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BSTRACT 

he cellular immune system, which is a critical 
omponent of human immunity, uses T cell recep- 
ors (TCRs) to recognize antigenic proteins in the 

orm of peptides presented by major histocompat- 
bility complex (MHC) proteins. Accurate definition 

f the structural basis of TCRs and their engage- 
ent of peptide–MHCs can pr o vide major insights 

nto normal and aberrant immunity, and can help 

uide the design of vaccines and immunotherapeu- 
ics. Given the limited amount of e xperimentall y de- 
ermined TCR–peptide–MHC structures and the vast 
mount of TCRs within each individual as well as 

ntig enic targ ets, accurate computational modeling 

pproaches are needed. Here, we report a major 
pdate to our web server, TCRmodel, which was 

riginall y de veloped to model unbound TCRs from 

equence, to now model TCR–peptide–MHC com- 
lexes from sequence, utilizing several adaptations 

f AlphaFold. This method, named TCRmodel2, al- 
o ws user s to submit sequences through an easy-to- 
se interface and shows similar or greater accuracy 

han AlphaFold and other methods to model TCR–
eptide–MHC complexes based on benchmarking. It 
an generate models of complexes in 15 minutes, and 

utput models are pr o vided with confidence scores 

nd an integrated molecular viewer. TCRmodel2 is 

vailable at https://tcrmodel.ibbr.umd.edu . 
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RAPHICAL ABSTRACT 

NTRODUCTION 

 cell immunity is a key component of immune protec- 
ion from viruses and pathogens ( 1 ), such as SARS-CoV-2 

 2 ). Additionally, T cells and T cell r eceptors (T CRs) of-
en play a role in autoimmunity ( 3 , 4 ), and TCRs are in-
reasingly being utilized as therapeutics in clinical and pre- 
linical studies ( 5–7 ). Understanding the structural basis 
f T CR r ecognition of peptide–major histocompatibility 

omplex (pMHC) targets can yield major mechanistic in- 
ights ( 3 , 4 , 8 , 9 ) and provide the means to perform structure-
ased design of TCR specificity or affinity ( 10 , 11 ). While 
e v eral hundred high-resolution structures of TCR–pMHC 

omple xes hav e been determined e xperimentally and are 
vailable in the Protein Data Bank (PDB) ( 12 ), this r epr e-
ents only a small fraction of TCRs [with millions of TCRs 
n each human r epertoir e ( 13 )], and high-throughput se- 
uencing and screening technologies are enabling large sets 
erce@umd.edu 

ids Research. 
s Attribution License (http: // creati v ecommons.org / licenses / by / 4.0 / ), which 
e original work is properly cited. 
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of antigen-specific TCR sequences to be routinely identi-
fied ( 14 ). The capability to perform accurate computational
modeling of TCRs and TCR–pMHC complex structures
would be highly useful, effecti v ely bridging the gap between
TCR sequence and 3D structural information. Such algo-
rithms and models could be used for structur e-based T CR
design, or generalizable prediction of ‘unseen’ TCR epi-
topes, which r epr esents a major challenge in computational
biology ( 15 ) that may potentially be addressed through
structure-based methods ( 16 , 17 ). 

Se v eral algorithms hav e been de v eloped to perform mod-
eling of unbound TCRs ( 18–20 ), and TCR–pMHC com-
plexes ( 21–23 ) from sequence or unbound structures, pri-
marily through template-based modeling combined with
energy minimization. These approaches can often be unsuc-
cessful due to limitations of templates coupled with the flex-
ibility and di v ersity of TCR complementarity-determining
region (CDR) loops, and the wide range of TCR–pMHC
docking orientations. Recently, deep learning-based struc-
tur e pr ediction methods, and particularly AlphaFold ( 24 ),
hav e prov en remar kab ly successful in pr edicting structur es
of monomeric proteins ( 24 ) and multimeric proteins ( 25 )
from sequence. While our own initial benchmarking of Al-
phaFold for modeling T CR–pMHC complex es showed lim-
ited success (2 out of 14 cases with near-nati v e model accu-
racy) ( 26 ), its success in some cases showed that it is possi-
ble in principle to ‘fold and dock’ T CR–pMHC complex es
with deep learning, and a recent study demonstrated that
AlphaFold can be fine-tuned and optimized to model TCR–
pMHC complexes ( 16 ). 

