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Background: There is an unmet medical need for biomarkers that capture host and environmental contributions in inflammatory bowel diseases 
(IBDs). This study aimed at testing the potential of circulating lipids as disease classifiers given their major roles in inflammation.
Methods: We applied a previously validated comprehensive high-resolution liquid chromatography-mass spectrometry–based untargeted 
lipidomic workflow covering 25 lipid subclasses to serum samples from 100 Crohn’s disease (CD) patients and 100 matched control subjects. 
Findings were replicated and expanded in another 200 CD patients and 200 control subjects. Key metabolites were tested for associations with 
disease behavior and location, and classification models were built and validated. Their association with disease activity was tested using an 
independent cohort of 42 CD patients.
Results: We identified >70 metabolites with strong association (P < 1 × 10-4, q < 5 × 10-4) to CD. Highly performing classification models (area 
under the curve > 0.84-0.97) could be built with as few as 5 to 9 different metabolites, representing 6 major correlated lipid clusters. These 
classifiers included a phosphatidylethanolamine ether (O-16:0/20:4), a sphingomyelin (d18:1/21:0) and a cholesterol ester (14:1), a very long-chain 
dicarboxylic acid [28:1(OH)] and sitosterol sulfate. These classifiers and correlated lipids indicate a dysregulated metabolism in host cells, notably 
in peroxisomes, as well as dysbiosis, oxidative stress, compromised inflammation resolution, or intestinal membrane integrity. A subset of these 
were associated with disease behavior or location.
Conclusions: Untargeted lipidomic analyses uncovered perturbations in the circulating human CD lipidome, likely resulting from multiple patho-
genic mechanisms. Models using as few as 5 biomarkers had strong disease classifier characteristics, supporting their potential use in diagnosis 
or prognosis.
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Lay Summary 
This study reports a comprehensive untargeted lipidomic analysis of 600 serum samples from patients with Crohn’s disease and matched con-
trol subjects, identified and replicated ~70 metabolites associated with Crohn’s disease, and developed highly performing classification models 
(area under the curve > 0.84-0.97) with as few as 5 metabolites.
Keywords: comprehensive untargeted lipidomics, lipid biomarkers, subtype stratification, Crohn’s disease

Introduction
Inflammatory bowel diseases (IBDs), namely Crohn’s dis-
ease (CD) and ulcerative colitis (UC), are becoming major 
public health concerns, due to their dramatic expansion 
worldwide, lack of a cure, and challenges in disease man-
agement. To date, more than 200 genomic loci reflecting a 
wide variety of biological functions have been found to be 
associated with susceptibility to these complex multifacto-
rial diseases.1 However, these diseases exhibit heterogeneity 
in terms of disease onset, behavior, location, progression, 
and response to therapy. Currently, there is an unmet need 
to identify biomarkers that can capture both host and en-
vironmental contributions to IBD to improve diagnosis and 
patient stratification.

Given that circulating lipids play crucial roles in many bi-
ological mechanisms relevant to IBD pathophysiology2 and 
originate from metabolic processes occurring in specific host 
tissues and cells, gut microbiota, and diet, we hypothesized 
that the presence of specific circulating lipids could inte-
grate multiple endogenous and exogenous contributions to 
IBD and therefore represent attractive candidate biomarkers. 
Lipids represent 75% of all circulating metabolites,3 and 
their analysis by mass spectrometry (MS)–based lipidomics, a 
subset of metabolomics, offers a great potential for biomarker 
discovery through untargeted data acquisition and mining, 
although the application to large clinical cohorts remains 
challenging.4 Notably, the ability to adequately resolve and 
identify the multiple existing lipid isomers is crucial for bi-
ological data interpretation, as different lipid subclasses and 
specific acyl side chains often reflect very different roles. For 
example, and of specific relevance to IBD pathophysiology, 
omega-6 vs omega-3 polyunsaturated fatty acids (PUFAs)—
particularly in glycerophospholipids—distinguish between 
reservoirs of pro- and anti-inflammatory precursors,5 very 

long-chain fatty acids (VLCFAs), but not long-chain fatty 
acids (LCFAs), in sphingolipids impact colon barrier func-
tion and epithelial integrity,6,7 while even- vs odd-chain fatty 
acids (OCFAs) in all lipids may discriminate between host vs 
microbiome metabolism.8

