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Th éorique, Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, 13 rue Pierre et Marie Curie, 
75005 Paris, France and 

4 Institut Universitaire de France (IUF), 75005 Paris, France 

Received February 24, 2023; Revised April 12, 2023; Editorial Decision April 24, 2023; Accepted April 28, 2023 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ABSTRACT 

Accurate and fast structure prediction of peptides of
less 40 amino acids in aqueous solution has many
biological applications, but their conformations are
pH- and salt concentration-dependent. In this work,
we present PEP-FOLD4 which goes one step beyond
many machine-learning approac hes, suc h as Al-
phaFold2, TrRosetta and RaptorX. Adding the Debye-
Huec kel f ormalism f or c harged-c harged side chain
interactions to a Mie formalism for all intramolec-
ular (backbone and side chain) interactions, PEP-
FOLD4, based on a coarse-grained representation of
the peptides, performs as well as machine-learning
methods on well-structured peptides, but displays
significant impr o vements f or pol y-char ged peptides.
PEP-FOLD4 is available at http://bioserv.rpbs.univ- 
paris-diderot.fr/ services/ PEP-FOLD4 . This server is
free and there is no login requirement. 
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GRAPHICAL ABSTRACT 

INTRODUCTION 

The FDA (Food and Drug Administration) classifies a pep-
tide as an amino acid polymer of < 40 amino acids. Pep-
tides hav e di v erse biological functions. Se v eral tens of thou-
sands of natural peptides have been identified ( 1 , 2 ), and full
genome reanalyses have indicated that probably many more
could be expressed ( 3 ). Peptides are acting as signaling enti-
ties in all domains of life, targeting receptors or interfering
with molecular interactions. Families of well known pep-
tides include hormones and their bacterial mimetics ( 4 ), an-
timicrobial peptides for host defence ( 5 ), or immunomodu-
latory peptides with a perspecti v e of vaccine design ( 6 ). Pep-
tides also r epr esent a class of candidate therapeutical agents
( 7 ), particularly to target pr otein-pr otein interactions ( 8 ). 

In silico assistance to the elucidation of peptide biological
activity or the design of peptidic candidate therapeutics re-
quires approaches to predict their 3D structure, in isolation,
or in interaction with a receptor. Howe v er, peptide struc-
tur e pr ediction comes with some specifics: peptides can be
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Figure 1. Flowchart of PEP-FOLD4. 
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ighly fle xib le ( 9 ), or can hav e biological acti vities in specific
olvent conditions. Numerous protocols for peptide struc- 
ur e pr ediction have been r eported so far, some of which
re available as online services. Approaches available for on- 
ine prediction of peptide structure in isolation include PEP- 
trMod ( 10 ), AlphaFold2 ( 11 ) or ColabFold ( 12 ), APPTest
 13 ), TrRosetta ( 14 ), RaptorX ( 15 ) and PEP-FOLD ( 16 ). It
as to be noted that all the serv ers, e xcept PEPStrMod and 

EP-FOLD, are machine-learning approaches. In partic- 
lar, AlphaF old2 / ColabF old, TrRosetta and RaptorX are 
ased on protein data bank (PDB) ( 17 ) structures, multi- 
le sequence alignments and specific algorithms to learn the 
ackbone conformations and side chain side chain contacts. 
ther servers focusing on the prediction of the peptide in- 

eraction with a receptor include RosettaFlexPepDock ( 18 ), 
ABS-Dock ( 19 ), HPEPDOCK ( 20 ) HADDOCK ( 21 ), 
hich perform fle xib le peptide docking, when approaches 

uch as pepATTRACT ( 22 ) or ClusPro Peptidock ( 23 ) per- 
orm rigid docking. Howe v er, not all protocols are available 
nline, particularly the latest AlphaFold2 deri v ed ones (e.g. 
 24 )). 

