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ABSTRACT

Non-self epitopes, whether originated from foreign
substances or somatic mutations, trigger immune
responses when presented by major histocompat-
ibility complex (MHC) molecules and recognized
by T cells. Identification of immunogenically active
neoepitopes has significant implications in cancer
and virus medicine. However, current methods are
mostly limited to predicting physical binding of mu-
tant peptides and MHCs. We previously developed a
deep-learning based model, DeepNeo, to identify im-
munogenic neoepitopes by capturing the structural
properties of peptide-MHC pairs with T cell reactivity.
Here, we upgraded our DeepNeo model with up-to-
date training data. The upgraded model (DeepNeo-
v2) was improved in evaluation metrics and showed
prediction score distribution that better fits known
neoantigen behavior. The immunogenic neoantigen
prediction can be conducted at https://deepneo.net.
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INTRODUCTION

Major histocompatibility complex (MHC) is a cell sur-
face protein that can present processed peptides to immune
cells. Neoantigens derived from somatic mutations in can-
cer cells stimulate anticancer immune responses when they
form a complex with MHCs that T cells recognize as for-
eign objects. Therefore, neoantigens are regarded as po-
tential targets for personalized cancer vaccines, and the
amount of neoantigens is used as a biomarker for cancer im-
munotherapy such as immune checkpoint blockade (ICB)
(1-3). However, current methods of neoantigen identifica-
tion are mostly restricted to predicting physical binding of
peptides and MHCs, which is necessary but not sufficient
for inducing immune responses (4-6). This prompted us to
develop DeepNeo, a pipeline integrating DeepNeo-mhc (7),
a tool for predicting peptide-MHC binding, and DeepNeo-
ter (8), a tool for predicting T cell reactivity of a pMHC
complex. DeepNeo predicts immunogenic neoantigens for
MHC 1, which are presented to CD8 + T cells, and MHC
II, which are presented to CD4 + T cells, in human and
mouse. The model accuracy was extensively validated us-
ing different datasets and have shown signals of neoantigen
depletion in both ICB therapy cohort and treatment naive
TCGA samples. Here, we upgraded DeepNeo to enhance
reliability and developed a web server for user convenience.

MATERIAL AND METHODS
Data collection

Additional data used in constructing the models was ob-
tained from IEDB as of August 30th, 2022 (9). All data were
filtered using the following criteria. First, the length of pep-
tides must be 9 for MHC I and 15 for MHC II. Second,
four-digit HLA type must be present. Third, for DeepNeo-
ter, only experimental data measuring Interferon-y (IFN-
v) release upon pMHC challenge was used. Fourth, if con-
tradictory results were collected from different sources, the
pMHC was labelled as positive. If a pMHC can bind or trig-
ger immune response under one condition but not under
another, we concluded that the pair are reactive.
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For DeepNeo-tcr (MHC 1) training set, we kept all pairs
with positive labels (N = 8148) and randomly selected
11001 pairs with negative labels so that the model could be
trained without severe data imbalance. We also expanded
the DeepNeo-tcr (MHC II) training set to have a significant
proportion of the DeepNeo-tcr (MHC 1) positive binding
set by adding 1705 randomly selected pairs with negative
MHC binding data. As a result, 340987 data for DeepNeo-
mhc (MHC 1), 106908 for DeepNeo-mhc (MHC II), 19149
for DeepNeo-tcr (MHC 1), and 12913 for DeepNeo-tcr
(MHC II) model were used for learning each model. For
each model, the data was randomly divided into test set and
training set, which was further divided into training and val-
idation sets using three-fold cross validation.

Upgrades in MHC binding model

DeepNeo-mhce has been upgraded to predict neoantigens
for MHC I and II for human and mouse alleles. As the
role of CD4 in cancer immunity is being actively researched,
there has been increasing demands for prediction of MHC
II epitopes (10). Moreover, many tools only cover human
alleles, but prediction on mouse alleles is also important in
experimental settings. To bridge the gap, we expanded the
model to predict MHC I and II epitopes for human and
mouse alleles.