Hence, we hypothesized that the use of a thoroughly 
validated comprehensive untargeted lipidomic workflow with 
large, well-powered cohorts of CD patients should enable the 
identification of subsets of various and functionally distinct 
circulating lipids associated with disease behavior or location. 
In this study, we applied a robust liquid chromatography-mass 
spectrometry (LC-MS)–based untargeted lipidomic work-
flow9 that enables measurement of >1500 high-quality MS 
signals, of which 509 structurally unique lipid species cov-
ering 25 lipid subclasses, including their acyl side chains, have 
been annotated to date by MS/MS analyses. Median inter- 
and intra-assay coefficients of variations (or relative standard 
deviation) in MS signal intensity for the resulting annotated 
lipids meet the criteria of the Food and Drug Administration 
(ie, >85% with relative standard deviation <20%), thereby 
enabling robust semi-quantification. First, we applied this 
workflow to 300 patients with CD patients and 300 healthy 
subjects, matched for sex, age, and ethnicity, collected by 
the National Institute of Diabetes and Digestive and Kidney 
Diseases (NIDDK) IBD Genetics Consortium (IBDGC). Next 
we tested an independent set of 42 CD patients to explore 
the association of these key serum lipid metabolites with dis-
ease activity. Our analyses identified candidate circulating 
lipid biomarkers that are strongly associated with CD disease 
classifiers, with many being associated with disease location 
or disease behavior.

Methods
Human serum samples and study design
An overview of the current study is shown in Figure 1. First, 
serum samples from nonfasting CD patients and healthy 
donors matched for sex, age and ethnicity, collected by the 6 
genetic research centers of the IBDGC (www.ibdgc.org) fol-
lowing a standardized protocol using one 10 mL nonadditive 
red top vacutainer tube (OR; Beckon Dickinson), allowing 
30 minutes at room temperature for clotting prior to cen-
trifugation, aliquoting of 125 µL of serum into 8 separate 
cryovials and storage at -80 °C within a maximum time in-
terval between sample collection and freezing of 2-4 hours. 
Serum samples were processed in 2 separate phases, referred 
to as IBDGC-1 (100 CD patients and 100 control subjects) 
and IBDGC-2 (200 CD patients and 200 control subjects) 
as previously described.10 In the first phase (IBDGC-1), we 
selected patients with a more complicated disease behavior, 
namely stricturing (B2) and penetrating (B3) CD, according 
to the Montreal classification,11 while for the second phase 
(IBDGC-2), patients had a more representative proportion of 
disease behavior (including inflammatory CD; B1). Second, 
serum samples from 42 patients with moderate-to-severe 

Key messages

What is already known?

It has previously been shown that Crohn’s disease has sys-
temic impacts that can be detected in the circulation.

What is new here?

Testing of >1500 lipids, followed by mass spectrome-
try–based identification of Crohn’s disease–associated 
metabolites, enabled the discovery of biomarkers of 
dysregulated metabolism, dysbiosis, oxidative stress, 
compromised inflammation resolution, and intestinal mem-
brane integrity that not only informed about the biology im-
pacted by disease, but also formed the basis of powerful 
disease classification models.

How can this study help patient care?

This work provides the groundwork for the development of 
serum-based predictive tools to aid diagnosis and prognosis.

http://www.ibdgc.org
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CD recruited at the Massachusetts General Hospital were 
obtained from a previously described multicenter cohort.12 
These serum samples were collected immediately prior to 
commencing vedolizumab therapy (week 0).

