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ABSTRACT 

Quantitative assessment of single cell fluxome is
critical for understanding the metabolic heterogene-
ity in diseases. Unfortunately, laboratory-based sin-
gle cell fluxomics is currently impractical, and the
current computational tools for flux estimation are
not designed for single cell-level prediction. Given
the well-established link between transcriptomic and
metabolomic profiles, leveraging single cell tran-
scriptomics data to predict single cell fluxome is not
only f easib le but also an ur gent task. In this stud y,
we present FLUXestimator, an online platform for
predicting metabolic fluxome and variations using
single cell or general transcriptomics data of large
sample-siz e. The FLUXestimator webser ver imple-
ments a recentl y de veloped unsupervised approach
called single cell flux estimation analysis (scFEA),
which uses a new neural network architecture to es-
timate reaction rates from transcriptomics data. To
the best of our knowledg e , FLUXestimator is the first
web-based tool dedicated to predicting cell- / sample-
wise metabolic flux and metabolite variations using
transcriptomics data of human, mouse and 15 other
common experimental organisms. The FLUXestima-
tor webserver is available at http:// scFLUX.org/ , and
stand-alone tools for local use are available at https:
// github.com/ changwn/ scFEA . Our tool pr o vides a
ne w a venue for stud ying metabolic heterogeneity in
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diseases and has the potential to facilitate the devel-
opment of new therapeutic strategies. 

GRAPHICAL ABSTRACT 

INTRODUCTION 

Metabolic pathways provide essential energy and build-
ing blocks for the function of all cells, and d ysregula ted
metabolism is a hallmark of many disease types such as
cancer, diabetes, cardiovascular disease, and Alzheimer’s
disease. Gi v en the pervasi v e role of metabolism in dis-
ease pathology, an accurate and refined characterization

of metabolic alterations and inference of their causes or 
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ownstream effects could have far-reaching impact on our 
nderstanding of disease biology, clinical diagnosis and pre- 
ention, and disease management. This includes the poten- 
ial to: (i) significantly increase our knowledge of metabolic 
ariation, reprogramming and heterogeneity within the dis- 
ase tissue micr oenvir onment during disease initiation and 

rogression ( 1 , 2 ); (ii) identify new drug targets or novel 
etabolic biomarkers for early diagnosis or therapeutic op- 

imization ( 3 , 4 ) and (iii) provide diet or nutrition recom-
endations for patients ( 5 , 6 ). 
Numerous computational methods have been proposed 

o study metabolic activities in different species ( 7–12 ). 
owe v er, despite substantial efforts focused on reconstruct- 

ng genome-wide metabolic maps and flux analysis, a funda- 
ental question remains un-addressed: how metabolic ac- 

ivities differ among cells of different morphological types, 
hysiological states, tissues or disease backgrounds that 
ave the same genetic constitutions? While transcriptomics 
ata have been utilized to characterize metabolic alterations 

n diseases ( 13 , 14 ), existing analysis tends to portray the
verage change of intermixed and heterogeneous cell sub- 
opulations within a gi v en tissue ( 15–17 ). Moreov er, e xper-

mental profiling of metabolomics and fluxomics at single- 
ell resolution is still in its infancy, particularly for large 
etabolic pathways. As a result, it is impossible to further 

tudy the metabolic heterogeneity and cell-wise flux changes 
n a complex tissue, where cells are known to rewire their 

etabolism and energy production in response to varied 

iochemical conditions ( 18–21 ). In light of this gap, we de- 
eloped FLUXestimator, a w e bserver that enables users to 

redict cell- / sample-wise metabolic flux and variation using 

ither single-cell RNA-seq (scRNA-seq) data or large-scale 
gener al) tr anscriptomics data. 

We have recently developed a computational method, 
alled single-cell Flux Estimation Analysis (scFEA), which 

nables the estimation of cell-wise metabolic fluxome (i.e. 
ux distribution of the whole metabolic network) by using 

cRNA-seq data ( 22 ). This method incorporates an unsu- 
ervised model to estimate cell- or sample-wise flux distri- 
ution of a metabolic network, utilizing neural networks 
o approximate the reaction rate of each metabolic reac- 
ion based on gene expression data. In addition, scFEA em- 
loys a quadric loss to regularize the flux balance of the pre- 
icted in-flux and out-flux for each intermediate metabo- 

ite. Noted, scFEA optimizes the flux balance through all 
ells and enables certain le v els of imbalance at individual 
ell le v el. Currently, scFEA is availab le as a Python pack- 
ge, which r equir es a GPU environment, pr e-selection of 
etabolic network, species, and hyperparameters. 
To provide a more accessible and user-friendly tool for 

