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ABSTRACT 

Non-self epitopes, whether originated from foreign
substances or somatic mutations, trigger immune
responses when presented by major histocompat-
ibility complex (MHC) molecules and recognized
by T cells. Identification of immunogenically active
neoepitopes has significant implications in cancer
and virus medicine. Ho we ver, current methods are
mostly limited to predicting physical binding of mu-
tant peptides and MHCs. We pre viousl y de veloped a
deep-learning based model, DeepNeo, to identify im-
munogenic neoepitopes by capturing the structural
properties of peptide-MHC pairs with T cell reactivity.
Here, we upgraded our DeepNeo model with up-to-
date training data. The upgraded model (DeepNeo-
v2) was impr o ved in ev aluation metrics and showed
prediction score distribution that better fits known
neoantig en behavior. The immunog enic neoantig en
prediction can be conducted at https://deepneo.net . 

GRAPHICAL ABSTRACT 
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INTRODUCTION 

Major histocompatibility complex (MHC) is a cell sur-
face protein that can present processed peptides to immune
cells. Neoantigens deri v ed from somatic mutations in can-
cer cells stimulate anticancer immune responses when they
form a complex with MHCs that T cells recognize as for-
eign objects. Ther efor e, neoantigens ar e r egarded as po-
tential targets for personalized cancer vaccines, and the
amount of neoantigens is used as a biomarker for cancer im-
m unothera py such as immune checkpoint blockade (ICB)
( 1–3 ). Howe v er, current methods of neoantigen identifica-
tion are mostly restricted to predicting physical binding of
peptides and MHCs, which is necessary but not sufficient
for inducing immune responses ( 4–6 ). This prompted us to
de v elop DeepNeo, a pipeline integrating DeepNeo-mhc ( 7 ),
a tool for predicting peptide-MHC binding, and DeepNeo-
tcr ( 8 ), a tool for predicting T cell reactivity of a pMHC
complex. DeepNeo predicts imm uno genic neoantigens for
MHC I, which are presented to CD8 + T cells, and MHC
II, which ar e pr esented to CD4 + T cells, in human and
mouse. The model accuracy was e xtensi v ely validated us-
ing different datasets and have shown signals of neoantigen
depletion in both ICB therapy cohort and treatment na ̈ıve
T CGA samples. Her e, we upgraded DeepNeo to enhance
reliability and de v eloped a w e b server f or user con venience.

MATERIAL AND METHODS 

Data collection 

Additional data used in constructing the models was ob-
tained from IEDB as of August 30th, 2022 ( 9 ). All data were
filtered using the following criteria. First, the length of pep-
tides must be 9 for MHC I and 15 for MHC II. Second,
four-digit HLA type must be present. Third, for DeepNeo-
tcr, only experimental data measuring Interferon- � (IFN-
� ) release upon pMHC challenge was used. Fourth, if con-
tradictory results were collected from different sources, the
pMHC was labelled as positi v e. If a pMHC can bind or trig-
ger immune response under one condition but not under
another, we concluded that the pair are reacti v e. 
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For DeepNeo-tcr (MHC I) training set, we kept all pairs 
ith positi v e labels (N = 8148) and randomly selected 

1001 pairs with negati v e labels so that the model could be 
rained without se v ere data imbalance. We also expanded 

he DeepNeo-tcr (MHC II) training set to have a significant 
roportion of the DeepNeo-tcr (MHC II) positi v e binding 

et by adding 1705 randomly selected pairs with negati v e 
HC binding data. As a result, 340987 data for DeepNeo- 
hc (MHC I), 106908 for DeepNeo-mhc (MHC II), 19149 

or DeepNeo-tcr (MHC I), and 12913 for DeepNeo-tcr 
MHC II) model were used for learning each model. For 
ach model, the data was randomly divided into test set and 

raining set, which was further divided into training and val- 
dation sets using three-fold cross validation. 

pgrades in MHC binding model 

eepNeo-mhc has been upgraded to predict neoantigens 
or MHC I and II for human and mouse alleles. As the 
ole of CD4 in cancer immunity is being acti v ely r esear ched,
here has been increasing demands for prediction of MHC 

I epitopes ( 10 ). Moreover, many tools only cover human 

lleles, but prediction on mouse alleles is also important in 

xperimental settings. To bridge the gap, we expanded the 
odel to predict MHC I and II epitopes for human and 

ouse alleles. 
The ar chitectur e of the model is identical to DeepNeo- 
hc-v1 model but trained with a larger dataset, leading to 

ifferent set of hyperparameters yielding best performance. 
o briefly summarize, the model is generated with convo- 

utional neural network, with two con volution la yers to 

earn features from MHC and peptide using rectified lin- 
ar (ReLu) function, a fully connected layer, and a sigmoid 

ay er that tr ansforms prediction values within range of 0 

nd 1. 