Untargeted lipidomic screen using LC-MS
Three sets of serum samples were obtained as frozen aliquots 
(-80°C) that had not been previously thawed10 and analyzed 
using a previously validated semi-quantitative untargeted 

Figure 1. Flow diagram of the study. The diagram depicts the analytical aspects of the study, in which the study design and the untargeted lipidomic 
screen are illustrated. First, lipid features were retrospectively measured in serum samples from 300 Crohn’s disease (CD) patients and 300 control 
subjects, on different liquid chromatography–quadrupole time-of-flight (LC-QTOF) instruments (6550 and 6530; Agilent Technologies Inc), in a 1.5-
year interval (from October 7 to November 11, 2015, and from April 2 to May 31, 2017), as 2 independent phases referred as IBDGC-1 and -2. Mass 
spectrometry (MS) raw data were processed for peak picking and an in-house bioinformatic script encoded in both Perl and R languages for MS peak 
alignment, retention time (RT) correction, filter of presence, normalization of signal intensities using cyclic loess algorithm, imputation of missing values 
using k-nearest neighbors (setting k = 5) on scaled data and batch and collection center effect correction using Combat algorithm. The final National 
Institute of Diabetes and Digestive and Kidney Diseases IBD Genetics Consortium (IBDGC) datasets were analyzed using 3 approaches (individual 
testing, network analysis, and classification models), and MS/MS was performed on features associated with stricturing or penetrating CD patients 
vs control subjects with P < .05. Second, lipid features were measured in the serum of 42 CD subjects from July 19 to August 20, 2016, using the 
LC-QTOF 6550. Following processing of MS raw data, the MGH cohort final dataset was analyzed using individual testing. CRP, C-reactive protein; HBI, 
Harvey-Bradshaw Index; m/z, mass to charge.
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lipidomic workflow9 on different high-resolution LC-MS (LC–
quadrupole-time-of-flight [LC-QTOF] 6550 and 6530; Agilent 
Technologies Inc) in a 1.5-year interval as 3 independent 
studies, hereafter referred as IBDGC-1, IBDGC-2, and MGH 
(Figure 1). Following recommended guidelines,4 stratified ran-
domization of samples was achieved according to potential 
confounding factors, namely age, sex, and disease status, as 
well as treatment whenever applicable, in order to minimize 
batch-dependent bias. MS data were acquired in positive 
and negative modes. MS data quality-control analyses were 
performed by (1) injecting an “in-house” plasma pool quality-
control sample at the beginning, at the end, and every 20 runs; 
(2) injecting blanks every 20 runs; and (3) monitoring 6 in-
ternal standards spiked in samples for signal intensity, mass-
to-charge (m/z) ratios, and retention time (RT) accuracies.

Raw MS data were processed as previously described in de-
tail9 using Mass Hunter Qualitative Analysis (version B.06 or 
B.07; Agilent Technologies Inc) for peak picking and using an 
in-house bioinformatic script encoded in both Perl and R lan-
guages that we developed for the following steps: (1) MS fea-
ture peak alignment and RT correction: MS features between 
chromatographic runs were aligned by selecting features that 
were present in all samples with no isobars (defined by mass 
20 ppm) in a RT window of ±2 minutes, spread over the gra-
dient as references for RT correction prior to MS features 
alignment; (2) filter of presence: features retained must be 
present in 80% of samples from at least one group, thereby 
setting a maximum value for the percentage of missing values 
for a given feature in any groups at 20%, and have coeffi-
cient of interindividual variation <80% among healthy donor 
samples; (3) normalization of signal intensities using cy-
clic loess algorithm; (4) imputation of missing values using 
k-nearest neighbors (KNN; with a setting at k = 5) on scaled 
data; and (5) batch and collection center effect correction 
using ComBat algorithm. The resulting final datasets listed 
high-quality MS signals, thereafter referred to as features, de-
fined by their m/z ratios, RT, and signal intensity.