ingle cell- or sample-wise metabolic flux estimation analy- 
is using transcriptomics data, we de v eloped FLUXestima- 
or. This w e bserver offers an optimized and coding-free en- 
ironment that implements the scFEA analysis pipeline, re- 
ucing the programming and computational r esour ce bur- 
en for public users. Fluxer is an existing w e bserver with a 

imilar scope to FLUXestimator ( 23 ). Howe v er, Fluxer is 
esigned for prokaryotes genomics data, focused on visual- 

zation, and based on strict Flux Balance Analysis (FBA) 
odel, which cannot predict sample-wise and disease con- 

ext specific flux distribution. Other methods with a simi- 
ar scope to FLUXestimator include COMPASS ( 24 ) and 
cFBA ( 25 ). Howe v er, both methods are only able to pre-
ict flux for groups of cells or samples, r equir e high compu- 
ational cost, and do not have a w e bserver release, which 

akes them significantly different from FLUXestimator. 
n summary, FLUXestimator offers a wider range of ca- 
abilities and a more generalized scope, making it a valu- 
ble r esour ce for r esear chers in the field of metabolic flux
stimation anal ysis. Specificall y, FLUXestimator, to gether 
ith the original scFEA pipeline, provides the following 

apabilities: 

. FLUXestimator is a one-stop server that allows users to 

upload their own data, select species and pre-constructed 

metabolic networks, and adjust algorithm parameters via 

a user-friendly interface. With the unsupervised scFEA 

pipeline, FLUXestimator enables sample-wise flux esti- 
mation in a single platform. 

. FLUXestimator takes the input of a scRNA-seq or tran- 
scriptomics data of a large sample size to predict cell-wise 
or sample-wise metabolic flux. FLUXestimator accepts 
varied input formats and gene IDs for different species, 
making it a versatile tool for many r esear ch applications. 

. FLUXestimator provides access to 15 manually curated 

metabolic networks for human and mouse collected 

by integrating RECON3D, KEGG and literature data. 
These include two global metabolic maps, four central 
metabolic networks, four neur al tr ansmitter synthesis 
pathways , lipids , branched chain amino acids, methion- 
ine, and iron ion metabolic pathways, and MHC class I 
antigen presentation pathways. 

. FLUXestimator provides the global metabolic map cu- 
rated by using KEGG modules for human, mouse and 

15 common experimental organisms. 
. The outputs of FLUXestimator include (i) predicted flux 

distribution and (ii) le v els of accumulation or depletion 

of intermediate metabolites. To help users interpret the 
outputs, FLUXestimator provides a tutorial on how to 

analyze and interpret the results. 

ATERIALS AND METHODS 

econstruction and r epr esentation of metabolic networks for 
ux estimation 

he whole metabolic network in human, mouse, and other 
ommon experimental organisms have been extensively 

tudied and well annotated in databases such as the Kyoto 

ncyclopedia of Genes and Genomes (KEGG) ( 26 ) and Re- 
on3D ( 27 ). Howe v er, to optimize the network r epr esenta-
ion and topological structure for fluxome estimation anal- 
sis, se v eral issues need to be considered: (i) the constraints 
f flux distribution may vary depending on the optimization 

oal or computational assumption, such as the tolerance of 
he imbalance of dif ferent intermedia te metabolites, (ii) the 
etwor k comple xity needs to be reduced to enab le compu- 
ational feasibility and (iii) small molecules such as H2O, 
O2, and co-factors, whose concentrations are much larger 

han the scale of reaction rate, should be excluded from flux 

alance consideration. 
FLUXestimator provides a set of curated metabolic 

athwa ys f or human, mouse, and 15 other major exper- 
mental organisms. In FLUXestimator, a metabolic net- 
ork is r epr esented by a dir ected factor gr aph. This gr aph
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captures the topological and biochemical features of a path-
way, with each reaction being r epr esented as a variable and
each metabolite as a factor (Figure 1 A). Directed edges
from a factor to a variable and from a variable to a factor
r epr esent the input and output of a r eaction, r especti v ely.
The stoichiometric coefficients are assigned as attributes on
each edge. The flux rate of each reaction can be viewed as
a value or a function on each variable, and the flux balance
or quasi-flux balance under steady state can be formulated
as the difference between the total in-flux and the total out-
flux, which should be zero or a small value close to zero. 