Here, we describe the de v elopment of TCRmodel2, which
is a major update of our previously released TCR model-
ing w e b server, TCRmodel ( 18 ). While the pre vious v ersion
used template-based modeling and Rosetta ( 27 ) to gener-
ate unbound TCR structural models from sequence, TCR-
model2 uses AlphaFold to generate models of TCR–pMHC
comple xes, with se v eral modifications to improve its speed
and accuracy. TCRmodel2 can also generate models of un-
bound TCRs using the same AlphaFold-based frame wor k.
Based on benchmarking, TCRmodel2 generates models of
T CR–pMHC complex es with gr eater accuracy than Al-
phaFold and pre viously de v eloped TCR–pMHC modeling
methods, and it is over 10 times faster than the default
AlphaFold protocol. To enable progress in structural im-
m unolo gy, we provide TCRmodel2 to the community as
a w e b server, with user-friendl y features such as m ultiple
sequence input options, interacti v e structural visualization
and model confidence scores. 

MATERIALS AND METHODS 

TCRmodel2 algorithm 

The TCRmodel2 modeling pipeline was generated through
se v eral modifications of the AlphaFold pipeline and
database, as noted below. These changes were separately
implemented in the AlphaFold v2.2 and v2.3 codes (both
downloaded from the AlphaFold GitHub repository), to
enab le comparati v e performance of the two AlphaFold

models in the context of TCRmodel2. 
Multiple sequence alignment database. Gi v en that the Al-
phaFold feature selection stage includes sequence searches
against large databases containing a large variety of pro-
teins for each input chain, we reduced the databases to
contain prospecti v e TCR and MHC hits to speed up the
multiple sequence alignment (MSA) building step. The Al-
phaFold pipeline was run with four r epr esentati v e human
and murine TCR and MHC sequences, using the reduced
database option. All hits from the TCR and MHC sequence
searches against the Small BFD [Big Fantastic Database
( 24 )], UniRef90 and UniProt AlphaFold databases were
combined into new database files in FASTA format, re-
placing the full database files. The resultant databases have
sizes of 450 (Small BFD), 43 638 (UniRef90) and 145 999
(UniProt) sequences, with the sequences collecti v ely com-
prising 52 096 T CR-r elated sequences and 137 991 MHC-
related sequences. 

TCR templates. The AlphaFold template search, which
utilizes an MSA built from the input sequence to search
against PDB sequences to identify templates for each input
chain ( 24 ), was found to identify non-TCR imm uno glob-
ulin structures as templates for TCR chains, versus TCR
chain structures with closer identity to the input sequence
(e.g. a human TCR with the same germline gene). As this
was due to the use of the MSA in the query against the
PDB sequences (which is useful when distant orthologs may
need to be detected as candidate templates), we modified
AlphaFold to only utilize the input TCR sequences rather
than MSAs to search against the PDB. 

Peptide–MHC structur al templates . AlphaFold was mod-
ified to utilize pMHC complex structures as input tem-
plates by r epr esenting peptide and MHC as a single struc-
ture, with a chain break between peptide and MHC gi v en
by a residue index shift as used by ColabFold ( 28 ). Tem-
pla te fea turiza tion of pMHC templa tes from PDB struc-
tures was conducted using the AlphaFold modification de-
scribed by Motmaen et al. ( 29 ). To obtain pMHC templates,
pMHC structures with resolution ≤3.5 Å were obtained
from TCR3d. For Class II pMHC structures, peptides were
trimmed to include the 9-mer core sequence plus one flank-
ing residue at each terminus, and due to di v ersity of length
and conformation of Class I peptides, additional unbound
Class I pMHC structures within the resolution cutoff were
identified from the PDB and included in the set. To ac-
count for peptide structural heterogeneity while limiting re-
dundancy, up to two structures with identical pMHC se-
quences wer e r etained. In total, our template set includes
884 Class I and 44 Class II pMHC template structures. At
the peptide–MHC template selection stage, structures con-
taining peptides with the same length as query sequence are
identified, and ranked first by MHC similarity score and
then by peptide similarity score if multiple identical MHCs
are identified. Similarity scores for MHC and peptide se-
quences are calculated using BLOSUM62 in the Bio.Align
Biopython package ( 30 ), with a large gap penalty ( −100) for
peptide alignments to ensure ungapped peptide alignments
and template scoring. 
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odel scoring. For TCRmodel2 models, we provide 
lphaFold-generated confidence scores, specifically the av- 