pgrades in T cell reactivity model 

n the upgraded DeepNeo-tcr model, the activation 

unctions of the two convolution layers were changed. 
eepNeo-tcr-v1 uses ReLU activation function. Because 

he function converts all negative weights to zero, it is 
rone to dying ReLU problem ( 11 ). Although this property 

an pre v ent ov erfitting as sparsity inducing regularization 

ethod, DeepNeo-tcr has relati v ely small dimensions with 

arge filter size, requiring all the nodes to have weights. Thus, 
e replaced ReLU function with linear function to include 
ll feature importance of the con volution la yers. Similar to 

eepNeo-mhc, hyperparameter tuning was conducted to 

etermine the set of weights that maximizes model perfor- 
ance. 
Pr ediction scor es above the thr eshold (0.5) ar e defined as 

ositi v e calls for both MHC binding and T cell reactivity 

odel. In evaluation of the external validation set, which 

 equir es consideration of both models, the scores were mul- 
iplied to assess model performance. 

onversion of deep learning fr amew ork 

e de v eloped DeepNeo-v2 based on Keras ( https://github. 
om/fchollet/ker as ) fr ame wor k v2.4.0 in Python 3.7 en- 
ironment, whereas DeepNeo-v1 was implemented with 
heano library ( https://github.com/Theano/Theano ) v1.0.4 

n Python 2.7, which are no longer acti v ely maintained. 
he ar chitectur e of the model was transferred with a minor 
hange in the loss function; negati v e log-likelihood (NLL) 
as used in DeepNeo-v1 and binary cross entropy (BCE) 
as used in DeepNeo-v2. The two loss functions are of- 

en used interchangeably ( 12 ) because they have the same 
oncept, but the BCE function makes computation more 
traightforwar d and hav e lower probability of numerical in- 
tabilities. Finally, the codes were optimized to reduce pre- 
iction runtime to be efficiently implemented in the w e b- 
erv er (Supplementary Tab le 1). The runtime for DeepNeo- 
1 and -v2 was calculated as the mean of ten trials per input 
ata size. 

mplementation of web server 

eepNeo-v2 utilizes the Web Server Gateway Interface 
WSGI) as the gateway interface between Apache2 HTTP 

erver ( https://httpd.apache.org ) and Flask w e b appli- 
ation frame wor k ( https://flask.palletsprojects.com/ ). 
he front-end of the w e b-application is written 

ith HTML5 ( https://www.w3.org/TR/html5/ ), 
SS ( https://www.w3.org/Style/CSS/ ), JavaScript 

 https://javascript.com ) and jQuery ( https://jquery.com ). 

ESULTS 

odel evaluation 

eepNeo integrates DeepNeo-mhc and DeepNeo-tcr to 

redict peptide-MHC binding and T cell reactivity, respec- 
i v ely. Both models hav e been upgraded since the pub- 
ication as additional data wer e obtained. Compar ed to 

eepNeo-v1 models, data size for generating MHC bind- 
ng model increased by 7.8 fold and T cell reactivity 

odel by 1.2 fold. With the updated dataset, the mod- 
ls were reconstructed with different hyperparameters and 

r chitectur es to obtain best performance. Then, the pre- 
icti v e performance was compared to that of DeepNeo- 
1. Both DeepNeo-mhc-v2 and DeepNeo-tcr-v2 achie v ed 

igher ROC AUC than previous versions for both classes 
Table 1 , Figure 1 a,b). Although PR AUC and F1 scores 
ould not be directly compared due to different data la- 
el composition, the pr ediction scor e distribution indicated 

hat the upgraded models can predict with higher discrimi- 
atory power. 
Ne xt, we e valuated DeepNeo in predicting e xternal val- 

dation sets for MHC I and II, which were not included in 

odel construction, in comparison with other prediction 

ools. More specifically, PRIME ( 13 ), a tool for predicting 

uman MHC I imm uno genic neoantigens, and NetMHC- 
an ( 4 ), MixMHCpred ( 5 ), tools for predicting MHC I 
nd II neoantigens without regard to imm uno genicity, were 
ncluded. For MHC I, in vitro assay data measuring im- 
 uno genicity of pMHC-I complex was retrieved from the 
RIME publication ( 13 ). DeepNeo-v2 outperformed other 

ools as well as DeepNeo-v1 in ROC AUC as well as 
ther statistical metrics (Figure 1 c, Supplementary Figure 
1a). Moreover, a total of 812 independent imm uno genicity 

ata of pMHC-II was retrie v ed from multiple publications 
 14–18 ). Here, DeepNeo-v2 also exhibited superior power 
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Table 1. Measures of model performance. The accuracy metrics including ROC AUC, PR AUC, and F1 scores are compared between DeepNeo-v1 and 
DeepNeo-v2 