FLUXestimator provides 16 manually curated metabolic
(sub)networks for human and mouse, including the re-
constructed central metabolic ma p, namel y M171 and
M171 NAD, one KEGG global metabolic map, and 13
smaller and more focused metabolic sub-networks (Table
1 ). These networks wer e r econstructed using KEGG and
Recon3d reactions, which encompassed 19 131 reactions
and 5607 metabolites, as well as 619 transporters from
Transporter Classification Database ( 28–30 ). We note that
KEGG and Recon3d lack detailed annotations of biosyn-
thesis of large molecules and metabolism of small molecules
such as metal ions. To address this, we manually collected
this information by literature mining and curated metabo-
lite IDs from different databases. We also excluded 273 com-
mon molecules such as H 2 O, H 

+ , and cofactors, from the in-
termediate metabolites, as the flux balance assumption may
not be valid for these metabolite ( 22 ). Noted, network re-
construction needs to le v erage the networ k topology, com-
putational feasibility, and importance of metabolites and
reactions. Thus, we utilized the concept of metabolic mod-
ule to further reduce the complexity of the metabolic net-
work. The concept of metabolic module has been utilized
by KEGG ( 26 ). Under steady state, the metabolic flow over
a reaction chain without an intermediate in- / out-branch
has a unique solution. Such reaction chain can be reduced
into one reaction module. In our network reduction, we (i)
tightly followed the no-br anch constr aint (Figure 1 B), (ii)
generalized the definition of a metabolic module by extend-
ing the single input- (or output-) end condition to be a group
of metabolites if the module is at the boundary of the sys-
tem (Figure 1 C), (iii) kept important intermediate metabo-
lites (Figure 1 D), and (iv) ensured a very small overlaps of
enzymes shared by different modules. 

Among the 16 curated networks, M171 covers most parts
of the central metabolic network of human and mouse. To
ensure a comprehensi v e cov erage of the global metabolic
map, we collected reactions from KEGG and Recon3d,
Transporter Classification Database, and additional liter-
a ture da ta ( 26 , 31 ). The final metabolic map covers the
metabolism, transport, and biosynthesis of carbohydrates,
amino acids, fatty acids and lipids, glycan, nucleic acids
and other co-factors in human and mouse, including 663
human genes (and 719 mouse genes) of 451 enzymes, 116
transporters , 1471 reactions , and 1561 metabolites. Figure
1 illustrates the M171 network after network reduction,
which includes 171 connected reaction modules of 22 su-
per modules that have 66 intermediate substrates. Here,
each super module is a manually defined group of mod-
ules with a similar function (See Supplementary Table S1).
It is worth noting that the size of M171 is much smaller
than the whole set of human and mouse metabolic reac-
tions in KEGG and Recon3d since it only covers the con-
nected reactions in the central metabolic pathways. Some
pathways like fatty acids biosynthesis and metabolism con-
tain highly connected reactions, but they connect to the cen-
tral metabolic map only by a few important modules, such
as Ac e ty l − C oA → F atty Aci ds for fatty acids biosyn-
thesis. For such pathways, we (i) reduce the whole pathway
as a boundary (or intermediate) module in M171 to reduce
computational cost and (ii) reconstruct them into a spe-
cific sub-network if such networks are important. FLUXes-
timator also provides a M171 NAD network by including
the biosynthesis of NAD 

+ and flux balance of NAD 

+ and
NADH (see details in Supplementary Information). 

As KEGG directly offers module-based representation
of genome scale metabolic network for different species, we
adopted, curated, and annotated the network from KEGG
modules for human, mouse, and 15 other experimental or-
ganisms (Table 2 ). Compared to the M171 network, the
KEGG module network omits more branches and contains
multiple disconnected subnetworks. 

In addition to these two whole metabolic maps, we
also manually curated 13 subnetworks for human and
mouse, which include (i) four networks of glucose and glu-
tamine metabolism focusing on carbon source and energy
metabolism a t dif fer ent r esolutions, (ii) four networks of
neuron transmitters that support the analysis of nervous
systems, (iii) two amino acids centric networks focusing on
branched chain amino acids and methionine metabolism,
(iv) lipids metabolism and biosynthesis pathway, (v) sub-
cellular localization specific iron ion metabolism, which is
the largest metabolic network of metal ion and (vi) MHC
class I antigen presentation networ k (Tab le 1 ). In our cur-
r ent network r econstruction, r eaction dir ections ar e fix ed,
and subcellular localization of enzymes wer e consider ed in
a fe w networ ks. All networ ks consider elemental balance
of the flux of carbon-based molecules while M171 NAD
also considers the balance of NAD 

+ and NADH . Detailed
biological characteristics and information of the M171,
M171 NAD , KEGG modules , and 13 sub-networks can be
found in the Supplementary Information, Supplementary
Figures S1–S11, and Supplementary Tables S1 and S2. De-
scription of network is also provided on the main page of
FLUXestimator when the networks were selected for anal-
ysis. 