rage predicted local difference distance test (pLDDT, cor- 
esponding to local structur al accur acy), predicted TM 

pTM, corresponding to overall topological accuracy) 
core, ipTM (pTM calculated for interchain interfaces) 
core and model confidence, which is a linear combination 

f pTM and ipTM (0.2 × pTM + 0.8 × ipTM) ( 25 ). Ad- 
itionally, for TCR–pMHC complex models we modified 

lphaFold to calculate TCR–pMHC ipTM, which corre- 
ponds to the interface pTM score calculated only across 
he interface between TCR and pMHC, versus the default 
pTM, which is calculated between all chains (e.g. peptide– 

HC, TCR � and � chains). The TCR–pMHC ipTM 

core is calculated by modifying the chain IDs of the TCR– 

MHC complex predictions in AlphaFold at the time of 
pTM calculation to r epr esent the T CR and pMHC each 

s one chain. TCRmodel2 also calculates average pLDDT 

core for each of the CDR3 loops, to enable users to specif- 
cally view the confidence le v els of the CDR3 loops in the

odels. 

eb server implementation 

he TCRmodel2 w e b server interface was developed 

sing Python3 and the Flask frame wor k ( https://flask. 
alletsprojects.com/ ). Users can choose to model a TCR– 

MHC complex (Class I or Class II) or an unbound TCR. 
n both run modes, the users can either provide the target 
equences or build the sequences on the fly by selecting the 
arget TCR or MHC genes. The latter option makes possi- 
le the modeling of sequences by the information collected 

rom databases such as VDJdb ( 31 ) without the need to 

anually build TCR and MHC sequences. As an additional 
ption, users can input TCR, peptide and MHC sequences 

n a FASTA format file. Input T CR sequences ar e pr epro- 
essed using the ANARCI tool ( 2 ) to identify and keep only 

heir variable domains. In the case of MHC Class II model- 
ng, peptide sequences are truncated to 11-mers based on 9- 

er core sequences identified by the NetMHCIIPan pro- 
ram ( 5 ). Refer ence T CR and MHC protein sequences were 
btained from the IMGT database ( 3 ). Modeling jobs are 
ubmitted to a computing cluster with queue management 
nd processed on a dedicated GPU node. Output models 
re postprocessed by renumbering TCR sequences follow- 
ng the Aho numbering scheme ( 32 ) using ANARCI, re- 
aming chains according to TCR3d scheme and aligning 

odels to the top-ranked model by the pMHC chains as 
 efer ence. 

enchmarking 

enc hmar k assembl y. Experimentall y determined TCR– 

MHC complex structures used for benchmarking were ob- 
ained from the TCR3d database ( 33 ). TCR–pMHC com- 
lex structures were selected as benchmark cases based on 

he following criteria: (i) release date after the selected cut- 
f f da te (30 April 2018 or 30 September 2021); (ii) structure
esolution of 3.25 Å or better; (iii) no redundancy with any 

 CR–pMHC complex structur e from on or befor e the r e-
pecti v e cutoff date (30 April 2018 or 30 September 2021); 
nd (iv) no redundancy with other structures within the 
enchmark. Redundancy between a pair of complexes was 
efined as TCR V � or V � sequence identity of ≥95%, or 
 domain sequence identity of ≥92%, with a complex of 

he same class (Class I or Class II). Additionally, complexes 
ontaining peptides with modified amino acids (e.g. citrul- 
ination, lipopeptide) were excluded from the benchmark 

ets. 

