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ABSTRACT

Accurate and fast structure prediction of peptides of
less 40 amino acids in aqueous solution has many
biological applications, but their conformations are
pH- and salt concentration-dependent. In this work,
we present PEP-FOLD4 which goes one step beyond
many machine-learning approaches, such as Al-
phaFold2, TrRosetta and RaptorX. Adding the Debye-
Hueckel formalism for charged-charged side chain
interactions to a Mie formalism for all intramolec-
ular (backbone and side chain) interactions, PEP-
FOLD4, based on a coarse-grained representation of
the peptides, performs as well as machine-learning
methods on well-structured peptides, but displays
significant improvements for poly-charged peptides.
PEP-FOLD4 is available at http://bioserv.rpbs.univ-
paris-diderot.fr/services/PEP-FOLDA4. This server is
free and there is no login requirement.
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INTRODUCTION

The FDA (Food and Drug Administration) classifies a pep-
tide as an amino acid polymer of <40 amino acids. Pep-
tides have diverse biological functions. Several tens of thou-
sands of natural peptides have been identified (1,2), and full
genome reanalyses have indicated that probably many more
could be expressed (3). Peptides are acting as signaling enti-
ties in all domains of life, targeting receptors or interfering
with molecular interactions. Families of well known pep-
tides include hormones and their bacterial mimetics (4), an-
timicrobial peptides for host defence (5), or immunomodu-
latory peptides with a perspective of vaccine design (6). Pep-
tides also represent a class of candidate therapeutical agents
(7), particularly to target protein-protein interactions (8).
Insilico assistance to the elucidation of peptide biological
activity or the design of peptidic candidate therapeutics re-
quires approaches to predict their 3D structure, in isolation,
or in interaction with a receptor. However, peptide struc-
ture prediction comes with some specifics: peptides can be
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highly flexible (9), or can have biological activities in specific
solvent conditions. Numerous protocols for peptide struc-
ture prediction have been reported so far, some of which
are available as online services. Approaches available for on-
line prediction of peptide structure in isolation include PEP-
StrMod (10), AlphaFold2 (11) or ColabFold (12), APPTest
(13), TrRosetta (14), RaptorX (15) and PEP-FOLD (16). It
has to be noted that all the servers, except PEPStrMod and
PEP-FOLD, are machine-learning approaches. In partic-
ular, AlphaFold2/ColabFold, TrRosetta and RaptorX are
based on protein data bank (PDB) (17) structures, multi-
ple sequence alignments and specific algorithms to learn the
backbone conformations and side chain side chain contacts.
Other servers focusing on the prediction of the peptide in-
teraction with a receptor include RosettaFlexPepDock (18),
CABS-Dock (19), HPEPDOCK (20) HADDOCK (21),
which perform flexible peptide docking, when approaches
such as pepATTRACT (22) or ClusPro Peptidock (23) per-
form rigid docking. However, not all protocols are available
online, particularly the latest AlphaFold2 derived ones (e.g.
(24)).

All these approaches have been developed for peptides in
aqueous solution, using standard conditions - neutral pH,
no ionic strength, whereas it could be desirable to consider
more exotic conditions, for instance to study peptides of the
microbiota (25), or from extremophile organisms (26). Fi-
nally, the conformational ensemble of biologically intrin-
sically disordered peptides (IDPs), such as amyloid-p as-
sociated to Alzheimer’s disease and human islet amyloid
polypeptide associated to type II diabetes, is difficult to as-
sess as IDPs have flat free energy surfaces, and have different
behaviors depending on solvent conditions (27).

Here, we introduce the PEP-FOLD4 server which incor-
porates the latest improvements to the SOPEP force field.
PEP-FOLD first version (28) was based on sSOPEP1, tightly
derived from the coarse grained OPEP force field (29), and
was applicable to linear peptides no longer than 30 amino
acids. PEP-FOLD second version (30) introduced the pos-
sibility to model peptides cyclized by disulfide bonds. PEP-
FOLD third version (16) proposed a faster and improved
sampling to generate 3D models to up to 50 amino acids,
and considered building structures of peptides in interac-
tion with a receptor. Here, we thoroughly revisit the force
field. First, PEP-FOLD4 relies on a new formalism to treat
the non-bonded interactions, making it more discriminant
to identify relevant conformations among non-native con-
formations. Second, it embeds a Debye-Hueckel formalism
to treat pH conditions and salt concentration variations.
To illustrate the prediction performance, we focus on the
best five models obtained by PEP-FOLD4, AlphaFold2 and
TrRosetta.