All these approaches have been developed for peptides in 

queous solution, using standard conditions - neutral pH, 
o ionic str ength, wher eas it could be desirable to consider 
ore exotic conditions, for instance to study peptides of the 
icrobiota ( 25 ), or from extremophile organisms ( 26 ). Fi- 

ally, the conformational ensemble of biologically intrin- 
ically disordered peptides (IDPs), such as amyloid- � as- 
ociated to Alzheimer’s disease and human islet amyloid 

olypeptide associated to type II diabetes, is difficult to as- 
ess as IDPs have flat free energy surfaces, and have different 
ehaviors depending on solvent conditions ( 27 ). 
Here, we introduce the PEP-FOLD4 server which incor- 

orates the latest improvements to the sOPEP force field. 
EP-FOLD first version ( 28 ) was based on sOPEP1, tightly 

eri v ed from the coarse grained OPEP force field ( 29 ), and
as applicable to linear peptides no longer than 30 amino 

cids. PEP-FOLD second version ( 30 ) introduced the pos- 
ibility to model peptides cyclized by disulfide bonds. PEP- 
OLD thir d v ersion ( 16 ) proposed a faster and improved 

ampling to generate 3D models to up to 50 amino acids, 
nd considered building structures of peptides in interac- 
ion with a r eceptor. Her e, we thoroughly r evisit the for ce
eld. First, PEP-FOLD4 relies on a new formalism to treat 
he non-bonded interactions, making it more discriminant 
o identify relevant conformations among non-nati v e con- 
ormations. Second, it embeds a Debye-Hueckel formalism 

o treat pH conditions and salt concentration variations. 
o illustrate the prediction perf ormance, we f ocus on the 
est fiv e models obtained by PEP-FOLD4, AlphaFold2 and 

rRosetta. 

ATERIALS AND METHODS 

EP-FOLD principles 

 flowchart of PEP-FOLD4 is presented in Figure 1 . PEP- 
OLD is a fragment-based approach adapted to the pre- 
iction of the structure for peptides. Unlike most fragment- 
ased approaches for structure prediction, it does not rely 

n a description of fragments as combinations of �/ � an- 
les, but on shape descriptors of fragments of 4 consecuti v e 
mino acids (see ( 31 )). A peptide is considered as a series 
f 4 amino acid fr agments, over lapping by 3 amino acids, a 

rocess that can be described using Hidden Markov Mod- 
ls (HMM)(see ( 31 )). The best model we identified consists 
f 27 structural alphabet (SA) states, each associated with 

 specific distribution of the shape descriptors and a tran- 
ition matrix of size 27x27 describing the probability that a 

i v en state is followed by another one. Gi v en such a model,
t is possible to decode a 3D structure as a series of states. To
redict the structure from the sequence, PEP-FOLD relies 
n a two-state process: (i) the prediction of the probabili- 
ies of each state at each position in the sequence (SA pro- 
le) from an amino acid profile built from a psi-blast ( 32 ) 
earch against a collection of sequences, and (ii) the gen- 
ration of the 3D models from the SA profile. The former 
elies on a support vector machine (SVM) that has been de- 
cribed previously ( 33 ). The latter is itself decomposed in 

wo steps. First, algorithms of the HMM paradigm such 

s the forward-backtrack algorithm are used to sample the 
onformational space described by the SA profile (see ( 16 )), 
nd produce series of states or trajectories likely to r epr e- 
ent the structure, each describing one conformation in the 
MM model space. Second, gi v en a trajectory, prototype 

ragments associated with each of the states are then assem- 
led rigidly to progressi v ely build the structure of the com- 
lete peptide, starting from any amino acid in the sequence 
 34 ). Once a complete structure is generated, it is submit- 
ed to a Monte Carlo refinement in which we substitute 
r agments r andomly. Both the initial structure generation 

nd the Monte Carlo simulation are dri v en by the implicit 
olvent sOPEP force field, which has two specific features. 
i) It is a coarse grained force field, with only one bead to 

 epr esent each side chain but preserving all the backbone 
toms except H �. (ii) Backbone hydrogen bond potential 
s specific. It does not rely on Van der Waals and electro- 
tatic interactions, but on the introduction of two-body and 



W434 Nucleic Acids Research, 2023, Vol. 51, Web Server issue 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

load. 
four-body potentials which may allow hydrogen bond for-
mation and the formation of helix, parallel or anti-parallel
�-sheets. 