On the FLUXestimator w e bsite, users can choose to an-
alyze specific metabolic networks or download the network
annotations. As each module contains highly dependent
metabolic reactions, they could also serve as analysis units
f or pathwa y or gene set enrichment analysis. To facilitate
this, we provide the gene information of each reconstructed
module in .gmt format that can be directly implemented
with gene set or single-sample gene set enrichment analy-
sis (GSEA or ssGSEA) ( 32 , 33 ). 

Method ov ervie w of the scFEA flux estimation pipeline 

FLUXestimator is w e bserv er v ersion of scFEA ( 22 ), a
method we recently de v eloped to estimate cell- / sample-
wise metabolic fluxome of a predefined metabolic net-
work using scRNA-seq or tissue transcriptomics data
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Figure 1. ( A ) Reconstructed M171 metabolic map of human and mouse. Modules belonging to different metabolic pathways (or termed super modules) 
are highlighted by different colors. Modules of metabolisms are presented in the central yellow block while biosynthesis modules are presented outside. 
Glycans are labeled as KEGG G-IDs. Intermediate metabolites in M171 typically have more than one input or output, but a few important intermediate 
metabolites with only one input or output were kept. ( B ) Chain-shaped reactions are merged into reaction modules. ( C ) Boundary reactions that have 
multiple outputs (or inputs) could be merged into one module. The metabolites of the products or inputs of boundary reactions could be merged into 
one-factor node that r epr esents boundary metabolites. ( D ) Important intermediate metabolites were kept in the network reconstruction. 
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Figure 2 A). scFEA utilizes a graph neural network archi- 
ecture to approximate the non-linear dependency between 

he metabolic flux of each module and the expression of 
enes involved in the module. Specifically, two computa- 
ional assumptions were utilized by scFEA (Figure 2 B): (1) 
he flux rate of each metabolic module can be modelled 

s a neural network of the genes involved in the module, 
uch as enzymes and transporters, and (2) the imbalance 
etween the predicted in-flux and out-flux for intermediate 
etabolites should be minimized, i.e. steady state flux bal- 

nce assumption. The primary output of scFEA is the pre- 
icted cell- or sample-wise metabolic flux (Figure 2 C), and 

he metabolomic changes of each intermediate metabolite 
n each sample could be estimated as the difference between 

he predicted influx and outflux of the metabolite. Addition- 
lly, we have developed downstream functions to compute 
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Table 1. Reconstructed metabolic networks in FLUXestimator 

Network name Network description #Modules #Enzymes 
#Intermediate 
metabolites 

#Genes (in 
human, mouse) 

M171 Central Metabolic Network 171 451 70 663, 719 
M171 NAD M171 + Redox balance of 

N AD+ / N ADH 

172 464 71 683, 740 

GlucoseGlutamine 
SubcellularLocalization 
(GGSL) 

Gl ycol ysis, TCA cycle, glutamine, and 
glutathione metabolic network in the 
resolution of subcellular localization. 

41 241 37 254, 237 

GlucoseTCAcycle Gl ycol ysis and TCA cycle 15 45 12 65, 66 
GlucoseGlutaminolysis Gl ycol ysis, TCA cycle, and 

glutaminolysis pathways 
23 98 17 132, 134 

GlucoseGlutamine General glucose and general 
glutamine metabolic pathways 

27 146 17 165, 176 

Branched Chain Amino Acids 
(BCAA) 

Branched chain amino acids 
metabolic pathways 

14 52 6 60, 64 

Acetylcholine Acetylcholine biosynthesis and 
metabolism 

15 30 6 80, 86 

Dopamine Dopamine biosynthesis and 
metabolism 

9 30 5 23, 24 

Histamine Histamine biosynthesis and 
metabolism 

6 18 3 23, 24 

Serotonin Serotonin biosynthesis and 
metabolism 

8 18 4 24, 26 

IronIon Sub-cellular localization specific 
metabolic network of iron ion 

15 27 8 141, 152 

Methionine Glutathione Folic 
Acid (MGF) 

Methionine, DNA methylation and 
related metabolism 

8 72 5 98, 91 

Lipid metabolism Metabolism and biosynthesis of lipids 112 165 93 320, 334 
MHC Class I Antigen 
Presentation (MHC-I) 

MHC Class I antigen presentation 
pathway 

9 9 reaction 
steps 

8 325, 302 

Table 2. KEGG module-based network reconstruction for selected experimental organisms 