MATERIALS AND METHODS
PEP-FOLD principles

A flowchart of PEP-FOLDA4 is presented in Figure 1. PEP-
FOLD is a fragment-based approach adapted to the pre-
diction of the structure for peptides. Unlike most fragment-
based approaches for structure prediction, it does not rely
on a description of fragments as combinations of ¢/ an-
gles, but on shape descriptors of fragments of 4 consecutive

Nucleic Acids Research, 2023, Vol. 51, Web Server issue W433

INPUT
Amino acid sequence

PROCESSING

i. SA prediction Psi-blast

libSVYM
4= sopEP
== Rotamers

ii. 3D generation
coarse grained builder

Debye-Hueckel contribution
coarse grained to all atoms

iii.Clustering, sorting

OUTPUT
Models
5 best models, archive of all models
| SA profile
| Clusters

Figure 1. Flowchart of PEP-FOLDA4.

amino acids (see (31)). A peptide is considered as a series
of 4 amino acid fragments, overlapping by 3 amino acids, a
process that can be described using Hidden Markov Mod-
els (HMM)(see (31)). The best model we identified consists
of 27 structural alphabet (SA) states, each associated with
a specific distribution of the shape descriptors and a tran-
sition matrix of size 27x27 describing the probability that a
given state is followed by another one. Given such a model,
it is possible to decode a 3D structure as a series of states. To
predict the structure from the sequence, PEP-FOLD relies
on a two-state process: (i) the prediction of the probabili-
ties of each state at each position in the sequence (SA pro-
file) from an amino acid profile built from a psi-blast (32)
search against a collection of sequences, and (ii) the gen-
eration of the 3D models from the SA profile. The former
relies on a support vector machine (SVM) that has been de-
scribed previously (33). The latter is itself decomposed in
two steps. First, algorithms of the HMM paradigm such
as the forward-backtrack algorithm are used to sample the
conformational space described by the SA profile (see (16)),
and produce series of states or trajectories likely to repre-
sent the structure, each describing one conformation in the
HMM model space. Second, given a trajectory, prototype
fragments associated with each of the states are then assem-
bled rigidly to progressively build the structure of the com-
plete peptide, starting from any amino acid in the sequence
(34). Once a complete structure is generated, it is submit-
ted to a Monte Carlo refinement in which we substitute
fragments randomly. Both the initial structure generation
and the Monte Carlo simulation are driven by the implicit
solvent sSOPEP force field, which has two specific features.
(1) It is a coarse grained force field, with only one bead to
represent each side chain but preserving all the backbone
atoms except Ha. (ii) Backbone hydrogen bond potential
is specific. It does not rely on Van der Waals and electro-
static interactions, but on the introduction of two-body and



W434 Nucleic Acids Research, 2023, Vol. 51, Web Server issue

four-body potentials which may allow hydrogen bond for-
mation and the formation of helix, parallel or anti-parallel
B-sheets.

PEP-FOLD4 evolutions

In earlier versions of PEP-FOLD, the sOPEP force field was
not accurate enough to correctly rank alone the best mod-
els. It was supplemented by tools such as Appolo (35) to
perform additional re-ranking. PEP-FOLD4 comes with a
new improved force field version which does not require Ap-
polo any longer.

sOPEP is expressed as a sum of local, nonbonded and
hydrogen-bond (H-bond) terms:

E= Elocal + Enonbond@d + EH—bond (1)

In PEP-FOLD4, two major improvements are brought to
the evaluation of the non-bonded interactions. The first is
the replacement of the Van der Waals formalism by a Mie
formalism. The second is the use of a Debye-Hueckel for-
malism to assess the interactions between the charges, which
leads to:

Enonbonded = EMie + Epy (2)

Mie formulation for non-bonded interactions. The hetero-
geneity of the bead sizes among side chains and backbone
atoms made it difficult to find a good balance between at-
traction and repulsion using the Van der Waals formula-
tion. PEP-FOLD4 comes with a generalized formulation of
the Van der Waals formalism to any positive values for the
exponents instead of only 6-12. We now compute the non-
bonded interactions between all backbone and side chain
particles using the Mie formulation (36):

ro n ro m
m ij n ij
Ericij = €ij X - - - (3)
n—m rij n—m V,'j

where €;; is the potential depth and r[O/ is the position of the
potential minimum function of atomic types for i and j. The
combination of exponents, n and m, gives the relationship
between the position of the potential minimum (+°) and the
position where it is zero (gR0):

gR0 = (%)ﬁ ro (4)

The reader can refer to (37) for the parameter values.