PEP-FOLD4 evolutions 

In earlier versions of PEP-FOLD, the sOPEP force field was
not accurate enough to correctly rank alone the best mod-
els. It was supplemented by tools such as Appolo ( 35 ) to
perform additional re-ranking. PEP-FOLD4 comes with a
ne w improv ed force field v ersion which does not r equir e Ap-
polo any longer. 

sOPEP is expressed as a sum of local, nonbonded and
hydrogen-bond (H-bond) terms: 

E = E local + E no nbo nded + E H−bond (1)

In PEP-FOLD4, two major improvements are brought to
the evaluation of the non-bonded interactions. The first is
the replacement of the Van der Waals formalism by a Mie
formalism. The second is the use of a Debye-Hueckel for-
malism to assess the interactions between the charges, which
leads to: 

E no nbo nded = E Mie + E DH 

(2)

Mie formulation for non-bonded inter actions . The hetero-
geneity of the bead sizes among side chains and backbone
atoms made it difficult to find a good balance between at-
traction and repulsion using the Van der Waals formula-
tion. PEP-FOLD4 comes with a generalized formulation of
the Van der Waals formalism to any positi v e values for the
exponents instead of only 6-12. We now compute the non-
bonded interactions between all backbone and side chain
particles using the Mie formulation ( 36 ): 

E Mie i j = εi j ×
[ 

m 

n − m 

( 

r 0 i j 

r i j 

) n 

− n 

n − m 

( 

r 0 i j 

r i j 

) m 

] 

(3)

where �ij is the potential depth and r 0 i j is the position of the
potential minimum function of atomic types for i and j . The
combination of exponents, n and m , gi v es the relationship
between the position of the potential minimum ( r 0 ) and the
position where it is zero ( gR 0): 

gR0 = 

(m 

n 

) 1 
n −m 

r 0 (4)

The reader can refer to ( 37 ) for the parameter values. 

Introduction of a Deby e–Huec k el f ormalism. To take into
account charge variation and pH dependence, we consider
a Debye-Hueckel contribution, defined as: 

E DH i j = ( q i ∗ q j ∗ e −r i j / l DH ) / ( ε( r i j ) ∗ r i j ) (5)

q i and q j correspond to the charge of particles i and j , j > i
+ 1, respecti v ely. r ij is the distance between the particles, the
charges being positioned at the center of the beads r epr e-
senting the side chains, l DH 

is the Debye length that depends
of the ionic strength of the solvent, and �( r ij ) is the dielectric
constant that depends on the distance between the charges.
It is evaluated as: 

ε( r ) = D w 

− ( D w 

− D p )( s 2 r 2 + D p sr + D p ) e −sr /D p (6)
where D w 

is the dielectric constant of water, D p is the di-
electric constant inside a protein, and s is the slope of the
sigmoidal function. Note that since charges are associated
with particles of heterogeneous sizes, we have considered
shifting the energy curve to have energy values compati-
ble with those of the Mie formulation. More details about
practical implementation and parameter setup can be found
in ( 38 ). 

WEB SERVER IMPLEMENT A TION 

Input 

The main input consists of the sequence in FASTA format
limited to 40 amino acids. Optional parameters are related
to 

• 3D model gener ation: par ameters ar e r elated to the al-
gorithm used to sample the SA profile, the number (100
or 200) of models generated, the Monte Carlo proce-
dure, and the pseudo-r andom gener ator seed. The SA
profile sampler can be either the forward-backtrack, or
the taboo sampling (see ( 16 ) algorithms). For the taboo
sampling the size of the fragments to avoid redundancy
can vary from 3 to 5. Note that for sequences of < 12
amino acids, the taboo sampling is not recommended.
For the Monte Carlo simulation, it is possible to inval-
idate it setting the number of steps to 0, and the tem-
perature can be chosen between 700 K and 370 K. The
pseudo-r andom gener ator seed gi v es control ov er repro-
ducibility: the same seed associated with the same com-
bination of parameters will return the same results. Thus,
varying the seed can result in increasing the sampling over
different job submissions. 

