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ABSTRACT

Microbiome studies have become routine in biomed-
ical, agricultural and environmental sciences with di-
verse aims, including diversity profiling, functional
characterization, and translational applications. The
resulting complex, often multi-omics datasets de-
mand powerful, yet user-friendly bioinformatics tools
to reveal key patterns, important biomarkers, and
potential activities. Here we introduce Microbiome-
Analyst 2.0 to support comprehensive statistics, vi-
sualization, functional interpretation, and integrative
analysis of data outputs commonly generated from
microbiome studies. Compared to the previous ver-
sion, MicrobiomeAnalyst 2.0 features three new mod-
ules: (i) a Raw Data Processing module for amplicon
data processing and taxonomy annotation that con-
nects directly with the Marker Data Profiling mod-
ule for downstream statistical analysis; (ii) a Micro-
biome Metabolomics Profiling module to help dissect
associations between community compositions and
metabolic activities through joint analysis of paired
microbiome and metabolomics datasets; and (iii)
a Statistical Meta-Analysis module to help identify
consistent signatures by integrating datasets across
multiple studies. Other important improvements in-
clude added support for multi-factor differential anal-
ysis and interactive visualizations for popular graph-
ical outputs, updated methods for functional predic-
tion and correlation analysis, and expanded taxon set
libraries based on the latest literature. These new fea-
tures are demonstrated using a multi-omics dataset
from a recent type 1 diabetes study. MicrobiomeAn-
alyst 2.0 is freely available at microbiomeanalyst.ca.
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INTRODUCTION

Over the past decade, microbiome studies have experienced
tremendous growth across diverse disciplines with a clear
trend towards leveraging multiple omics technologies for
comprehensive characterization of the underlying commu-
nities (1,2). The microbiome is now considered a key player
in human health and sustainable agriculture (3-6). Power-
ful bioinformatics pipelines and tools have been continu-
ously developed and updated to help analyze increasingly
complex datasets (7-10). Version 1.0 of MicrobiomeAn-
alyst was developed to provide a user-friendly web-based
platform for bench researchers to perform comprehensive
exploratory analysis on common abundance profiles and
taxonomic signatures (11). Since its release in 2017, Mi-
crobiomeAnalyst has been continuously updated based on
user feedback, with a detailed analysis protocol published in
2020 (12). Based on Google Analytics, the MicrobiomeAn-
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Figure 1. Workflow of MicrobiomeAnalyst 2.0.

alyst public server has processed >125 000 jobs submitted
from >30 000 users worldwide during the past 12 months.

Microbiome data analysis is conceptually similar to other
omics data analysis workflows, consisting of three typical
stages: raw data processing, statistical analysis, and func-
tional interpretation. In practice, however, microbiome data
shows much higher heterogeneity with particularly strong
inter-individual and inter-population differences, causing
statistical issues including zero inflation, compositionality
and overdispersion (13-15). These characteristics have mo-
tivated the development of a wide array of analysis methods,
resulting in a landscape challenging for researchers who are
not experts in statistics or programming. The marker gene
data analysis has seen a shift from the traditional opera-
tional taxonomy units (OTUs), which are clusters of reads
based on similarity thresholds, towards high-resolution am-
plicon sequence variants (ASVs) identified based on their
unique biological sequences (16). Using ASVs not only
reduces the computational bottleneck associated with se-
quence clustering but also facilitates comparative analy-
sis across different studies. In differential abundance anal-
ysis, several benchmark studies have shown inconsisten-
cies among methods developed specifically for microbiome
data, and that common RNAseq analysis methods are ro-
bust and perform well (17,18). Finally, there is a growing
demand for easy-to-use yet flexible tools that can account
for complex metadata as well as to support multi-omics in-
tegration for microbiome studies (19-21).