Species 
KEGG organism 

code #Modules #Sub-networks 
#Intermediate 

metabolites #Genes 

Homo sapiens hsa 100 10 133 570 
Mus musculus mmu 100 10 134 569 
Ciona robusta cin 59 6 82 222 
Zea mays zma 86 4 104 1093 
Danio rerio dre 95 10 126 577 
Gallus gallus gga 82 6 112 402 
Xenopus tropicalis xtr 94 10 126 502 
Rattus norvegicus rno 99 10 132 581 
Escherichia coli K-12 eco 84 7 102 378 
Bacillus subtilis subsp. subtilis str. 168 bsu 63 4 85 258 
Pseudomonas fluorescens SBW25 pfs 66 7 88 345 
Arabidopsis thaliana ath 86 9 105 581 
Azotobacter vinelandii DJ avn 65 8 86 347 
Synechocystis sp. PCC 6803 syn 51 4 64 199 
Methanococcus voltae A3 mvo 22 3 38 137 
Str eptom yces coelicolor A3(2) sco 64 7 82 380 
Methanosar cina acetivor ans C2A mac 42 2 51 216 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(i) the subset of cells or samples having distinct variations of
certain metabolic modules and (ii) the impact of each gene
on metabolic fluxome in each sample ( 22 , 34 ), which are de-
tailed on the FLUXestimator tutorial page. For a more in-
depth understanding of the model and computational con-
siderations of scFEA, please refer to Supplementary Inf or -
mation , Supplementary Figure S12, and the original scFEA
paper ( 22 ). 

Compared to existing methods like flux balance analysis
or enrichment analysis-based approaches, scFEA has dis-
tinct ad vantages. Firstl y, it models the non-linear depen-
dency between gene expression and metabolic flux using
neural network-based non-linear functions. Secondly, it as-
sesses flux and metabolomic changes in each individual cell
or sample. Thirdly, scFEA accounts for the biochemical
conditions that can vary across samples or cells and allows
a certain le v el of flux imbalance for intermediate metabo-
lites. As a result, scFEA is more suitable for characterizing
metabolic heterogeneity and variations among a group of
cells or samples. Like FBA-based methods, scFEA does not
consider kinetics but follows the mass balance constraint
( 35 ). For a more detailed discussion of the comparison be-
tween scFEA and other methods, please refer to Supple-
mentary Information and the original scFEA paper ( 22 ). 

T r aining inf ormation : scFEA is an unsupervised method
based on flux balance assumptions, which does not r equir e
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Figure 2. The computational pipeline of scFEA. ( A ) The input of the scFEA pipeline includes a predefined metabolic network reconstructed as a di- 
rected factor graph and transcriptomics data with a substantial number of samples. ( B ) The computational model of scFEA assumes that the non-linear 
dependency between the reaction rate of each reaction module and gene expression can be modeled by a neural network and that the difference between 
the influx and outflux of each intermediate metabolite should be minimized. ( C ) The outputs of scFEA include predicted sample-wise metabolic flux and 
metabolomic changes of each intermediate metabolite. The metabolite pool size shown in the figure was exacted from HMDB ( 37 ). 
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raining data. Method validations, quantitati v e e valuations, 
nd tuning of hyperparameters are detailed in Supplemen- 
ary Information and the original scFEA paper ( 22 ). 

LUXestimator web server 

LUXestimator is a user-friendly w e b server that allows 
sers to conduct cell- / sample-wise flux estimation analysis 
sing scFEA in a coding free environment. As illustrated 

n Figure 3 , FLUXestimator takes in single cell or tissue 
ranscriptomics data, along with a user selected metabolic 
etwork, and carries out data preprocessing and flux esti- 
ation analysis. It then generates outputs including pre- 

icted cell- / sample-wise metabolic flux and metabolomic 
hanges, as well as result annotation files. The web server 
mplementation is described below, and further details on 

ts implementation can be found in the Supplementary 

nformation. 

r ont-end. The FLUXestima tor w e b-based server is im- 
lemented in Python using the Django frame wor k. FLUX- 
stimator utilizes the SQLite database for storage and re- 
rieval of requested input or output data. The Nginx HTTP 
erver is utilized as a secure application gateway, which ac- 
elera tes da ta uploading, serves as a re v erse pr oxy, and pr o-
ides a caching mechanism. The python program of FLUX- 
stimator is deployed via the uWSGI server and the pro- 
ram communicates with uWSGI by the WSGI spec. Here 
he uWSGI server enables efficient management and re- 
ource allocation for multiple processes. The w e bsite inter- 
ace was built using the Bootstr ap fr ame wor k, the jQuery 

avaScript library, and extension packages. 

