) and MiMeDB 

 44 ), and expanded the list of phenotypic features to in- 
lude 102 microbiome fea tures associa ted with immune re- 
ponses , 77 microbiome-metabolite associations , 55 taxon 

ets associated with cancer, and 137 taxon sets associated 

ith drug treatments. To improve the statistical power and 

iological relevance, we further consolidated taxon sets with 

t least four or more microbial members. The taxon set li- 
raries now contain a total of 611 host-intrinsic features, 
96 host-extrinsic features associated with diet, medication, 
nd lifestyle, 500 associated with environmental features, 
nd > 700 single-nucleotide polymorphism (SNP) associ- 
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Figur e 2. ( A ) DIABL O result visualized in 3D scatter plot. ( B ) Sta tistical correla tion results over lay ed with model-based correlation heatmap. Features 
passed the threshold of adjusted P -value 0.1 were used in this analysis. The color gradients indicate the statistical correlations and asterisks show the 
sta tistically significant correla tion filtered b y raw P -v alue 0.05. Diamonds indica te the correla tions wer e also pr edicted by the GEM-based pr ediction 
models. ( C ) P athway enrichment r esults based on KOs and meta bolites (yellow: tyrosine meta bolism; green: vitamin B6 meta bolism; blue: alanine, aspartate 
and glutamate metabolism). ( D ) Circle plot with a detailed table belo w sho wing the most related taxa for the selected meta bolite, p yridoxamine . The result 
was obtained by clicking the corresponding node. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Case study 

To showcase the new features in MicrobiomeAnalyst 2.0, we
le v eraged a recent study on type 1 diabetes (T1D) ( 29 ). T1D
is an autoimmune disorder that induces beta cell destruc-
tion and insulin deficiency ( 45 ). Previous studies showed
that multiple factors can cause T1D such as genetic suscep-
tibility, viral infections, dietary components, as well as gut
microbiome ( 46 ). The objecti v e of the study was to inves-
tigate the impact of altered microbial communities in peo-
ple with and without T1D. Both 16S marker gene sequenc-
ing and LC–MS-based metabolomics were performed. Us-
ing the accession numbers provided in the original paper,
we downloaded raw sequencing data from the NCBI Se-
quence Read Archi v e (SRA) database, and the metabolite
concentration table from the MetaboLights ( 47 ). Raw data
processing was performed using our D AD A2 pipeline to get
 

ASV a bundance ta bles and tax onom y annotations. The re-
sult was submitted for functional profiling based on the pre-
diction by Tax4Fun2 ( 7 ). Two types of co-analysis were then
conducted by integrating metabolite abundance with either
the ASV count data or the KO a bundance ta ble. The genus
le v el was used as an example to explain the results presented
in Figure 2 . 

Figure 2 A shows the DIABLO biplot result presented in
a 3D scatter plot. The composition of T1D and the con-
tr ol gr oups overla p to a certain degree w hich is consis-
tent with the original pub lication. Se v eral microbial taxa,
such as Bacteroides and Alistipes, were observed to be as-
sociated with the top components. We hypothesize that
these microbes dri v e the separation between T1D and
non-diabetic subjects through certain metabolites. Detailed
microbe-metabolite corr elations ar e pr esented by the over-
layed heatmap (Figure 2 B). Only the features with an ad-

art/gkad407_f2.eps
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justed P -value < 0.1 from the comparison analysis were used
in this step. The statistical correlation was performed us-
ing the distance-based method and the AGORA database
was selected for the GEM-based prediction result. With a
significance cut-off of 0.05, we can observe that both ap-
proaches show Bacteroides significantly associated with glu-
cose , glutamine , and se v eral amino acids. Alistipes also cor-
related with a different set of amino acids , which is con-
sistent with the pattern found by DIABL O anal ysis . Al-
though Bacteroides was not identified as a biomarker in the
original paper, howe v er other studies hav e shown that it is
related to diet and is a risk factor for early autoantibody
de v elopment ( 48 ). Most studies focused on the composi-
tional change of Bacteroides species in T1D without link-
ing to function. Our analysis shows the metabolites signifi-
cantly associated with Bacteroides, suggesting it potentially
influences T1D through ‘Alanine, aspartate and glutamate
metabolism’. Figure 2 C shows the combined result of en-
richment analysis from metabolites and KOs against the
KEGG metabolic pathways using the globaltest method.
Se v eral pathways were detected by both datasets (high-
lighted in the left panel of Figure 2 C) including ‘Vitamin
B6 metabolism’, ‘Tyrosine metabolism’, and ‘Alanine, as-
partate and glutamate metabolism’. The pathways that vary
between the T1D and contr ol gr oup can be visualized within
the network with different colors for each pathway. Taxa
correlated with each metabolite can be visualized by click-
ing the corresponding node within the network. For exam-
ple, the deficiency of pyridoxamine may impair insulin sig-
naling ( 49 ). The top 10 most correlated genera such as Al-
istipes for pyridoxamine are shown in Figure 2 D. We note
that the metabolites within ‘Vitamin B6 metabolism’ were
not significantly different between the T1D and the control
groups, howe v er the enrichment analysis can still identify
the alteration at the pathway le v el. 