To keep up with the progress and the evolving data
analysis needs arising from recent microbiome studies,
we have made significant updates to the MicrobiomeAn-
alyst platform, including three new modules: (i) a raw
data processing module for marker gene data that links
directly to downstream statistical analysis; (il) a micro-
biome metabolomics module for analysis of paired mi-
crobiome and metabolomics data, and (iii) a statistical
meta-analysis module for multiple marker gene datasets.
We have also made significant updates to the previous
modules including support for complex metadata (meta-
data editor, continuous metadata, and multi-factor com-
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parison analysis), enhanced statistical approaches (func-
tional prediction and correlation network analysis), new
interactive visualizations (stacked bar plot, heatmaps and
a KEGG metabolic network), and expanded taxon set li-
braries based on the latest literature. MicrobiomeAnalyst
2.0 is available freely at microbiomeanalyst.ca. It contains
comprehensive tutorials, equipped with a dedicated user
forum (omicsforum.ca). The underlying MicrobiomeAna-
lystR package is also released (https://github.com/xia-lab/
MicrobiomeAnalystR) to facilitate transparent and repro-
ducible analysis.

PROGRAM DESCRIPTION AND METHODS

The workflow of MicrobiomeAnalyst 2.0 consists of four
main steps (Figure 1). It supports common input types in-
cluding raw amplicon sequencing data for 16S, 18S rRNA
genes or internal transcribed spacer (ITS) region, a single
count table generated from maker gene or shotgun metage-
nomics, paired microbiome and metabolomic data tables
or lists, multiple maker gene count tables from compati-
ble studies, or taxonomic signatures. After upload, all in-
put data follows the same general workflow of data pro-
cessing, method selection, and result exploration. Com-
prehensive options and analysis support are available at
each step. In the following sections, we will focus primar-
ily on the new or improved features introduced in version
2.0.

Amplicon sequencing data processing

High-throughput amplicon sequencing has yielded many
insights into the development and progression of human
diseases (3). It has become a ubiquitous method to study
the complexity and diversity of microbiomes. Compared to
shotgun metagenomics sequencing, the marker gene sur-
vey is both cost effective and computationally efficient, es-
pecially for highly heterogeneous communities with many
low-abundant species. Raw reads need to be first pro-
cessed into OTUs or ASVs before downstream analysis.
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Several tools have been developed for raw data process-
ing including QIIME2 (22), Mothur (23) and DADA?2 (24).
However, command line skills are required to use these
tools. MicrobiomeAnalyst 2.0 introduces a new module
with an automated pipeline based on the well-established
DADA2 workflow for processing amplicon sequencing
data.

To start raw data processing, users can upload either
single or paired-end compressed FASTQ files (.gz or .zip)
from 16S/18S/ITS sequencing. A metadata file in plain
text format (.txt or .csv) is also required for further down-
stream statistical analysis. The workflow includes filtering,
dereplication, sample inference, chimera identification, and
merging of paired-end reads. MicrobiomeAnalyst 2.0 pro-
vides a parameter selection page to allow users to tune pro-
cessing parameters based on quality control graphical out-
puts. Taxonomy annotation is based on several reference
databases, including SILVA (v138) (25), Greengenes (13.8)
(26) and RDP (release 11.5) (27) databases for 16S sequenc-
ing, UNITE database (28) for ITS sequencing, and SILVA
(v132) (25) for 18S sequencing. When raw spectral process-
ing is complete, summary graphics and detailed processing
information are generated for individual samples. The re-
sulting ASV and taxonomy tables can be downloaded or
directly used as input for marker data profiling by clicking
the module redirection button.

Integrative analysis for data from microbiome metabolomics
studies

Metabolites are key players in microbial communications
and interactions with their hosts. Metabolomics is increas-
ingly used in recent microbiome studies to connect micro-
bial community compositions and phenotypes at the level of
altered metabolic processes (1,2,29). However, integrating
high-dimensional microbiome and metabolomics data re-
mains a major challenge. To address this gap, Microbiome-
Analyst 2.0 introduces a new module to allow users to ex-
plore relationships between the microbiome profiles and
their metabolic products.