ccuracy assessment. TCR–pMHC models were as- 
essed using Critical Assessment of Predicted Interactions 
CAPRI) criteria ( 34 ), which are based on a combination 

f fraction of nati v e interface residue contacts present in 

he model (Fnat), interface backbone root-mean-square 
istance (RMSD) between model and nati v e structure 
I-RMSD), and ligand RMSD between model and nati v e 
tructure (L-RMSD). Those metrics were calculated by the 
ockQ pro gram ( 35 ). Additionall y, we separatel y assessed 

he peptide–MHC interface in models using DockQ and 

APRI peptide docking criteria ( 36 ) to identify models 
ith partially or fully displaced peptides (corresponding 

o CAPRI peptide Incorrect peptide–MHC accuracy). 
ssessment of unbound TCR models was performed 

hrough calculation of backbone RMSD between model 
nd nati v e CDR loop residues after superposition of 
rame wor k residues using the Pr oFit pr ogram (v3.1). CDR 

oop residue ranges were based on TCR3d loop definitions. 

orr elations and ROC AUC calculations . Pearson correla- 
ions and their P -values were calculated with ggpubr pack- 
ge in R ( r-project.org ), and recei v er oper ating char acter-
stic (ROC) area under the curve (AUC) calculations were 
erformed using the pROC package ( 37 ) in R. 

ther modeling servers and tools 

ll other modeling tools used for comparison were run 

ith default parameters, using sequences or gene names as 
nput, as r equir ed for the r especti v e programs. TCRFle x-

ock was run using the published Rosetta-based pipeline 
 21 ), generating 1000 models per complex, with modeled 

MHC and unbound TCR generated by TCRmodel2 (with 

0 April 2018 templa te da te cutof f) as input. Imm uneSca pe
 22 ) and TCRpMHCmodels ( 23 ) were run from the respec-
i v e w e b server interfaces. TCRDock ( 16 ) was downloaded
rom GitHub and run locally; based on its pipeline, three 
CRDock models were generated per complex, and models 
ere ranked by their predicted aligned error (PAE) scores to 

elect the top model. AlphaFold v2.2 and v2.3 were run lo- 
ally with default parameters and databases for multimer 
rotein prediction, except with five models generated per 
omplex in order to compare with TCRmodel2, and a tem- 
la te da te cutof f corresponding to the benchmark set being 

ested (30 April 2018 or 30 September 2021). 

ESULTS 

CRmodel2 interface 

verview. TCRmodel2 allows users to submit TCR, pep- 
ide and MHC sequences to model TCR–pMHC complex 

tructures through its main server interface, and it is able 

https://flask.palletsprojects.com/
https://r-project.org
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to model Class I and Class II complex structures. As with
the original TCRmodel interface ( 18 ), users can enter all
sequences directly, or generate TCR and MHC sequences
from sets of human and mouse genes. As noted in the ‘Ma-
terials and Methods’ section, the TCRmodel2 algorithm
is based on an adaptation of AlphaFold2, with focused
databases of TCR and MHC sequences to speed up MSA
fea ture building, optimiza tion of the TCR templa te selec-
tion and utilization of peptide–MHC complex structures
as templates to improve AlphaFold’s peptide–MHC mod-
eling accuracy. Users have the option of performing Am-
ber relaxation of models in AlphaFold, which, as noted
in the AlphaFold publication, can improve local geome-
tries in some models (e.g. remove side chain clashes) but
will not markedly affect overall model accuracies ( 24 ). Cur-
r ently, T CRmodel2 supports models of T CR complex es
with peptide–MHC, and not T CR complex es with MHC-
like molecules CD1 and MR1, due to the small molecule
and lipid antigens presented by those molecules ( 38 ) that
are not supported in AlphaFold. 

Timing. The TCRmodel2 server TCR–pMHC modeling
jobs take ∼15 min on average, using a dedicated NVIDIA
Titan RTX GPU and generating fiv e ranked TCR–pMHC
models. Modeling of unbound T CRs r equir es ∼12 min to
generate fiv e models. Use of model relaxation for the mod-
els, which can remove clashes but does not impact over-
all model accuracy, takes ∼1–2 min (included in the above
times). In contr ast, gener ation of fiv e TCR–pMHC models
using the standard AlphaFold pipeline on the same com-
puter cluster takes ∼5–7 h, of which over 90% of the time is
spent in the feature generation and MSA building stage. 