In a pilot study, the median interindividual MS signal in-
tensity variations in lipid features for the analysis of serum 
samples from 4 nonfasting control subjects from the NIDDK 
Repository vs 4 nonfasting control subjects prepared on site 
using our standard optimal collection protocol was assessed 
using our lipidomic workflow and found to be similar, namely 
44% vs 33% (data not shown), thereby suggesting the very 
good quality of the repository serum samples. The final 
IBDGC-1 and -2 datasets missed 6 (3 patients and 3 control 
subjects) and 2 (1 patient and 1 control) samples, respectively, 
lost during lipid extraction. The percentage of missing values 
for all MS features in the final datasets was similar for control 
subjects and CD patients and is reported in Supplementary 
Table 1 for IBDGC-1 and Supplementary Tables 2 and 4 for 
IBDGC-2, respectively; as an example, the median value for 
control subjects and cases was 1% and 2%, respectively, in 
the IBDGC-2 dataset (Supplementary Table 2).

Given the untargeted and discovery-based nature of our 
lipidomic screen, lipid features of interest were then annotated 
to unique lipids by MS/MS analysis, as previously described 
in detail.9 This step is crucial, given that about 50% of MS 
features are duplicate ions of the same unique lipid. For this 
study, the lipid annotation was focused on features that passed 
the selected threshold of significance for the group compar-
ison of interest. This included all features associated with 

stricturing or internal penetrating (B2/B3) CD vs control with 
P values <.05 in IBDGC-1 or -2. The characteristics of MS/MS 
analyzed features, namely m/z ratios, RT, ionization mode, 
detected adducts, and MS/MS fragments considered for anno-
tation, as well as their corresponding lipid IDs and category, 
are reported in Supplementary Tables 1 and 2 for IBDGC-1 
and IBDGC-2, respectively. In addition, MS/MS spectra are 
reported for annotation in IBDGC-2 samples of cholesta-4,6-
dien-3-one and the 5 annotated unique lipids that are part 
of our final classification model as well as for the validation 
using standards of cholesta-4,6-dien-3-one and sitosterol sul-
fate (SitS) IDs using available standards purchased from BOC 
Sciences and kindly provided by Pr Hubert Schaller, respec-
tively (Supplementary Figure 1). All lipid IDs are mentioned 
in the text as annotated lipid molecular species, irrespective 
of validation with an analytical standard. Features without 
ID assumption were classified as unidentified and mentioned 
using their feature ID, defined as ionization mode:mass@RT.

Statistical analysis
MS data retained in the final IBDGC-1 and IBDGC-2 
datasets were analyzed independently. First, individual testing 
identified features associated with B2/B3 vs control pheno-
type. Results were compared between the IBDGC phases to 
assess replicability. Second, the larger IBDGC-2 dataset was 
selected for correlation network analysis of B2/B3-associated 
features. Third, individual testing was used to assess associa-
tion of lipid features with CD subtypes. Fourth, classification 
models validated the potential of circulating lipids to discrim-
inate between CD patients and control phenotype.

Individual testing:
Independent testing was done on log2-transformed signal in-
tensity for each feature using regression corrected for sex. 
For annotated features detected in both IBDGC datasets, evi-
dence of association with B2/B3 vs control was compared and 
pooled using the z score. For this interstudy comparison, we 
used normalized log2-transformed signal intensity expressed 
as fold change (FC) for cases vs control subjects and corre-
sponding P values from the final IBDGC-1 and IBDGC-2 
datasets. A direct comparison of normalized feature MS ab-
solute signal intensity values in the final datasets cannot be 
achieved between 2 projects given the semi-quantitative na-
ture of our untargeted lipidomic screen and that MS raw data 
are normalized for each project independently. Analysis for 
disease behavior was performed as B2/B3 (stricturing/pen-
etrating) vs inflammatory (B1), conditional on sex and age. 
Analysis for disease location was performed conditional on 
sex and age with ileocolonic (L3), considered statistically in-
termediate between colorectal (L2) and ileal (L1).