ack-end. Data input and processing are conducted by us- 
ng Pandas, NumPy and Pyreadr. Data preprocessing con- 
ists of three major steps: (i) an evaluation step that checks 
f the input file is in a correct format. Warnings will be re- 
urned if the data format does not meet the r equir ement 
f FLUXestimator; (ii) data normalization and imputation 

tep by using MAGIC ( 36 ) and (iii) passing of the processed 

xpression data and user selected metabolic network to the 
ux estimator. 
The flux estimation procedure is conducted by using Py- 

or ch, P andas and NumPy. First, a factor graph model 
f each metabolic network is cr eated, wher e each mod- 
le is a variable, and each intermediate metabolite is a 

art/gkad444_f2.eps
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Figure 3. Flowchart of the FLUXestimator w e bserver. The inputs, analysis pipeline and outputs are depicted in green, blue and yellow b locks, respecti v ely. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

factor. P arallel thr ee-layer neural networks were con-
structed to model the non-linear dependency between gene
e xpression involv ed in the modules and their flux rates. Note
that a separate neural network is constructed for each mod-
ule. The loss function is created based on the in- / out-flux
of each intermediate metabolite and minimized by using
the Adam optimizer, which is the most efficient stochas-
tic optimization approach in Pytorch. The loss curves are
drawn by using Matplotlib and shown on the Results page
(Figure 4 ). 

Job manag ement. FLUXestima tor manages asyn-
chronous tasks by using Celery via a distributed task
queue. Users can run multiple analysis tasks simultane-
ously. A unique task ID and link will be generated when a
task is submitted, by which the user can track the progress
of the analysis task. When the task is completed, the user
can use the link to access, download or share the analysis
results. An y one with the task ID (or link) can access the
r esults. Analysis r esults will be stored on the server for at
least one year. The list of user’s tasks is implemented by
using a cookie mechanism with a consent form provided
on the w e b page. If the cookie is enabled by a user, the
Results page will list previous tasks submitted by this user
on the same browser. 

Br o wser compatibility. FLUXestima tor has been tested on
major modern browsers including Google Chrome, Mozilla
Firefox, Safari and Microsoft Edge. 

Running time. For a data of 1000 samples, the running
time for a subnetwork is about 5–10 min and the running
time for the M171 or KEGG network is about 20–30 min.
Longer analysis time may be needed if multiple tasks have
been submitted. 
 

RESULTS 

Server input 

The FLUXestimator w e b server r equir es two inputs: (i) a
transcriptomics data set of at least 25 samples for sub-
network analysis or at least 100 samples for global net-
work analysis (see details in Supplementary Information)
and (ii) a species-specific metabolic network and analy-
sis parameters selected by users. The w e bserver currently
hosts the central metabolic maps (M171, M171 NAD and
KEGG) and 13 specific metabolic sub-networks of hu-
man and mouse, and KEGG central metabolic map for 15
other species. Users could select among the species and the
metabolic networks from the boxes on the left-hand side
of the home page. The input is a scRNA-seq or general
RNA-Seq da taset tha t should have genes on its rows, and
samples on its columns. We recommend using TPM (or
CPM / FPKM) normalized da ta. FLUXestima tor accepts
comma-(.csv), space-(.txt), or tab-(.txt) delimited input files
in a matrix format that contain row / column names. Row
names can be gene symbol or Ensembl gene ID for human
and mouse, and KEGG ID or Gene ID for other species.
For a large data set, we recommend users upload only the
gene expression data of the metabolic genes provided on the
download page of FLUXestimator, as other genes will not
be used in the flux estimation. Notably, the neural network-
based formulation of FLUXestimator allows for the flexi-
bility that expression values of some metabolic genes may
be missing from the input data. 

FLUXestimator provides two pre-processing options for
the input transcriptomics dataset: (i) Imputation. If the
input transcriptomics data, such as an scRNA-seq data, is
highly sparse, an imputation procedure is recommended.
The default imputation method is MAGIC ( 36 ). (ii)
Normalization. Four options are provided by FLUX-
estima tor: (i) no normaliza tion, (ii) log transforma tion,
namel y lo g( x + 1), w her e x r epr esents the original input
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Figure 4. A screenshot of the results page of FLUXestimator. At the top of the page, the task ID, running time, and a URL of the result download page are 
displayed. Users could copy or email the result page using this information. The figure in the middle of the page shows the convergence of loss terms used 
in scFEA (see details in Supplementary Information). The x-axis and y-axis r epr esented the number of epochs and the le v el of loss. The ‘total’, ‘balance’, 
‘negati v e’, ‘cellVar’ and ‘moduleVar’ r epr esent the total loss, and individual loss in terms of flux balance, non-negati v e, coherence between predicted flux 
and total gene e xpression le v el of each super module, and the relati v e scale of flux, respecti v ely. The tab le at the bottom includes the input data, two output 
files, and two annotation files that could be directly downloaded by clicking the file name. 
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xpression matrix, (iii) CPM normalization, and (iv) 
og transformation of CPM normalized values, namely, 
og(CPM + 1). Users need to decide whether and how these 
wo procedures will be performed by specifying two relevant 
yperparameters on the running page of FLUXestimator. 