TCRmodel2 modeling accuracy 

Initial benc hmar king. To benchmark the TCR–pMHC
modeling accuracy of TCRmodel2, we assembled a set of
nonr edundant T CR–pMHC structur es from T CR3d that
wer e r eleased after 30 April 2018, with the date cutoff se-
lected to avoid overlap with the AlphaFold (v2.2) model
training set. Nonredundancy and other criteria for bench-
mark case selection are detailed in the ‘Materials and Meth-
ods’ section. In total, we identified 48 test cases, includ-
ing 32 Class I complexes and 16 Class II complexes (Sup-
plementary Table S1). Comparison of modeling accuracy
of TCRmodel2 with the AlphaFold 2.2 model against Al-
phaFold 2.2 (Figure 1 A and Supplementary Table S1)
shows that TCRmodel2 has higher accuracy, achieving a
Medium or High CAPRI accuracy model for over 50% of
cases. For se v eral cases, such as 6R0E, 6R2L, 6ULN and
7L1D, TCRmodel2 outperformed AlphaFold 2.2, where
the latter method improperly modeled the peptide in the
interface (Supplementary Table S1), indicating that the
pMHC structure templates used by TCRmodel2 likely en-
ab led improv ed accuracy. Both AlphaFold-based meth-
ods outperformed the pre viously de v eloped template-based
TCR–pMHC modeling methods Imm uneSca pe ( 22 ) (Fig-
ure 1 A and Supplementary Table S1) and TCRpMHCmod-
els ( 23 ) (which only generates Class I TCR–pMHC models;
Supplementary Table S1 and Supplementary Figure S1),
as well as the TCR–pMHC docking algorithm, TCRFlex-
Dock ( 21 ) (Supplementary Table S1). Details regarding the
CDR loop accuracies of the TCR–pMHC models and in-
dividual accuracy metrics are provided in Supplementary
Tables S2 and S3, respectively. 

Benc hmar king updated model. After the recent release of a
new AlphaFold model and algorithm (v2.3), which includes
an updated training set of structures (up to 30 September
2021) and additional recycling iterations during modeling
( https://github.com/deepmind/alphafold/blob/main/docs/ 
technical note v2.3.0.md ), we implemented TCRmodel2
with the AlphaFold 2.3 model and pipeline to test whether
it would lead to accuracy improvement over TCRmodel2
with the AlphaFold 2.2 model. This was benchmarked
using 20 TCR–pMHC test cases with release dates after
September 2021 (to ensure no overlap with the AlphaFold
2.3 training set), which is a subset of the original bench-
mark set (14 Class I complexes and 6 Class II complexes;
Supplementary Table S4). Modeling performance of TCR-
model 2.2, TCRmodel 2.3, AlphaFold 2.2 and AlphaFold
2.3 was assessed on this r ecently r eleased benchmark
set, along with TCRDock, which is an AlphaFold-based
algorithm to model T CR–pMHC complex es that uses a
fine-tuned TCR–pMHC model and TCR–pMHC complex
templates ( 16 ) (Figure 1 B and Supplementary Table S4).
For this set, the AlphaFold and TCRmodel2 methods
were permitted to use TCR and MHC structural templates
from on or before the September 2021 da te cutof f, versus
the April 2018 templa te da te cutof f used for the larger
benchmark set. Based on this comparison, the AlphaFold
2.3 model and pipeline led to improved performance, with
AlphaFold 2.3 outperforming AlphaFold 2.2, and TCR-
model2 with the AlphaFold 2.3 model outperformed the
pr evious T CRmodel2 implementation (with the AlphaFold
2.2 model). TCRmodel2 (AlphaFold 2.3 model) achie v ed
20% success for High accuracy near-nati v e models, and
showed superior modeling accuracy on the benchmark
versus AlphaFold 2.3 and TCRDock. One case for which
TCRmodel2 and AlphaFold 2.3 outperformed TCRDock
is 7RRG (Supplementary Table S4); as that complex has
an unusual TCR docking orientation [74 

◦ TCR–pMHC
crossing angle, according to TCR3d ( 33 )], it may be
more amenable to approaches such as TCRmodel2 and
AlphaFold that do not utilize TCR–pMHC structural
templa tes for TCR–pMHC orienta tion, versus TCRDock
that uses TCR–pMHC orientations from experimentally
determined complex structures as templates. Given its
superior modeling performance, TCRmodel2 with the Al-
phaFold 2.3 model was selected for use in the TCRmodel2
server. 