Introduction of a Debye—Hueckel formalism. To take into
account charge variation and pH dependence, we consider
a Debye-Hueckel contribution, defined as:

Epn, = (qi xq; * eIy /(e(ryy) * 1)) (5

¢; and g; correspond to the charge of particles i and j, j > i
+ 1, respectively. rj is the distance between the particles, the
charges being positioned at the center of the beads repre-
senting the side chains, /py is the Debye length that depends
of the ionic strength of the solvent, and e(r;) is the dielectric
constant that depends on the distance between the charges.
It is evaluated as:

(r) = D, — (D, — D,)(s*r* + Dysr + D,)e™" /D, (6)

where D,, is the dielectric constant of water, D, is the di-
electric constant inside a protein, and s is the slope of the
sigmoidal function. Note that since charges are associated
with particles of heterogeneous sizes, we have considered
shifting the energy curve to have energy values compati-
ble with those of the Mie formulation. More details about
practical implementation and parameter setup can be found
in (38).

WEB SERVER IMPLEMENTATION
Input

The main input consists of the sequence in FASTA format
limited to 40 amino acids. Optional parameters are related
to

e 3D model generation: parameters are related to the al-
gorithm used to sample the SA profile, the number (100
or 200) of models generated, the Monte Carlo proce-
dure, and the pseudo-random generator seed. The SA
profile sampler can be either the forward-backtrack, or
the taboo sampling (see (16) algorithms). For the taboo
sampling the size of the fragments to avoid redundancy
can vary from 3 to 5. Note that for sequences of <12
amino acids, the taboo sampling is not recommended.
For the Monte Carlo simulation, it is possible to inval-
idate it setting the number of steps to 0, and the tem-
perature can be chosen between 700 K and 370 K. The
pseudo-random generator seed gives control over repro-
ducibility: the same seed associated with the same com-
bination of parameters will return the same results. Thus,
varying the seed can result in increasing the sampling over
different job submissions.

e Debye-Hueckel contribution: it is possible to switch
on/off its use, and specify the pH (varying from 2 to 13
by 0.5 increments) and the ionic strength in NaCl con-
centration from 1 to 1000 mM. It is possible to use the
zwitterionic forms of the peptides or block their extrem-
ities by acetyl and N-methyl. The default pKa values of
3.6, 4.2, 6, 10.5 and 12.5 for ASP, GLU, HIS, LYS and
ARG residues can be superseded in a specific manner for
each residue in a sequence. This provides a mean to take
into account pK, variations due to amino acid local en-
vironment and conformations, if necessary using on-line
servers (see (38).)

Output

The main output consists of the models generated, clustered
and ranked according to the SOPEP energy. The best five
models can be explored interactively online using a wrapper
around the NGL javascript viewer (39). Various molecular
representations, surface representations, and color schemes
are proposed, which can be mixed and matched, and the sur-
face transparency can be adjusted. Another output consists
of the SA profile that can be downloaded and re-used to
generate new series of models (see the input section), skip-
ping the SA profile generation step. Typical PEP-FOLD4
execution times are only a few minutes, depending on server
load.



Figure 2. Structure predictions of the 14-residue peptide RGKWTYN-
GITYEGR (PDB: 1j4m). Gray: NMR, green: PEP-FOLDA4, orange: Tr-
Rosetta, blue: AlphaFold2. Side chains at two positions are depicted to
show the structural agreement of the models.

USE-CASES
Well-structured peptides

Three recent articles compared the performance of PEP-
FOLD with respect to high performance methods. Using
NMR structures and a dataset of 588 peptides between 10
and 40 amino acids, including membrane-associated pep-
tides, soluble peptides and disulfide-rich peptides, it was
found that AlphaFold2 performed at least as well as PEP-
FOLD version 3 using our 2016 parameters and TrRosetta,
without considering pH variations and membrane presence
(40).

Next, we compared the predictions of PEP-FOLD4, Tr-
Rosetta and AlphaFold2 on (i) 15 peptides between 8 and
35 amino acids and pH from 4.3 to 7 for which a PDB
structure is present and (ii) 4 peptides between 11 and 38
amino acids without nuclear magnetic resonance (NMR)
structures, but with a topological description in literature.
The three methods performed similarly on a total 17 pep-
tides, but TrRosetta and AlphaFold2 failed on two peptides
of 10 and 17 amino acids which are described as B-hairpins
experimentally(38).