Users can upload either paired abundance tables
or paired lists. For microbiome data, the input fea-
tures can be OTUs, ASVs or KEGG Orthologs (KOs). For
metabolomics data, the input features can be metabolites
(targeted metabolomics) or LC-MS peaks (untargeted
metabolomics). For table inputs, different data filtering
and normalization methods are provided based on the
input data types. MaAsLin2 (19) and limma (30) are
employed for the statistical comparisons of microbiome
and metabolomics data, respectively. Both methods rely
on general linear models to determine the associations be-
tween omics features and complex metadata, with support
for covariate adjustments. List inputs are directly submitted
to the name mapping step to prepare for the further inte-
gration analysis. Three strategies have been implemented
for microbiome-metabolome integration—dimensionality
reduction, metabolic network analysis, and correlation
analysis.

Dimensionality reduction. Two robust dimensionality re-
duction methods, Procrustes analysis (PA) (31) and data

integration analysis for biomarker discovery using latent
components (DIABLO) (32), have been implemented to
reveal overall patterns between paired microbiome and
metabolomics datasets. PA is an unsupervised method that
superimposes the principal components of two datasets by
rotating the axes of one dataset until the maximum similar-
ity is achieved. DIABLO is a supervised method that aims
to identify multi-omics components that maximally explain
the variances of individual data and their covariance to-
gether with the metadata of interest. The corresponding re-
sults are presented in an interactive 3D scatter plot. Users
can switch between score plots, loading plots, and biplots
to visualize high-level trends, highlight results with differ-
ent metadata, or identify features of interest.

Metabolic network analysis. This module aims to offer
metabolic analysis contextualized based on the taxa or KOs
present in the uploaded microbiome profiles. Users can
customize the global metabolic networks based on statis-
tically significant taxa or all taxa detected in the micro-
biome data. Alternatively, users can choose the generic (un-
filtered) metabolic background based on the aggregated mi-
crobial metabolic network, or its combination with the host
metabolic network. Two well-established algorithms - mum-
michog (33) and globaltest (34) are used to perform en-
richment analysis for LC-MS peaks and other features, re-
spectively. The results are visualized in an interactive global
metabolic network, in which nodes represent metabolites,
edges represent enzymatic reactions, and reactions that fall
outside of the study-specific microbial potential or KO pro-
files are greyed out. Users can click any enriched pathway
names in the table to highlight the corresponding metabo-
lites or KOs on the network. User can also directly click
a node (metabolite) in the network to view the most associ-
ated microbes displayed as a circle plot.

Microbiome-metabolome correlation analysis. This mod-
ule supports statistical, model-based and integrated correla-
tion analyses. For statistical correlation analysis, the default
option is the distance-based correlation method which can
detect both linear and non-linear correlations (35). Other
options include Pearson, Kendall, and Spearman correla-
tions and their corresponding partial correlations. The re-
sults are summarized as an interactive heatmap. Pairwise
correlation analysis often leads to a high number of false
positives, making biological interpretation difficult. To ad-
dress this issue, we implemented a model-based correlation
based on >5000 high-quality genome-scale metabolic mod-
els (GEMs) to provide a probability heatmap between mi-
crobial taxa and their metabolites (36). Finally, users can
choose to overlay the statistical and the model-based cor-
relation heatmaps to integrate data-driven and knowledge-
driven streams of evidence.

Statistical meta-analysis across multiple microbiome studies

It is notoriously challenging to achieve reproducible fea-
tures across different microbiome studies due to the varia-
tions in experimental design, analysis methods and quan-
titative assessment (37,38). The statistical meta-analysis
module aims to provide a framework for integrating data



from multiple maker gene studies of the same phenotypes
to help identify robust and reproducible features.

The data upload and processing steps are similar to the
single marker data profiling workflow, with an additional
verification step to ensure that all datasets and metadata are
consistent. After processing, batch correction is performed
to adjust for potential technical variations to increase the
comparability of different microbiome studies (13). After
this step, three meta-analysis strategies are offered - visual
exploration, biomarker meta-analysis, and diversity meta-
analysis.