The architecture of the model is identical to DeepNeo-
mhc-vl model but trained with a larger dataset, leading to
different set of hyperparameters yielding best performance.
To briefly summarize, the model is generated with convo-
lutional neural network, with two convolution layers to
learn features from MHC and peptide using rectified lin-
ear (ReLu) function, a fully connected layer, and a sigmoid
layer that transforms prediction values within range of 0
and 1.

Upgrades in T cell reactivity model

In the upgraded DeepNeo-tcr model, the activation
functions of the two convolution layers were changed.
DeepNeo-ter-vl uses ReLU activation function. Because
the function converts all negative weights to zero, it is
prone to dying ReLU problem (11). Although this property
can prevent overfitting as sparsity inducing regularization
method, DeepNeo-tcr has relatively small dimensions with
large filter size, requiring all the nodes to have weights. Thus,
we replaced ReLLU function with linear function to include
all feature importance of the convolution layers. Similar to
DeepNeo-mhc, hyperparameter tuning was conducted to
determine the set of weights that maximizes model perfor-
mance.

Prediction scores above the threshold (0.5) are defined as
positive calls for both MHC binding and T cell reactivity
model. In evaluation of the external validation set, which
requires consideration of both models, the scores were mul-
tiplied to assess model performance.

Conversion of deep learning framework

We developed DeepNeo-v2 based on Keras (https://github.
com/fchollet/keras) framework v2.4.0 in Python 3.7 en-
vironment, whereas DeepNeo-vl was implemented with
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Theano library (https://github.com/Theano/Theano) v1.0.4
on Python 2.7, which are no longer actively maintained.
The architecture of the model was transferred with a minor
change in the loss function; negative log-likelihood (NLL)
was used in DeepNeo-v1l and binary cross entropy (BCE)
was used in DeepNeo-v2. The two loss functions are of-
ten used interchangeably (12) because they have the same
concept, but the BCE function makes computation more
straightforward and have lower probability of numerical in-
stabilities. Finally, the codes were optimized to reduce pre-
diction runtime to be efficiently implemented in the web-
server (Supplementary Table 1). The runtime for DeepNeo-
vl and -v2 was calculated as the mean of ten trials per input
data size.

Implementation of web server

DeepNeo-v2 utilizes the Web Server Gateway Interface
(WSGTI) as the gateway interface between Apache2 HTTP
server (https://httpd.apache.org) and Flask web appli-
cation framework  (https://flask.palletsprojects.com/).
The front-end of the web-application is written
with HTMLS5S (https://www.w3.org/TR/html5/),
CSS (https://www.w3.org/Style/CSS/), JavaScript
(https://javascript.com) and jQuery (https://jquery.com).

RESULTS
Model evaluation

DeepNeo integrates DeepNeo-mhc and DeepNeo-ter to
predict peptide-MHC binding and T cell reactivity, respec-
tively. Both models have been upgraded since the pub-
lication as additional data were obtained. Compared to
DeepNeo-vl models, data size for generating MHC bind-
ing model increased by 7.8 fold and T cell reactivity
model by 1.2 fold. With the updated dataset, the mod-
els were reconstructed with different hyperparameters and
architectures to obtain best performance. Then, the pre-
dictive performance was compared to that of DeepNeo-
vl. Both DeepNeo-mhc-v2 and DeepNeo-tcr-v2 achieved
higher ROC AUC than previous versions for both classes
(Table 1, Figure 1a,b). Although PR AUC and F1 scores
could not be directly compared due to different data la-
bel composition, the prediction score distribution indicated
that the upgraded models can predict with higher discrimi-
natory power.

Next, we evaluated DeepNeo in predicting external val-
idation sets for MHC I and II, which were not included in
model construction, in comparison with other prediction
tools. More specifically, PRIME (13), a tool for predicting
human MHC I immunogenic neoantigens, and NetMHC-
pan (4), MixMHCpred (5), tools for predicting MHC 1
and I neoantigens without regard to immunogenicity, were
included. For MHC 1, in vitro assay data measuring im-
munogenicity of pMHC-I complex was retrieved from the
PRIME publication (13). DeepNeo-v2 outperformed other
tools as well as DeepNeo-vl in ROC AUC as well as
other statistical metrics (Figure 1c, Supplementary Figure
Sla). Moreover, a total of 812 independent immunogenicity
data of pMHC-II was retrieved from multiple publications
(14-18). Here, DeepNeo-v2 also exhibited superior power
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Table 1. Measures of model performance. The accuracy metrics including ROC AUC, PR AUC, and F1 scores are compared between DeepNeo-v1 and