DeepNeo-v1 DeepNeo-v2 

Data(Positi v e %) ROC AUC PR AUC F1 score Data (Positi v e %) ROC AUC PR AUC F1 score 

MHC I 57173 (24.9) 0.875 0.456 0.766 340987 (75.0) 0.969 0.969 0.948 
MHC II – – – – 106908 (57.2) 0.882 0.874 0.827 
TCR I 12128 (50) 0.778 0.781 0.727 19149 (42.6) 0.805 0.713 0.687 
TCR II 6260 (50) 0.805 0.798 0.751 12913 (42.4) 0.826 0.756 0.717 

External validation (MHC II)External validation (MHC I)

DeepNeo-v2 AUC=0.76
DeepNeo-v1 AUC=0.74
NetMHCpan AUC=0.60
MixMHCpred AUC=0.62

PRIME AUC=0.62

DeepNeo-v2 AUC=0.80
DeepNeo-v1 AUC=0.79
NetMHCIIpan AUC=0.55

DeepNeo-tcr-v2 (MHC I) AUC=0.81
DeepNeo-mhc-v2 (MHC I) AUC=0.97

A B

C D

DeepNeo-tcr-v2 (MHC II) AUC=0.89
DeepNeo-mhc-v2 (MHC II) AUC=0.88

Figure 1. Model performance metrics. ROC AUC of MHC binding model (green) and T cell reacti vity model (b lue) for MHC I (A) and II (B) indicate 
r eliable pr ediction perf ormance. ROC AUC of external validation set f or MHC I (C) and MHC II (D) show that DeepNeo-v2 outperf orms other tools. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

in pr ediction compar ed to NetMHCpan and DeepNeo-v1
(Figure 1 d, Supplementary Figure S1b). 

Resolving prediction score skewness 

Imbalance in training data labels can lead to prediction
score skewness, especially if data size is limited. Because
DeepNeo-tcr models had relati v ely small data size ( < 20000)
and data imbalance (25:75), the models could not efficiently
learn features of imm uno genic pMHCs (data with positi v e
labels). DeepNeo-tcr-v1 sought to deal with this problem
by adjusting label balance (50:50) by random selection and
training to maximize sensiti vity. Howe v er, this approach led
to undermining prediction for negati v e label data and over-
all skewness to positive ( > 0.5) prediction scores. Here, we
employed label balancing with increased proportion of neg-
ati v e label (43:57) and changing convolution layer activa-
tion functions to enhance specificity and modify prediction
score distribution. The optimal label ratio was determined
as that yielding best prediction performance in both test set
and external validation set (Supplementary Table 2). Then,
the score distributions of the two versions were evaluated
to check if the upgraded model better r epr esents labels and
known neoantigen behavior. 

art/gkad275_f1.eps
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A
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C

Figure 2. Score distribution of DeepNeo-tcr-v1 and DeepNeo-tcr-v2 models. In model test set (A) , external validation set (B) , cancer patient cohort (C) , 
score distributions indicate that DeepNeo-tcr-v2 of both classes can better discriminate spatial interaction of pMHC that elicit immune response and 
r epr esent known neoantigen behavior. 
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First, the score distribution of each label was analyzed 

n DeepNeo-tcr test sets. As expected, the density peak 

f nonimm uno genic neoantigens (r ed) wer e center ed be- 
ow threshold while that of immunogenic neoantigens (blue) 
ere above the threshold of 0.5 (Figure 2 a). The discrimina- 

ory score distribution indica te tha t the model has learned 

istincti v e features of imm uno genicity. Notabl y, the power 
f predicting negati v e values was dramatically improv ed in 

eepNeo-tcr-v2 (MHC I) and DeepNeo-tcr-v2 (MHC II). 
Mor eover, the scor e distribution in the external vali- 
ation set was examined. In consensus with the test set 
nalysis, DeepNeo-tcr-v2 show that they can yield predic- 
ion scores that match labels compared to DeepNeo-tcr-v1 

Figur e 2 b). Importantly, the scor e distributions of nonim- 
 uno genic pMHCs of both classes show distincti v e peak 

elow the threshold in DeepNeo-tcr-v2, as more negati v e 
ata were included and the models were trained to maxi- 
ize specificity. 
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Figure 3. Example w e bserver result of peptides mode (left) and protein mode (right). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

semicolon. 
Finally, the prediction score distribution was examined
in patient data. From 335 lung cancer patients, > 900000
putati v e pMHCs were obtained and subjected to DeepNeo
prediction ( 8 ). Although soma tic muta tions can gi v e rise
to many neoantigen sequence combinations, only a frac-
tion can bind to MHC complex, and only a fraction of the
pMHC can exert immune response. Due to the structure of
MHC complex and length of recognizable peptides, MHC
I, which have closed binding groove and bind shorter pep-
tides, tend to be more specific in antigen recognition com-
pared to MHC II, which have open binding groove and bind
longer peptides. As expected, the distribution of peptide-
MHC I binding was mostly negati v e, while the distribu-
tion of MHC II yielded more positi v e values. Compared
to DeepNeo-mhc-v1, DeepNeo-mhc-v2 show peak in both
negati v e and positi v e area, signifying that the model has
confidently learned features of each label. In DeepNeo-tcr-
v2, the negati v e shift in score distribution and smaller num-
ber of pMHC above threshold supports that only a fraction
can induce T cell reaction. 