Significance thresholds:
 The threshold for selecting associated features from in-
dividual testing was P <1  ×  10-4 for both IBDGC datasets. 
Multiple testing was accounted for by evaluating false dis-
covery rate using q values (R package qvalue).13

Network analysis:
Positive correlation (r > 0.4) between B2/B3-associated 
features (P < 1  ×  10-4 and │log2(FC)│>0.3) was projected 
onto a 2-dimensional display using Fruchterman-Reingold 

http://academic.oup.com/ibdjournal/article-lookup/doi/10.1093/ibd/izac281#supplementary-data
http://academic.oup.com/ibdjournal/article-lookup/doi/10.1093/ibd/izac281#supplementary-data
http://academic.oup.com/ibdjournal/article-lookup/doi/10.1093/ibd/izac281#supplementary-data
http://academic.oup.com/ibdjournal/article-lookup/doi/10.1093/ibd/izac281#supplementary-data
http://academic.oup.com/ibdjournal/article-lookup/doi/10.1093/ibd/izac281#supplementary-data
http://academic.oup.com/ibdjournal/article-lookup/doi/10.1093/ibd/izac281#supplementary-data
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layout algorithm (R package igraph).14 A starting point was 
given to the algorithm as the first 2 principal component anal-
ysis coordinates.

Classification models:
A classification model was built from the IBDGC-2 dataset 
using the 73 features associated with B2/B3 vs control (P < 
1  ×  10-4 and │log2(FC)│>0.3). The model was built using 
logistic regression, with a forward-backward parameter se-
lection based on the Bayesian information criterion, as 
implemented in R (step function). More precisely, we started 
with the null model (no parameter) and proceeded to select 
a first regression model based on identified lipids. A second 
regression model was then built, again with a forward-
backward approach but starting with the lipids included in 
the previous model and allowing any associated feature to 
enter (or leave) the model. This gave us the final model based 
on the 73 associated features, with prioritization of annotated 
lipids. Evaluation of model performances was represented 
using receiver-operating characteristic (ROC) curves and 

summarized with area under the curve (AUC). The 95% con-
fidence intervals were computed using bootstrap (R package 
pROC).15 Given that these performances are expected to be 
overestimated when the model is built (trained) and validated 
within the same samples, estimates of out-of-sample AUC are 
provided in the Supplementary Materials.

Ethics approval and consent to participate
This study was approved by the Institutional Review Board 
of the Montreal Heart Institute known as the Comité 
d’éthique de la recherche et du développement des nouvelles 
technologies.

Results
An untargeted lipidomic screen identified 
circulating lipid features associated with stricturing 
or internal penetrating CD
Serum samples from 300 CD patients and 300 healthy 
donors matched for sex, age, and ethnicity were analyzed 

Table 1. Characteristics of the subjects in IBDGC-1 and IBDGC-2.

 IBDGC-1 IBDGC-2

Control Subjects (n = 97) CD Patients (n = 97) Control Subjects (n = 199) CD Patients(n = 199) 

Age at recruitment, y

Range 19-70 19-70 16-76 16-87

Median 39 39 35 37

IQR 28-50 27-50 26-50 28-46

Ethnicity

White non-Jewish 84 (86.6) 83 (85.6) 156 (78.4) 156 (78.4)

Jewish 8 (8.2) 9 (9.3) 43 (21.6) 43 (21.6)

Black/African American 5 (5.2) 5 (5.1) 0 (0) 0 (0)

Female 50 (51.5) 52 (53.6) 111 (55.8) 111 (55.8)

Surgery history

Yes — 86 (88.7) — 96 (48.2)

No — 10 (10.3) — 103 (51.8)

Missing — 1 (1) — 0 (0)

Tobacco use

Smoker 9 (9.3) 21 (21.7) 21 (10.5) 47 (23.6)

Ex-smoker 13 (13.4) 8 (8.2) 30 (15.1) 20 (10.1)