• Debye-Hueckel contribution: it is possible to switch
on / off its use, and specify the pH (varying from 2 to 13
by 0.5 increments) and the ionic strength in NaCl con-
centration from 1 to 1000 mM. It is possible to use the
zwitterionic forms of the peptides or block their extrem-
ities by acetyl and N-methyl. The default pKa values of
3.6, 4.2, 6, 10.5 and 12.5 for ASP, GLU, HIS, LYS and
ARG residues can be superseded in a specific manner for
each residue in a sequence. This provides a mean to take
into account p K a variations due to amino acid local en-
vironment and conformations, if necessary using on-line
servers (see ( 38 ).) 

Output 

The main output consists of the models generated, clustered
and ranked according to the sOPEP energy. The best five
models can be explored interactively online using a wrapper
around the NGL javascript viewer ( 39 ). Various molecular
r epr esentations, surface r epr esentations, and color schemes
are proposed, which can be mixed and matched, and the sur-
face transparency can be adjusted. Another output consists
of the SA profile that can be downloaded and re-used to
generate new series of models (see the input section), skip-
ping the SA profile generation step. Typical PEP-FOLD4
execution times are only a few minutes, depending on server
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Figure 2. Structur e pr edictions of the 14-r esidue peptide RGKWTYN- 
GITYEGR (PDB: 1j4m). Gray: NMR, green: PEP-FOLD4, orange: Tr- 
Rosetta, blue: AlphaFold2. Side chains at two positions are depicted to 
show the structural agreement of the models. 
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Figure 3. pH-dependent conformations of (E)15 and (K)15 peptides by 
PEP-FOLD4. 
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SE-CASES 

ell-structured peptides 

hr ee r ecent articles compar ed the performance of PEP- 
OLD with respect to high performance methods. Using 

MR structures and a dataset of 588 peptides between 10 

nd 40 amino acids, including membrane-associated pep- 
ides, soluble peptides and disulfide-rich peptides, it was 
ound that AlphaFold2 performed at least as well as PEP- 
OLD version 3 using our 2016 parameters and TrRosetta, 
ithout considering pH variations and membrane presence 

 40 ). 
Next, we compared the predictions of PEP-FOLD4, Tr- 

osetta and AlphaFold2 on (i) 15 peptides between 8 and 

5 amino acids and pH from 4.3 to 7 for which a PDB 

tructur e is pr esent and (ii) 4 peptides between 11 and 38 

mino acids without nuclear magnetic resonance (NMR) 
tructures, but with a topological description in literature. 
he three methods performed similarly on a total 17 pep- 

ides, but TrRosetta and AlphaFold2 failed on two peptides 
f 10 and 17 amino acids which are described as �-hairpins 
xperimentally( 38 ). 

A thir d article re v ealed that the predictions of PEP- 
OLD4 free of Debye-Hueckel formalism are better, in par- 

icular with respect to the prediction of small �-targets, 
han those of APPTest and RaptorX.( 37 ) As an example 
f the quality of the PEP-FOLD4 model, we show in Fig- 
re 2 the superposition of the models predicted by PEP- 
OLD4, AlphaFold2 and TrRosetta on a 14-residue pep- 

ide, which showed by NMR experiments a percentage of 
-hairpin structure higher than 70% ( 41 ). Note that PEP- 
OLD relying on a coarse grained model, side chain po- 

itioning is just performed to return all-atom models. Side 
hain conformations are not optimized. They are just set in 

he most frequent rotameric state observed in protein struc- 
ures ( 42 ), which we found a convenient starting point for 
eptides. Users ar e fr ee to r e-optimize them using standard 

ide-chain positioning programs. 