DeepNeo-v2
DeepNeo-vl DeepNeo-v2
Data(Positive %) ROC AUC PR AUC F1 score Data (Positive %) ROC AUC PR AUC F1 score
MHC I 57173 (24.9) 0.875 0.456 0.766 340987 (75.0) 0.969 0.969 0.948
MHC I1 - - - - 106908 (57.2) 0.882 0.874 0.827
TCR 1 12128 (50) 0.778 0.781 0.727 19149 (42.6) 0.805 0.713 0.687
TCR II 6260 (50) 0.805 0.798 0.751 12913 (42.4) 0.826 0.756 0.717
A B
1.0 1.0 1
0.8 1 0.8
0.6 1 0.6
0.4 1 0.4 4
0.2 4 0.2 4
= DeepNeo-mhc-v2 (MHC |) AUC=0.97 = DeepNeo-mhc-v2 (MHC I11) AUC=0.88
0.0 = DeepNeo-tcr-v2 (MHC 1) AUC=0.81 004 = DeepNeo-tcr-v2 (MHC Il) AUC=0.89
0.0 02 0.4 0.6 0.8 1.0 0.0 02 0.4 0.6 0.8 1.0
C External validation (MHC 1) D External validation (MHC I1)
1.0 1.0 1
0.8 1 0.8 1
0.6 0.6
0.4 1 0.4 1
DeepNeo-v2 AUC=0.76
DeepNeo-v1 AUC=0.74
0.21 ——  NetMHCpan AUC=0.60 0.21 ——  DeepNeo-v2 AUC=0.80
= MixMHCpred AUC=0.62 DeepNeo-v1 AUC=0.79
0.0 — PRIME AUC=0.62 0.0 = NetMHClIpan AUC=0.55

OTO ofz Oj4 076 078 1:0

ofo OjZ 074 076 0:8 le

Figure 1. Model performance metrics. ROC AUC of MHC binding model (green) and T cell reactivity model (blue) for MHC I (A) and II (B) indicate
reliable prediction performance. ROC AUC of external validation set for MHC I (C) and MHC II (D) show that DeepNeo-v2 outperforms other tools.

in prediction compared to NetMHCpan and DeepNeo-v1
(Figure 1d, Supplementary Figure S1b).

Resolving prediction score skewness

Imbalance in training data labels can lead to prediction
score skewness, especially if data size is limited. Because
DeepNeo-ter models had relatively small data size (<20000)
and data imbalance (25:75), the models could not efficiently
learn features of immunogenic pMHCs (data with positive
labels). DeepNeo-tcr-vl sought to deal with this problem
by adjusting label balance (50:50) by random selection and

training to maximize sensitivity. However, this approach led
to undermining prediction for negative label data and over-
all skewness to positive (>0.5) prediction scores. Here, we
employed label balancing with increased proportion of neg-
ative label (43:57) and changing convolution layer activa-
tion functions to enhance specificity and modify prediction
score distribution. The optimal label ratio was determined
as that yielding best prediction performance in both test set
and external validation set (Supplementary Table 2). Then,
the score distributions of the two versions were evaluated
to check if the upgraded model better represents labels and
known neoantigen behavior.
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Figure 2. Score distribution of DeepNeo-tcr-vl and DeepNeo-ter-v2 models. In model test set (A), external validation set (B), cancer patient cohort (C),
score distributions indicate that DeepNeo-tcr-v2 of both classes can better discriminate spatial interaction of pMHC that elicit immune response and

represent known neoantigen behavior.

First, the score distribution of each label was analyzed
in DeepNeo-tcr test sets. As expected, the density peak
of nonimmunogenic neoantigens (red) were centered be-
low threshold while that of immunogenic neoantigens (blue)
were above the threshold of 0.5 (Figure 2a). The discrimina-
tory score distribution indicate that the model has learned
distinctive features of immunogenicity. Notably, the power
of predicting negative values was dramatically improved in
DeepNeo-ter-v2 (MHC I) and DeepNeo-ter-v2 (MHC II).