The input transcriptomics data will be checked by a for- 
a t valida tor, and a job will be submitted onl y w hen the in-

ut file meets the r equir ements of FLUXestimator. To help 

sers submit their tasks correctly, FLUXestimator provides 
ample input files on the home page. 

erver output 

nce an analysis task is completed, users can obtain the 
utput files of the job on its Results page (Figure 4 ). FLUX- 
stimator provides four downloadable results for each task: 
. A .csv file containing the predicted cell- or sample-wise 
metabolic flux. The file has modules on its rows, and sin- 
gle cells or samples on its columns, and each entry is 
predicted flux rate of the metabolic module in the cor- 
responding cell or sample. 

. A .csv file containing the imputed cell- or sample-wise 
metabolomics change. The file has metabolites on its 
rows, and cells or samples on its columns, and each en- 
try is an imputed metabolomics change of an interme- 
diate metabolite in the selected network in the corre- 
sponding cell or sample. Because FLUXestimator does 
not r equir e stringent flux balance condition, sample-wise 
metabolomics change of each intermediate metabolite 
could be predicted by the difference between the pre- 
dicted influx and outflux of the metabolite in each sample. 
A consistent negati v e and positi v e value of the predicted
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metabolomics change in a group of cells or samples sug-
gests that the metabolite tends to be depleted or accumu-
lated in the sample group. 

. A .csv file containing module information, where each
row contains the detailed information of the reactions
and metabolic compounds involved in each module.
These modules are the ones involved in the user defined
metabolic network. 

. A .gmt file containing the module-gene information,
where each row contains the gene symbols of the genes
in each module of the analysed metabolic network. These
genes are the ones used in the flux estimation process. 

Users can also view or download the convergence curves
of the optimization process, for both the total loss, as well
as the four individual loss terms in the optimization func-
tion. The predicted cell- or sample-wise metabolic flux can
be used for downstream anal yses, for w hich a number of
analysis tools are provided by the FLUXestimator w e bsite
under Tutorial / Package tutorial section. The estimated flux
matrix could be integrated into the standard Seurat anal-
ysis pipeline for comparati v e analysis, dimensional reduc-
tion, clustering, and visualization ( 37 ). In addition, FLUX-
estimator provides functions to assess le v els of accumula-
tion or depletion of metabolites and detect subsets of cells
or samples that have distinct variation of certain metabolic
modules. 

Case study 

We hav e pre viously validated scFEA using our in-house
and public matched scRNA-seq and metabolomics data
and demonstrated its accuracy in predicting cell- or sample-
wise flux and metabolomics changes. Our findings showed
that scFEA outperforms pathway-enrichment based meth-
ods for metabolic pathway activity prediction ( 22 ) (see Sup-
plementary Information). We first validated the robustness
of FLUXestimator by evaluating (i) the predicted flux of
overlapped reaction modules from different networks and
(ii) the predicted flux with respect to different normaliza-
tion methods of input data on selected data. Our analyses
demonstra ted tha t FLUXestima tor achie v ed high correla-
tions of the predicted flux of overlapped reaction modules
from different networks and robust predictions with respect
to different normalization approaches of the input data (see
details in Supplementary Information and Supplementary
Figure S13 and S14). 

We further demonstrated the utility of FLUXestimator
on (i) scRNA-seq datasets collected from human and mouse
cancer micr oenvir onment and (ii) ROSMAP single nucleus
RN A-seq (snRN A-seq) data collected from brain tissues of
Alzheimer’s disease (AD) patients and healthy donors ( 38 ).