Webserver 

The w e bserver is free and open to all and there is no login
r equir ement. Upon running the prediction, DeepNeo will
provide prediction score of MHC binding and T cell reactiv-
ity (Figure 3 ). The output is immediately shown on the same
page or can be revisited within 72 hours using the URL pro-
vided. Estimated prediction times for various input length
is provided in Supplementary Table 1. 

Input format description. For user convenience, DeepNeo
can be performed in two modes: peptides and protein mode.
The peptides mode deals with a list of 9- or 15-mers usu-
ally containing substitution mutations whereas the pro-
tein mode identifies potential neoepitopes from a novel se-
quence usually deri v ed by frameshift mutations or aber-
rant splicing. The pMHC pairs should be parsed as tab
delimited format as detailed in the tutorial section. In
essence, neoantigens deri v ed from somatic mutation should
be annota ted, transla ted, and clipped to genera te puta ti v e
neoantigen candidates. Furthermore, DeepNeo prediction
can be performed against full protein sequence provided as
fasta format. 

Another component of the input is MHC genotype. For
human samples, the MHC genotype can be typed by mul-
tiple human leukocyte antigen (HLA) typing tools. The
mouse genotypes are documented for each strain. The sup-
ported alleles of the program include HLA-A, -B, -DQB1, -
DRB1 for human alleles and most mouse alleles. In peptides
mode, the HLA allele and peptides should be combined as
tab-separated file. In protein mode, the HLA alleles should
be listed in the HLA allele textbox and separated with

art/gkad275_f3.eps
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1

utput format description. DeepNeo output is composed 

f three columns: data, MHC binding prediction score, and 

 cell r eactivity pr ediction scor e. By definition, scor e above 
.5 for both MHC binding prediction score and T cell reac- 
ivity score is interpreted as imm uno genic neoantigen. If the 
MHC has positi v e pr ediction scor e for MHC binding, but
ot T cell reacti v e, the pMHC can be interpreted as non- 

mm uno genic neoantigen. If the pMHC is predicted to be 
 cell reacti v e without MHC binding, the comple x is pre-
icted to have no biological significance, as MHC binding 

s a mandatory precursor of peptide deri v ed immune reac- 
ion. In peptides mode, ten pMHC scor es ar e shown imme- 
iately and the full result can be retrie v ed by downloading, 
hile ’protein’ mode returns top ten candidates ( > 0.5 for 
oth MHC binding and T cell reactivity) with highest com- 
ined score. 

ISCUSSION 

ith the outbreak of SARS-CoV-2, the concept of mRNA 

accine has become widely accepted. The SARS-CoV-2 vac- 
ines contain fragment of virus mRNA that can stimulate 
mmune response in human ( 19 , 20 ). The neoantigens, or 
he translated mRNA, can also have similar vaccination ef- 
ect. Indeed, neoantigen vaccine is considered as a promis- 
ng next generation cancer treatment method that is tailored 

o each patient ( 21 ). Although its clinical effecti v eness in 

umor r egr ession and pr e v ention of relapse have been re-
orted by multiple trials, prioritizing vaccine target neoanti- 
ens still remains as a major challenge ( 22 , 23 ). In fact, most
MHC pairs were incapable of stimulating T cell response, 
mphasizing need for imm uno genicity prediction ( 24 ). Fur- 
hermore, the role of CD4 + mediated imm uno genicity has 
een reported on various neoantigen vaccine clinical trials 
 25–27 ), e v en when pMHC-I was targeted ( 28 ). DeepNeo-
2 overcomes these limitations by providing comprehensi v e 
rediction of MHC binding and T cell reactivity of both 

HC I and II. Furthermore , simple , fast, and user-friendly 

mplementation of w e b service will be able to reach wider 
udience. 

Although this work has made significant upgrades to 

eepNeo, there is room for improvement. Compared to 

eepNeo-mhc, DeepNeo-tcr has limited data size, which 

s expected to increase as more public data on IFN- � assay 

ill be available in the futur e. As mor e data become avail- 
ble, we anticipate that prediction score skewness as well as 
odel evaluation metrics will improve. 
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