oly-charged peptides 

e recently compared the performances of PEP-FOLD4, 
rRosetta and AlphaFold2 on six poly-charged peptides, 
EK)15, (EK)5, (H)30, (K)15, (E)15 and (R)25 at pH 

arying between 3 and 13 ( 38 ), and at a salt concen- 
ration of 1 mM. The presence of �-helix in these pep- 
ides is pH-dependent, which cannot be captured by pH- 
ndependent methods such as TrRosetta and AlphaFold2. 
ircular dichroism (CD) experiments re v ealed tha t a t pH 

.4, the secondary structure contents of these peptides are 
ominated by �-turns and random coil, which was faith- 
ully reproduced by PEP-FOLD4. In contrast, both Tr- 
osetta and AlphaFold2 predicted a very high helical con- 

ent with high confidence (LDDT (local distance difference 
est) metric > 80% for all amino acids). A particularly strik- 
ng result is that the CD �-helix content of (K)15 and (E)15 

hange inversely with the pH. This feature was fully repro- 
uced by PEP-FOLD4, and Figure 3 shows the predicted 

onformations of(E)15 at pH 2.0 and 7.4, and (K)15 at pH 

.6 and 13. 

ONCLUSIONS AND PERSPECTIVES 

EP-FOLD4 comes with innovati v e features to identify 

elevant conformations among non-nati v e conformations, 
nd the treatment of pH and ionic strength variations. The 
erver interface is, we hope, simple to use and allows on- 
ine exploration of the generated models. A limitation is the 
ength of the sequences. Indeed, with the recent progress 
f deep learning for well-structured peptides of more than 

0 amino acids, PEP-FOLD4 despite being able to gener- 
 te na ti v e or near-nati v e models by using a coarse grained
odel and a de novo approach cannot presently generate 
odels as accurate as AlphaFold2 and TrRosetta results. 
nother limitation is the possibility to grow peptides on the 

icinity of a protein receptor, as in PEP-FOLD3. The im- 
act of both Mie and Debye–Hueckel formalisms on such 



W436 Nucleic Acids Research, 2023, Vol. 51, Web Server issue 

Figure 4. Best fiv e models of the 16-residue (RS)8 peptide at pH 7. ( A ) PEP-FOLD4, ( B ) TrRosetta, ( C ) AlphaFold2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a facility is presently unknown and this aspect is under in-
v estigation. Many serv ers including AlphaFold2 offer this
possibility for standard pH and ionic strength. Howe v er,
PEP-FOLD4 server strong point is undoubtedly its Debye-
Hueckel formalism, to the best of our knowledge, a unique
feature today. 

While the structures of many peptides ar e r esolved by
NMR in aqueous solution, other conditions such as 30%
trifluoroethanol, sodium dodecyl sulfate micelles, and phos-
pha te buf fer ar e often encounter ed. We expect to include
these conditions in future versions. Also, it has to be noted
tha t trea ting properl y pol y-charged peptides is a first step
toward predicting the conformational ensemble of IDPs
which often contain a high percentage of titratable amino
acids. For example, the 16-residue N-terminus of amyloid-
� peptide consists of DAEFRHDSGYEVHHQK,( 27 ) the
24-residue histatin 5 peptide consists of DSHAKRHH-
GYKRKFHEKHHSHRGY ( 43 ), and the 24-residue RS
peptide consists of residues (RS)8 in its C-terminal ( 44 ). As
an example, Figure 4 shows that the predicted (RS)8 con-
formations are di v erse and random coil with PEP-FOLD4
(Figure 4 A), and lack di v ersity with TrRosetta (single he-
lix, Figure 4 B) and AlphaFold2 (fully extended, Figure 4 C).
More wor k is, howe v er, needed to make PEP-FOLD4 suit-
able for IDPs ( 44 ). 

Overall, PEP-FOLD4 is a first step toward a unified pep-
tide structure prediction approach in varied conditions. 

DA T A A V AILABILITY 

PEP-FOLD4 is available at http://bioserv.rpbs.univparis- 
diderot.fr/services/PEP-FOLD4 . This server is free and
there is no login requirement. 
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