Visual exploration. This approach provides stacked
area/bar plot and principal coordinate analysis (PCoA)
plot to give an overview of high-level patterns, while
still allowing users to investigate sample-level details.
Stacked area/bar plot offers a sample-level profiling of
taxa abundance across all datasets to better understand
taxonomic composition, while PCoA provides an overview
of the similarities/dissimilarities in microbial composition
between samples and datasets. Please note that the previous
‘Projection to Public Data’ module has been migrated to
this page.

Biomarker meta-analysis. The objective of this approach
is to integrate the results from differential abundance testing
of individual datasets to identify common microbial signa-
tures associated with phenotype(s) of interest. The method
is composed of two parts: abundance testing in individual
datasets using multivariate linear regression followed by the
integration of effect size using a random effects model based
on the MMUPHin R package (13). The results are pre-
sented in the form of a bar plot displaying the top significant
features along with a detailed table containing the statistical
summaries of all features across individual studies.

Diversity meta-analysis. The approach integrates alpha
and beta diversity indices across datasets. Common alpha
diversity indices are computed for each study, and users
can view ratios of indices between experimental groups us-
ing box plots and forest plots. Beta diversity indices are
integrated by performing PCoA on common distance ma-
trices from each study. Multiple statistical tests such as
PERMANOVA (39), ANOSIM (40), PERMDISP (40) and
MiRKAT (41) are available to measure significances on
the effect of phenotype on community composition. Both
graphical summaries and detailed tables are provided for al-
pha and beta diversity meta-analysis.

Other features

Multi-factor analysis for complex metadata. Microbiome
datasets continue to increase in size with more complex ex-
perimental designs, and therefore more complex metadata.
In addition, complex metadata are especially important for
observational studies, where both continuous and categor-
ical covariates are often measured. Therefore, we have in-
vested significant effort to enhance metadata support in Mi-
crobiomeAnalyst 2.0. A metadata panel was implemented
on the data integrity check page for users to inspect and
edit metadata variables, including specifying whether they
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are continuous or categorical. Users can also specify the or-
der of group labels for categorical metadata. A multi-factor
comparison tool based on general linear models was imple-
mented using the MaAsLin2 R package (19). Users spec-
ify their primary metadata of interest, and can include co-
variates such as age, sex or technical factors to adjust for.
Covariates can be modelled as either fixed or random ef-
fects. A linear model containing the primary metadata and
all covariates are fit to each feature, and then statistics are
extracted from the model for the primary metadata.

Improved correlation analysis and function prediction.  Sev-
eral functions for marker gene profiling have been updated
based on recent developments in the field. MicrobiomeAn-
alyst 2.0 now offers seven correlation methods for users to
explore microbial relationships, including the recent Sparse
Estimation of Correlations among Microbiomes (SECOM)
method which provides measures of both linear and nonlin-
ear relationships between microbes (10). For prediction of
functional capacities from 16S rRNA gene abundance table,
the previous version offered PICRUSt and Tax4Fun based
on GreenGenes and SILVA taxonomy annotation, respec-
tively. In version 2.0, we have updated the database for PI-
CRUSt to support annotation of >200 000 OTUs against
~7000 KOs. Tax4Fun2 is also available to allow users to
predict potential functions directly from ASV sequences.

Enhanced visualizations for large data exploration. We
implemented interactive plots for stacked bar/area plots
and clustering heatmaps — those features are among the
most frequent requests from our users for visual explo-
ration of large datasets. Both mouse-over and zoom-in ef-
fects are supported to allow users to get details of the
features/patterns of interest. Another improvement is the
updated KEGG metabolic network (Release 105.0) for im-
proved visualization and functional analysis.