Unbound TCRs. We also benchmarked the use of TCR-
model2 to model individual T CR structur es (without
pMHC), in comparison with TCRmodel (which uses struc-
tural templates to generate models) and AlphaFold (Sup-
plementary Table S6 and Supplementary Figure S2). We
found that TCRmodel2 showed commensurate accuracy
with AlphaFold (v2.2 and v2.3), while both AlphaFold
and TCRmodel2 showed superior performance to TCR-
model, particularly for CDR3 loops that are more chal-
lenging to model [as observed during the initial TCRmodel

https://github.com/deepmind/alphafold/blob/main/docs/technical_note_v2.3.0.md
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Figure 1. Success rate of TCRmodel2 and comparison with other modeling algorithms. ( A ) Modeling success comparison of AlphaFold 2.2, TCRmodel2 
with the AlphaFold 2.2 model (2.2) and Imm uneSca pe on the initial set of 48 TCR–pMHC benchmarking cases. A templa te da te cutof f of 30 April 2018 was 
applied. Due to technical issues with 8 cases (job failures, template / case overlap, or MHC allele not available), Imm uneSca pe success ra te calcula tions are 
for a subset of 40 cases. ( B ) Modeling success comparison of AlphaF old 2.2, AlphaF old 2.3, TCRmodel2 with the AlphaFold 2.2 model (2.2), TCRmodel2 
with the AlphaFold 2.3 model (2.3) and TCRDock on a recently released set of 20 TCR–pMHC structures. Modeling success denotes the success rate of 
top-ranked prediction if multiple predictions were produced by the modeling algorithm. Three predictions were generated per case by TCRDock, and were 
ranked by AlphaFold pAE score. For AlphaFold and TCRmodel runs, one prediction per deep learning model was generated, resulting in fiv e predictions 
per case, ranked by model confidence score. All models were assessed by CAPRI criteria of Incorrect, Acceptable, Medium and High accuracy. 
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enchmarking ( 18 )] yet critical for peptide recognition. 
his demonstra tes tha t deep learning-based approaches can 

vercome CDR3 loop modeling challenges faced by ap- 
roaches that are fully or mostly reliant on structural tem- 
lates, including CDR3 loop structural di v ersity, limited 

tructural templates available, and nontrivial relationships 
etween loop sequences and structures (for accurate tem- 
la te identifica tion). 

odel confidence scoring 

i v en that AlphaFold outputs model confidence estimates 
hat are generally correlated with model accuracy ( 24 , 25 ), 
e tested the use of AlphaFold confidence estimates in dis- 

rimina ting accura te versus inaccura te TCR–pMHC mod- 
ls in TCRmodel2 (Supplementary Table S6). To maximize 
he amount of data for this comparison, the models from 

CRmodel2 for the larger set of 48 cases (using TCR- 
odel2 with AlphaFold 2.2 model), and fiv e models per 

ase, wer e consider ed. Based on the ROC AUC values re- 
orted in Supplementary Table S5, the overall model con- 
dence score, which is a combination of ipTM and pTM 

cores, was found to provide very good discrimination of 
edium and High models versus Incorrect (AUC = 0.97). 
ll of the other confidence metrics tested showed similar 
UC values; thus, we focused on the model confidence score 

or further analysis. When comparing the model confidence 
core versus model accuracy (Figure 2 ), a relati v ely high 

orrelation was observed between model confidence and 

he model accuracy (denoted by DockQ score) ( r = 0.75; 
 < 0.001). Model confidence scores also showed signifi- 
ant correlations with individual accuracy metrics Fnat, L- 
MSD and I-RMSD (Supplementary Figure S3). Based on 

nalysis of model accuracy discrimination using this score 
nd our benchmark, we have determined model confidence 
core cutoffs of 0.85 and 0.49 for denoting likely accurate 
odels ( ≥0.85) or likely inaccurate models ( ≤0.49) (shown 

s dashed lines in Figure 2 ); these cutoffs can be r eferr ed
o by TCRmodel2 users to gauge the presence of a likely 

ccurate model in the set of fiv e produced by TCRmodel2. 
s also used by AlphaFold, the model confidence score is 
sed by TCRmodel2 to rank the fiv e models for each TCR– 