A third article revealed that the predictions of PEP-
FOLD4 free of Debye-Hueckel formalism are better, in par-
ticular with respect to the prediction of small B-targets,
than those of APPTest and RaptorX.(37) As an example
of the quality of the PEP-FOLD4 model, we show in Fig-
ure 2 the superposition of the models predicted by PEP-
FOLD4, AlphaFold2 and TrRosetta on a 14-residue pep-
tide, which showed by NMR experiments a percentage of
B-hairpin structure higher than 70% (41). Note that PEP-
FOLD relying on a coarse grained model, side chain po-
sitioning is just performed to return all-atom models. Side
chain conformations are not optimized. They are just set in
the most frequent rotameric state observed in protein struc-
tures (42), which we found a convenient starting point for
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Figure 3. pH-dependent conformations of (E)15 and (K)15 peptides by
PEP-FOLDA4.

peptides. Users are free to re-optimize them using standard
side-chain positioning programs.

Poly-charged peptides

We recently compared the performances of PEP-FOLDA4,
TrRosetta and AlphaFold2 on six poly-charged peptides,
(EK)15, (EK)S, (H)30, (K)15, (E)15 and (R)25 at pH
varying between 3 and 13 (38), and at a salt concen-
tration of 1 mM. The presence of a-helix in these pep-
tides is pH-dependent, which cannot be captured by pH-
independent methods such as TrRosetta and AlphaFold2.
Circular dichroism (CD) experiments revealed that at pH
7.4, the secondary structure contents of these peptides are
dominated by B-turns and random coil, which was faith-
fully reproduced by PEP-FOLD4. In contrast, both Tr-
Rosetta and AlphaFold2 predicted a very high helical con-
tent with high confidence (LDDT (local distance difference
test) metric >80% for all amino acids). A particularly strik-
ing result is that the CD «-helix content of (K)15 and (E)15
change inversely with the pH. This feature was fully repro-
duced by PEP-FOLDA4, and Figure 3 shows the predicted
conformations of(E)15 at pH 2.0 and 7.4, and (K)15 at pH
3.6 and 13.

CONCLUSIONS AND PERSPECTIVES

PEP-FOLD4 comes with innovative features to identify
relevant conformations among non-native conformations,
and the treatment of pH and ionic strength variations. The
server interface is, we hope, simple to use and allows on-
line exploration of the generated models. A limitation is the
length of the sequences. Indeed, with the recent progress
of deep learning for well-structured peptides of more than
40 amino acids, PEP-FOLD4 despite being able to gener-
ate native or near-native models by using a coarse grained
model and a de novo approach cannot presently generate
models as accurate as AlphaFold2 and TrRosetta results.
Another limitation is the possibility to grow peptides on the
vicinity of a protein receptor, as in PEP-FOLD3. The im-
pact of both Mie and Debye-Hueckel formalisms on such
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Figure 4. Best five models of the 16-residue (RS)8 peptide at pH 7. (A) PEP-FOLD4, (B) TrRosetta, (C) AlphaFold2.

a facility is presently unknown and this aspect is under in-
vestigation. Many servers including AlphaFold2 offer this
possibility for standard pH and ionic strength. However,
PEP-FOLDA4 server strong point is undoubtedly its Debye-
Hueckel formalism, to the best of our knowledge, a unique
feature today.

While the structures of many peptides are resolved by
NMR in aqueous solution, other conditions such as 30%
trifluoroethanol, sodium dodecyl sulfate micelles, and phos-
phate buffer are often encountered. We expect to include
these conditions in future versions. Also, it has to be noted
that treating properly poly-charged peptides is a first step
toward predicting the conformational ensemble of IDPs
which often contain a high percentage of titratable amino
acids. For example, the 16-residue N-terminus of amyloid-
B peptide consists of DAEFRHDSGYEVHHQK,(27) the
24-residue histatin 5 peptide consists of DSHAKRHH-
GYKRKFHEKHHSHRGY (43), and the 24-residue RS
peptide consists of residues (RS)8 in its C-terminal (44). As
an example, Figure 4 shows that the predicted (RS)8 con-
formations are diverse and random coil with PEP-FOLD4
(Figure 4A), and lack diversity with TrRosetta (single he-
lix, Figure 4B) and AlphaFold2 (fully extended, Figure 4C).
More work is, however, needed to make PEP-FOLD4 suit-
able for IDPs (44).

Overall, PEP-FOLDA4 is a first step toward a unified pep-
tide structure prediction approach in varied conditions.

DATA AVAILABILITY

PEP-FOLD4 is available at http://bioserv.rpbs.univparis-
diderot.fr/services/PEP-FOLD4. This server is free and
there is no login requirement.
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