Expanded taxon set libraries. The Taxon Set Enrichment
Analysis (TSEA) module was created to allow researchers
to identify taxonomic signatures characterized by their
shared functions or associations with specific phenotypes
to facilitate data interpretation and hypothesis generation.
TSEA performs hypergeometric tests against a taxon set li-
brary of interest to detect the most frequently represented
signatures from an input list of microbial features. In ver-
sion 2.0, we have integrated data from popular databases
such as gutMDisorder (42), GIMICA (43) and MiMeDB
(44), and expanded the list of phenotypic features to in-
clude 102 microbiome features associated with immune re-
sponses, 77 microbiome-metabolite associations, 55 taxon
sets associated with cancer, and 137 taxon sets associated
with drug treatments. To improve the statistical power and
biological relevance, we further consolidated taxon sets with
at least four or more microbial members. The taxon set li-
braries now contain a total of 611 host-intrinsic features,
696 host-extrinsic features associated with diet, medication,
and lifestyle, 500 associated with environmental features,
and >700 single-nucleotide polymorphism (SNP) associ-
ated taxon sets.
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and glutamate metabolism). (D) Circle plot with a detailed table below showing the most related taxa for the selected metabolite, pyridoxamine. The result

was obtained by clicking the corresponding node.

Case study

To showcase the new features in MicrobiomeAnalyst 2.0, we
leveraged a recent study on type 1 diabetes (T1D) (29). T1D
is an autoimmune disorder that induces beta cell destruc-
tion and insulin deficiency (45). Previous studies showed
that multiple factors can cause T1D such as genetic suscep-
tibility, viral infections, dietary components, as well as gut
microbiome (46). The objective of the study was to inves-
tigate the impact of altered microbial communities in peo-
ple with and without T1D. Both 16S marker gene sequenc-
ing and LC-MS-based metabolomics were performed. Us-
ing the accession numbers provided in the original paper,
we downloaded raw sequencing data from the NCBI Se-
quence Read Archive (SRA) database, and the metabolite
concentration table from the MetaboLights (47). Raw data
processing was performed using our DADAZ2 pipeline to get

ASYV abundance tables and taxonomy annotations. The re-
sult was submitted for functional profiling based on the pre-
diction by Tax4Fun2 (7). Two types of co-analysis were then
conducted by integrating metabolite abundance with either
the ASV count data or the KO abundance table. The genus
level was used as an example to explain the results presented
in Figure 2.

Figure 2A shows the DIABLO biplot result presented in
a 3D scatter plot. The composition of T1D and the con-
trol groups overlap to a certain degree which is consis-
tent with the original publication. Several microbial taxa,
such as Bacteroides and Alistipes, were observed to be as-
sociated with the top components. We hypothesize that
these microbes drive the separation between T1D and
non-diabetic subjects through certain metabolites. Detailed
microbe-metabolite correlations are presented by the over-
layed heatmap (Figure 2B). Only the features with an ad-
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justed P-value <0.1 from the comparison analysis were used
in this step. The statistical correlation was performed us-
ing the distance-based method and the AGORA database
was selected for the GEM-based prediction result. With a
significance cut-off of 0.05, we can observe that both ap-
proaches show Bacteroides significantly associated with glu-
cose, glutamine, and several amino acids. Alistipes also cor-
related with a different set of amino acids, which is con-
sistent with the pattern found by DIABLO analysis. Al-
though Bacteroides was not identified as a biomarker in the
original paper, however other studies have shown that it is
related to diet and is a risk factor for early autoantibody
development (48). Most studies focused on the composi-
tional change of Bacteroides species in T1D without link-
ing to function. Our analysis shows the metabolites signifi-
cantly associated with Bacteroides, suggesting it potentially
influences T1D through ‘Alanine, aspartate and glutamate
metabolism’. Figure 2C shows the combined result of en-
richment analysis from metabolites and KOs against the
KEGG metabolic pathways using the globaltest method.
Several pathways were detected by both datasets (high-
lighted in the left panel of Figure 2C) including ‘Vitamin
B6 metabolism’, ‘“Tyrosine metabolism’, and ‘Alanine, as-
partate and glutamate metabolism’. The pathways that vary
between the T1D and control group can be visualized within
the network with different colors for each pathway. Taxa
correlated with each metabolite can be visualized by click-
ing the corresponding node within the network. For exam-
ple, the deficiency of pyridoxamine may impair insulin sig-
naling (49). The top 10 most correlated genera such as A/-
istipes for pyridoxamine are shown in Figure 2D. We note
that the metabolites within ‘Vitamin B6 metabolism’ were
not significantly different between the T1D and the control
groups, however the enrichment analysis can still identify
the alteration at the pathway level.