Moreover, the score distribution in the external vali-
dation set was examined. In consensus with the test set
analysis, DeepNeo-tcr-v2 show that they can yield predic-
tion scores that match labels compared to DeepNeo-tcr-vl
(Figure 2b). Importantly, the score distributions of nonim-
munogenic pMHCs of both classes show distinctive peak
below the threshold in DeepNeo-tcr-v2, as more negative
data were included and the models were trained to maxi-
mize specificity.
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Home  Tutorial | Run prediction

Predict immunogenic neoantigen with DeepNeo

1) Please select input type
(peptide-MHC pairs or a single protein sequence in FASTA)

peptides .

2) Please select MHC class

class1 (9-mer) .

3) Run DeepNeo by submitting a text field below (<1000 pairs):
(*Input format : two column tab-separated file with HLA allele and peptide)
HLA-A-0201  VWVGAVGVG

HLA-A-0201 VGVGKSALT

HLA-A-0101  VWWGAVGVG

HLA-A-0101  VGVGKSALT

HLA-B-0702 VWWGAVGVG

HLA-B-0702  VGVGKSALT

Try with example data
or by uploading TSV file (<1000 inputs): [ Choose File| No file chosen Upload
Result

Data MHC binding|TCR reactivity

HLA-A-0201,VWVGAVGVG|0.7463 [0.8912

HLA-A-0201,VGVGKSALT |0.5954 0.7049

HLA-A-0101,VWVGAVGVG|0.0693 |0.745

HLA-A-0101,VGVGKSALT |0.0561 0.5943

HLA-B-0702,VVVGAVGVG|0.12 0.887

HLA-B-0702,VGVGKSALT |0.0817 0.745

The table above only shows the first 10 lines of results. All results can be downloaded for 72 hours using the download button below

or the lin| sv).

Download result as TSV Restart

Home  Tutorial | Run prediction

Predict immunogenic neoantigen with DeepNeo
1) Please select input type
(peptide-MHC pairs or a single protein sequence in FASTA)

protein .

2) Please select MHC class

class2 (15-mer) .

and write HLA alleles

HLA-DQB1-0602HLA-DRB1-0701

3) Run DeepNeo with a protein sequence

(*a single sequence with FASTA format; range of length : 15 to 100-mer)
>KRAS.G12V.sequencel
MTEYKLVVVGAVGVGKSALTIQLIQNHFVDEYDPTIEDSYRKQVVIDGET
CLLDILDTAGQEEYSAMRDQYMRTGEGFLCVFAINNTKSFEDIHHYREQ!

Try with example data
or by uploading FASTA file (a single sequence): | Choose File |No file chosen
Result

Data MHC binding TCR reactivity|
HLA-DRB1-0701,EGFLCVFAINNTKSF [0.9862 07387
HLA-DRB1-0701,FLCVFAINNTKSFED (0.9427 07329
HLA-DRB1-0701KSALTIQUIQNHFVD (09212 07493
HLA-DQB1-0602 VVGAVGVGKSALTIQ0.8631 07631
HLA-DRB1-0701,GFLCVFAINNTKSFE |0.8891 07318
HLA-DRB1-0701,SALTIQLIQNHFVDE |0.8474 07672
HLA-DQB1-0602 VGKSALTIQLIQNHF 0.769 0789
HLA-DQB1-0602,GAVGVGKSALTIQLI [0.7838 0741
HLA-DRB1-0701,LTIQLIQNHFVDEYD |0.9786 05915
HLA-DRB1-0701,ALTIQUIQNHFVDEY (09717 05943

The table above shows top 10 immunogenic pMHC pairs with highest DeepNeo score. The output can be downloaded for 72 hours
using the download button below or the link L

e -

Figure 3. Example webserver result of peptides mode (left) and protein mode (right).

Finally, the prediction score distribution was examined
in patient data. From 335 lung cancer patients, >900000
putative pMHCs were obtained and subjected to DeepNeo
prediction (8). Although somatic mutations can give rise
to many neoantigen sequence combinations, only a frac-
tion can bind to MHC complex, and only a fraction of the
PMHC can exert immune response. Due to the structure of
MHC complex and length of recognizable peptides, MHC
I, which have closed binding groove and bind shorter pep-
tides, tend to be more specific in antigen recognition com-
pared to MHC 11, which have open binding groove and bind
longer peptides. As expected, the distribution of peptide-
MHC 1 binding was mostly negative, while the distribu-
tion of MHC II yielded more positive values. Compared
to DeepNeo-mhe-vl, DeepNeo-mhc-v2 show peak in both
negative and positive area, signifying that the model has
confidently learned features of each label. In DeepNeo-tcr-
v2, the negative shift in score distribution and smaller num-
ber of pMHC above threshold supports that only a fraction
can induce T cell reaction.