Cancer data. We applied FLUXestimator to scRNA-seq
data collected from cancer microenvironments that con-
tains cancer, myeloid and T cells, including eight human and
two orthotopic mouse data sets, for flux estimation of the
Glucose-Glutamine network (see details in Supplementary
Information). Our analysis identified that: (i) cancer cells
consistently have the highest glucose metabolic rate, includ-
ing lactate production, TCA cycle, and nucleotide and ser-
ine biosynthesis, followed by myeloid cell and then T cells,
in most human cancer and injected mouse tumor tissues an-
alyzed (Supplementary Figure S15A,B); (ii) the rates of the
total glucose consumption strongly correlate with the rates
of proliferation (Supplementary Figure S15C) and (iii) the
gl ycol ytic flux distributions in human cancer and injected
mouse tumor cells are considerably different, particularly
in terms of the fractions into nucleotide and serine biosyn-
thesis, which matches existing knowledge in (i) the roles
played by serine in transplant rejection [9] and (ii) the preva-
lently increased nucleotide biosynthesis in proliferating can-
cer cells [10]. Differential test of predicted flux is conducted
by using non-parametric Mann–Whitney test and P < 0.01
was utilized as a significant cutoff. 

R OSMAP AD data. We also a pplied FLUXestimator
on ROSMAP snRNA-seq data to predict AD-specific
metabolic v ariations b y using the M171 networ k. We hav e
identified that the metabolic flux in neuron cells of reaction
modules in glucose and amino acid metabolism is consis-
tently higher than other cell types in the central nervous
system, suggesting that metabolic activity is higher in neu-
ron cells than in other brain cell types. We further focused
on the metabolomic changes predicted by FLUXestimator.
Supplementary Table S3 lists 14 metabolites whose concen-
trations have the largest distinctions for neuron cells from
AD and healthy control brain. Among them, increased gly-
colytic substrates and GABA, and decreased glucose, nu-
cleic acids and branched chain amino acids (valine, leucine
and isoleucine) have been reported ( 39 , 40 ), while aspartate,
serine and methionine may serve as new biomarkers ( 22 ). 

DISCUSSION 

In this paper, we present FLUXestimator, the first w e b
server for cell- or sample-wise metabolic flux estimation
using single cell or general transcriptomics data. The key
methodology behind this server is based on our previ-
ous works on factor graph r epr esentation of a complex
metabolic network, as well as a graph neural network-based
solver for fluxome estimation ( 22 ). FLUXestimator pro-
vides an end-to-end prediction and enables the interroga-
tion of the flux rate of metabolic modules and concentra-
tion changes of metabolites, which can be directly utilized to
understand possible metabolic reprogramming events and
guide targeted metabolomics experiments. We anticipate the
applications of FLUXestimator could increase our under-
standing in (i) key metabolic reprogramming e v ents and
causes and (ii) the impact of metabolic abnormalities to
other biological characteristics, which together will con-
tribute to precision medicine such as biomarker screening
and drug target prediction. 

Howe v er, in terms of characterizing the context specific
metabolic activities, ther e ar e still a few unsolved challenges.
A complex tissue micr oenvir onment may be constituted by
cells of different metabolic abnormalities, heterogeneous
metabolic networks, varied pr efer ences, and dependencies
( 41–45 ). In future work, we will enable the reconstruction
of context specific metabolic networks and modules, espe-
cially disease , tissue , and cell type specific ones , to maximize
the discoveries of hidden and dynamic relationships among
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he metabolic units under different biological conditions. 
n addition, recent evidence suggests that the direction of 
ertain re v ersib le reactions may not be constant for cells 
ithin one disease micr oenvir onment, which r epr esents one 
a y f or the cells to increase their fitness le v el by reprogram-
ing the metabolic exchange mechanisms under a highly 

erturbed environment ( 46 ). Hence, a second future direc- 
ion is to enable the assessment of sample-wise directions 
f re v ersib le reactions and inter-cell metabolic e xchange or 
ompetition by using single cell data. We will also extend 

ux estimation capability for other omics data types, such 

s proteomics or metabolomics data. The M171 NAD net- 
ork considers the balance of redox molecule NAD 

+ and 

NADH . Another futur e dir ection is to extend the flux es-
imation method by allowing the implementation of more 
iochemical constraints, such as redox balance, pH balance 
r energy balance, or imbalance of certain metabolites. As 
cFEA utilizes a quadratic loss function for flux balance, 
ther balance or imbalance condition can be easily imple- 
ented as additional quadratic functions. A fe w ne wly de- 

eloped analysis features, including a perturbation analysis 
o determine the contribution of each gene to each flux, and 

ewly curated metabolic modules including methionine and 

opper ion metabolic pathways, are currently available in 

he stand-alone version of FLUXestimator. Such features 
ill be updated to FLUXestimator w e b server after thor- 
ugh validations have been conducted. 

A T A A V AILABILITY 

LUXestimator is available as a w e b server at http:// 
cFLUX.org/ . The stand-alone tools to run the functions 
f FLUXestimator on a local machine are available at the 
itHub repository ( https://github.com/changwn/scFEA ). 
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upplementary Data are available at NAR Online. 
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