MHC complex. 
To further assess expected model confidence for struc- 

ur ally unchar acterized T CR–pMHC complex es, we used 

CRmodel2 to model additional Class I and Class II com- 
lexes obtained from the VDJdb database ( 31 ). The distri- 
utions of model confidence scores for Class I ( N = 414) 
nd Class II ( N = 47) complexes are shown in Supplemen- 
ary Figure S4, indicating that many complexes have top- 
anked models in the high confidence range ( ≥0.85 model 
onfidence score), with 30% of the Class I complexes and 

7% of the Class II complexes at that le v el. With a slightly
ore permissi v e threshold (model confidence ≥0.75), TCR- 
odel2 generated top-ranked models for 77% and 89% of 

he Class I and Class II complexes, respecti v ely. 

CR complex modeling examples 

s an example of TCR–pMHC complex modeling in 

CRmodel2, the server was used to predict the structure 
f a human TCR in complex with an immunodominant 
ARS-CoV-2 nucleocapsid epitope presented by the 
lass I HLA-B*07:02 MHC. The complex has not been 

tructur ally char acterized, nor hav e any comple xes with 

CRs targeting that epitope, and its sequence is from a 

et of TCRs from COVID-19 r ecover ed and unexposed 

onors reported in a recent study to bind that peptide (se- 
uence: SPRWYFYYL) and MHC ( 39 ). Of note, the TCR 

ontains the TRBV27 germline gene and a long CDR3 �
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Figure 2. Comparison of model confidence score and model accuracy. Model confidence scores of all fiv e models for 48 cases generated by TCRmodel2 
are shown in comparison with model accuracy with respect to the experimentally determined structur e [DockQ scor e ( 35 )], with each model r epr esented 
as a point and colored by CAPRI accuracy le v el. Pearson’s correlation coefficient and the associated P -value are noted on the lower right corner, and 
the orange line r epr esents the linear fit (with 95% confidence area in gray). The dashed blue line indicates a suggested ranking confidence cutoff (model 
confidence = 0.85) for identification of near-nati v e predictions, based on maximization of specificity for discriminating Incorrect and Acceptable versus 
Medium and High CAPRI accuracy models. The dashed green line indicates the lower bound of the ranking confidence score for models with Acceptable 
or higher accuracy (model confidence = 0.49). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

sequence (18 residues) containing a sequence motif
(PxxGxP); those features were found by the authors to be
associated with TCRs targeting that epitope. After input of
the germline gene and TCR CDR3 sequences reported by
the authors ( �: TRAV35 / TRAJ39, CA GQLNA GNMLTF;
�: TRBV27 / TRBJ2-4, CASAPLVGAPEAKNIQYF),
along with the epitope sequence and MHC, TCRmodel2
was used to generate fiv e structural models of the complex.
The server identified the unbound pMHC structure of the
target peptide and MHC (PDB code 7LG0) among its four
pMHC templates, and the TCR � and � chain templates
with highest sequence identities to the target sequences
(each with 89% identity) contain germline genes matching
the target ( �: 5W1V, TRAV35; �: 6VQO, TRBV27). The
top-ranked model (Figure 3 ) had a high model confidence
score (0.86), and inspection of the predicted interface with
pMHC (Figure 3 B) showed e xtensi v e interaction of the
CDR3 �, and the PxxGxP motif residues (PLVGAP) in par-
ticular, with the peptide, as well as the TRBV27-encoded
germline loops making e xtensi v e interactions with the
MHC. This provides a possible mechanistic explanation
for the observed pr efer ence for TRBV27 in TCRs targeting
that epitope, as well as the observed CDR3 � sequence
motif within the long CDR3 � loop. 