Implementation

The web interface of MicrobiomeAnalyst 2.0 is imple-
mented based on the JavaServer Faces framework us-
ing the PrimeFaces library (https://www.primefaces.org,
v12.0.0). The statistical functions and graphics are im-
plemented using R (v4.2.2) and are freely available
from the GitHub repositories (https://github.com/xia-lab/
MicrobiomeAnalystR). To accommodate the growing user
traffic and computing demand, the system is deployed on a
Google Cloud instance load balanced with a second com-
puting node hosted at McGill Data Center. For the raw
data processing, the job submission and scheduling are
based on the Simple Linux Utility for Resource Manage-
ment (SLURM) system.

Comparison with other tools

Several web-based tools have been developed for micro-
biome data analysis. Here we compare MicrobiomeAnalyst
2.0 with four other tools as well as to the previous version.
Table 1 summarizes the main features of each tool. Popu-
lar tools dedicated to processing and archiving the raw se-
quence data, such as metagenomics rapid annotations us-
ing subsystems technology (MG-RAST) and MGnify (pre-
viously known as EBI Metagenomics) are not listed here

(50,51). MicrobiomeAnalyst 1.0 (11) was developed to ad-
dress the needs for statistical analysis by providing a com-
prehensive list of functions and publication-ready graph-
ics. Similar tools include analysis of microbial population
structures (VAMPS), Namco and MIAN (52-54). However,
only the newly built Namco has a comparable number of
analysis options as MicrobiomeAnalyst 2.0. Global cata-
logue of metagenomics (gcMeta) (55) is designed to an-
notate and analyze raw data from both marker gene and
shotgun metagenomics, and is supported by a large collec-
tion of multi-omics studies, however it provides very lim-
ited analysis methods and no corresponding approaches for
meta-analysis. Finally, integrative analysis of microbiome
and metabolomics data has addressed an urgent demand
by the microbial community. Overall, MicrobiomeAnalyst
2.0 is the most comprehensive web-based platform to al-
low user-friendly and streamlined microbiome data analysis
and interpretation.

Conclusion

MicrobiomeAnalyst 2.0 has been developed to meet the
fast-evolving needs of microbiome data analysis. It pro-
vides a web-based platform for researchers to easily ex-
plore and understand their data. To keep up with the lat-
est developments, we have updated the libraries for func-
tional annotation, taxon set enrichment analysis and em-
bedded several recent statistical methods to enhance the
modules developed in version 1.0. With the three new mod-
ules introduced in version 2.0, MicrobiomeAnalyst now
supports streamlined analysis for marker gene data from
raw data processing to downstream statistical and func-
tional analysis. It also enables the integrative analysis for
both paired microbiome-metabolomics datasets as well as
multiple marker gene count tables. Our case study indicates
that MicrobiomeAnalyst 2.0 can distill information from
complex datasets to reveal the potential mechanic links be-
tween microbes and metabolites associated with T1D. Due
to the internet bandwidth and large user traffic, the public
server currently limits the maximum file size to 5S0MB for
count tables and 100 raw sequence files per analysis session.
We recommend using the MicrobiomeAnalystR package to
researchers who plan to perform large-scale data analysis.
In the future, we aim to support more type of analysis, such
as single cell data analysis or casual inference within the
context of host genetics (56-58).
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