‘Webserver

The webserver is free and open to all and there is no login
requirement. Upon running the prediction, DeepNeo will
provide prediction score of MHC binding and T cell reactiv-
ity (Figure 3). The output is immediately shown on the same

page or can be revisited within 72 hours using the URL pro-
vided. Estimated prediction times for various input length
is provided in Supplementary Table 1.

Input format description. For user convenience, DeepNeo
can be performed in two modes: peptides and protein mode.
The peptides mode deals with a list of 9- or 15-mers usu-
ally containing substitution mutations whereas the pro-
tein mode identifies potential neoepitopes from a novel se-
quence usually derived by frameshift mutations or aber-
rant splicing. The pMHC pairs should be parsed as tab
delimited format as detailed in the tutorial section. In
essence, neoantigens derived from somatic mutation should
be annotated, translated, and clipped to generate putative
neoantigen candidates. Furthermore, DeepNeo prediction
can be performed against full protein sequence provided as
fasta format.

Another component of the input is MHC genotype. For
human samples, the MHC genotype can be typed by mul-
tiple human leukocyte antigen (HLA) typing tools. The
mouse genotypes are documented for each strain. The sup-
ported alleles of the program include HLA-A, -B, -DQBI, -
DRBI for human alleles and most mouse alleles. In peptides
mode, the HLA allele and peptides should be combined as
tab-separated file. In protein mode, the HLA alleles should
be listed in the HLA allele textbox and separated with
semicolon.
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Output format description. DeepNeo output is composed
of three columns: data, MHC binding prediction score, and
T cell reactivity prediction score. By definition, score above
0.5 for both MHC binding prediction score and T cell reac-
tivity score is interpreted as immunogenic neoantigen. If the
pMHC has positive prediction score for MHC binding, but
not T cell reactive, the pMHC can be interpreted as non-
immunogenic neoantigen. If the pMHC is predicted to be
T cell reactive without MHC binding, the complex is pre-
dicted to have no biological significance, as MHC binding
is a mandatory precursor of peptide derived immune reac-
tion. In peptides mode, ten pMHC scores are shown imme-
diately and the full result can be retrieved by downloading,
while ’protein” mode returns top ten candidates (>0.5 for
both MHC binding and T cell reactivity) with highest com-
bined score.

DISCUSSION

With the outbreak of SARS-CoV-2, the concept of mRNA
vaccine has become widely accepted. The SARS-CoV-2 vac-
cines contain fragment of virus mRNA that can stimulate
immune response in human (19,20). The neoantigens, or
the translated mRNA, can also have similar vaccination ef-
fect. Indeed, neoantigen vaccine is considered as a promis-
ing next generation cancer treatment method that is tailored
to each patient (21). Although its clinical effectiveness in
tumor regression and prevention of relapse have been re-
ported by multiple trials, prioritizing vaccine target neoanti-
gens still remains as a major challenge (22,23). In fact, most
pMHC pairs were incapable of stimulating T cell response,
emphasizing need for immunogenicity prediction (24). Fur-
thermore, the role of CD4 + mediated immunogenicity has
been reported on various neoantigen vaccine clinical trials
(25-27), even when pMHC-I was targeted (28). DeepNeo-
v2 overcomes these limitations by providing comprehensive
prediction of MHC binding and T cell reactivity of both
MHC I and II. Furthermore, simple, fast, and user-friendly
implementation of web service will be able to reach wider
audience.

Although this work has made significant upgrades to
DeepNeo, there is room for improvement. Compared to
DeepNeo-mhe, DeepNeo-ter has limited data size, which
is expected to increase as more public data on IFN-y assay
will be available in the future. As more data become avail-
able, we anticipate that prediction score skewness as well as
model evaluation metrics will improve.
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