For a second example, TCRmodel2 was used to model
the structure of a Class II TCR–pMHC interaction with
a tumor-infiltrating lymphocyte TCR (named 4285-TCR1)
that was found to target the common Class II MHC al-
lele HLA-DRB1*13:01 and a p53 neoantigen with the
R175H muta tion ( 40 ). W hile structur es of Class I T CR–
pMHC complexes with the p53 neoantigen mutation
have been reported ( 41 , 42 ), no Class II structures with
tha t muta tion have yet been described. To elucida te tha t
mode of CD4 

+ T cell recognition of the p53 R175H
hotspot mutation, we input the TCR V � and V � se-
quences into the TCRmodel2 submission page, along with
a p53 peptide sequence containing the mutant residue
(TEVVR H CPHHERCSD; mutant histidine in bold), and
selected the HLA-DRA*01:01 and HLA-DRB1*13:01
MHC genes. The Results page from TCRmodel2 included
the top-ranked model of that TCR–pMHC complex (Sup-
plementary Figure S5A), which has a high confidence score
(0.88). Downloading the PDB structure of the top-ranked
model and visualization of its structure indica tes tha t the
mutant histidine residue is located directly at the interface
with the TCR, engaging both � and � chains, suggesting
a possible mechanism for the neoantigen specificity of that
TCR (Supplementary Figure S5B). 

DISCUSSION 

The TCRmodel2 w e b server provides the community with
a deep learning method to accurately model structures of
T CRs and T CR–pMHC complex es. Its T CR–pMHC ac-
curacy is higher than AlphaFold, it runs faster and with-
out the need for dedicated computing r esour ces, and it pro-
vides a submission and output interface designed for TCR
and T CR–pMHC modeling. T CRmodel2 is distinguished
from another recently reported AlphaFold-based TCR–
pMHC modeling method ( 16 ), as it does not rely on fine-
tuning of the AlphaFold model or TCR–pMHC complex
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Figure 3. Example TCR–pMHC modeling output from TCRmodel2. ( A ) A TCR–pMHC complex with a human TCR, SARS-CoV-2 nucleocapsid epitope 
and HLA-B*07:02 MHC from a recent study ( 39 ) was modeled using TCRmodel2. The visualization of the top-ranked model from the Results page is 
shown, with T CR � chain r ed, � chain orange, peptide cyan and MHC blue. ( B ) The interface between the TCR and pMHC of the top-ranked model is 
shown, with TCR, peptide and MHC chains colored as in panel (A), and shared CDR3 � motif residues (sequence: PLVGAP) colored green and shown 
as sticks. Peptide r esidues ar e shown as sticks, and TCR CDR1 � and CDR2 � residues interacting with the MHC and / or peptide are shown as sticks and 
cir cled. Structur e visualized using PyMOL (Schr ̈odinger, Inc.). 
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emplates, in addition to its availability as a w e b serv er v er-
us a command-line program. 

Future possible developments of TCRmodel2 can ad- 
ress improving the accuracy of confidence estimates, and 

ncreasing the overall success rate, including the genera- 
ion of near-nati v e (CAPRI High criteria) accuracy models, 
hrough additional optimizations of the modeling pipeline. 
dditional testing and de v elopments may focus on applica- 

ion of TCRmodel2 for related complexes of interest, such 

s TCR-mimic antibodies ( 43 ), which engage pMHC tar- 
ets and are becoming increasingly of interest as therapeu- 
ics. Modeling of such complexes would likely entail lim- 
ted, if any, adaptations to the current TCRmodel2 frame- 
ork, including a possible expansion of the MSA database 

o optimize antibody sequence hits. Gi v en the recent utiliza- 
ion deep learning structur e pr ediction methods to design 

ew proteins and interactions ( 44 , 45 ), it may be possible 
hat TCRmodel2 or similar methods can be used in future 
tudies to design and optimize TCRs to target antigens of 
nterest. 

A T A A V AILABILITY 

he TCRmodel2 code is available on GitHub ( https:// 
ithub.com/piercelab/tcrmodel2 ) and Zenodo ( https://doi. 
rg/10.5281/zenodo.7853278 ). Structural models from the 
enchmarking reported in this manuscript are available 
rom the authors upon request. 
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