Implementation 

The w e b interface of MicrobiomeAnalyst 2.0 is imple-
mented based on the JavaServer Faces framework us-
ing the PrimeFaces library ( https://www.primefaces.org ,
v12.0.0). The statistical functions and graphics are im-
plemented using R (v4.2.2) and are freely available
from the GitHub repositories ( https://github.com/xia-lab/
MicrobiomeAnalystR ). To accommodate the growing user
traffic and computing demand, the system is deployed on a
Google Cloud instance load balanced with a second com-
puting node hosted at McGill Data Center. For the raw
data processing, the job submission and scheduling are
based on the Simple Linux Utility for Resource Manage-
ment (SLURM) system. 

Comparison with other tools 

Se v eral w e b-based tools hav e been de v eloped for micro-
biome data analysis. Here we compare MicrobiomeAnalyst
2.0 with four other tools as well as to the previous version.
Table 1 summarizes the main features of each tool. Popu-
lar tools dedicated to processing and archiving the raw se-
quence data, such as metagenomics rapid annotations us-
ing subsystems technology (MG-RAST) and MGnify (pre-
viously known as EBI Metagenomics) are not listed here
( 50 , 51 ). MicrobiomeAnalyst 1.0 ( 11 ) was de v eloped to ad-
dress the needs for statistical analysis by providing a com-
prehensi v e list of functions and publica tion-read y graph-
ics. Similar tools include analysis of microbial population
structures (VAMPS), Namco and MIAN ( 52–54 ). Howe v er,
only the newly built Namco has a comparable number of
analysis options as MicrobiomeAnalyst 2.0. Global cata-
logue of metagenomics (gcMeta) ( 55 ) is designed to an-
notate and analyze raw data from both marker gene and
shotgun metagenomics, and is supported by a large collec-
tion of multi-omics studies, howe v er it provides very lim-
ited analysis methods and no corresponding approaches for
meta-anal ysis. Finall y, integrati v e analysis of microbiome
and metabolomics data has addressed an urgent demand
by the microbial comm unity. Overall, MicrobiomeAnal yst
2.0 is the most comprehensi v e w e b-based platform to al-
low user-friendly and streamlined microbiome data analysis
and interpretation. 

Conclusion 

MicrobiomeAnalyst 2.0 has been de v eloped to meet the
fast-evolving needs of microbiome data analysis. It pro-
vides a w e b-based platf orm f or r esear chers to easily ex-
plore and understand their data. To keep up with the lat-
est de v elopments, we hav e updated the libraries for func-
tional annotation, taxon set enrichment analysis and em-
bedded se v eral recent statistical methods to enhance the
modules de v eloped in v ersion 1.0. With the three ne w mod-
ules introduced in version 2.0, MicrobiomeAnalyst now
supports streamlined analysis for marker gene data from
raw data processing to downstream statistical and func-
tional analysis. It also enables the integrative analysis for
both paired microbiome-metabolomics datasets as well as
multiple marker gene count tables. Our case study indicates
that MicrobiomeAnalyst 2.0 can distill information from
complex datasets to reveal the potential mechanic links be-
tween microbes and metabolites associated with T1D. Due
to the internet bandwidth and large user traffic, the public
server currently limits the maximum file size to 50MB for
count tables and 100 raw sequence files per analysis session.
We recommend using the MicrobiomeAnalystR package to
r esear chers who plan to perform large-scale data analysis.
In the future, we aim to support more type of analysis, such
as single cell data analysis or casual inference within the
context of host genetics ( 56–58 ). 
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