Nonsmoker 74 (76.3) 67 (69.1) 145 (72.9) 129 (64.8)

Missing 1 (1) 1 (1) 3 (1.5) 3 (1.5)

Montreal classification

Disease behavior

Inflammatory (B1) — 0 (0) — 106 (53.3)

Stricturing (B2) — 51 (52.6) — 52 (26.1)

Penetrating (B3) — 46 (47.4) — 41 (20.6)

Disease location

Ileal (L1) — 30 (31) — 53 (26.6)

Colorectal (L2) — 8 (8.2) — 47 (23.6)

Ileocolonic (L3) — 58 (59.8) — 99 (49.8)

Missing — 1 (1) — 0 (0)

Values are n (%), unless otherwise indicated. This table presents the demographic and clinical phenotypes of the CD patients and healthy control subjects 
selected from the National Institute of Diabetes and Digestive and Kidney Diseases IBDGC Repository and retained into the final post–quality-control 
datasets for IBDGC-1 and IBDGC-2 phases of the current study.
Abbreviations: CD, Crohn’s disease; IBDGC, National Institute of Diabetes and Digestive and Kidney Diseases IBD Genetics Consortium; IQR, interquartile 
range.

http://academic.oup.com/ibdjournal/article-lookup/doi/10.1093/ibd/izac281#supplementary-data
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in 2 independent phases (Figure 1). Demographic and clin-
ical information for these subjects is presented in Table 1. 
In the first phase (IBDGC-1), we conducted an untargeted 
LC-MS–based lipidomic profiling of 100 CD patients and 
100 control samples. Raw data consisting of 1068 MS sig-
nals were processed for peak alignment, RT correction, filters 
of presence, normalization of signal intensities, imputation 
of missing values, and corrections for batch and collection 
center effects (see Methods and Figure 1). The final dataset 
retained 715 lipid features, defined by their m/z ratios, 
RT, and signal intensity, which were tested for differences 
between patients with CD patients and control subjects. 
Applying liberal thresholds for significance (P < .05; corre-
sponding to q < 0.03), 321 features were significantly dif-
ferent between CD patients and control subjects (Figure 2A 
and 2C). Given this large number, we focused our analyses 
on those of larger effect sizes (│log2(FC)│>0.3) and highest 
significance (P < 1 × 10-4, corresponding to q < 2 × 10-4). With 
these stringent thresholds, 72 features were significantly as-
sociated with CD.

Given the untargeted nature of this lipidomic screen, we 
then determined the identity of these lipid features by MS/MS 
analyses. This resulted in the annotation of 46 of these features 
(n = 46 of 72, 64%), corresponding to 37 unique lipid species 
once duplicate ions had been removed (Supplementary Table 
1). Interestingly, these could be grouped into 4 lipid categories 
and 12 subclasses (Figure 2C), among which sphingomyelins 
(SMs) with VLCFAs (decreased in CD patients vs control 

subjects) are known to modulate inflammatory processes and 
intestinal epithelium barrier function.6,7

Given these positive results, we extended this lipidomic pro-
filing to a larger set of samples consisting of 200 CD patients 
and 200 matched control subjects (IBDGC-2), that did not 
overlap with IBDGC-1. As opposed to the first set of samples 
that had a more complicated stricturing or internal penetrating 
disease behavior (B2/B3), IBDGC-2 had roughly equivalent 
numbers of cases in the inflammatory (B1) and stricturing 
(B2) or internal penetrating (B3) behavior categories (Table 1). 
Processing of raw MS data (total of 3933 features) retained 
1894 features in the final IBDGC-2 dataset. The larger number 
of detected features, in comparison with IBDGC-1, was 
attributed to difference in sensitivity performances between 
the LC-QTOF instruments used for the 2 phases. For compar-
ison with IBDGC-1, our initial analysis of IBDGC-2 focused 
on CD patients with the B2 or B3 phenotype. Using the same 
criteria as previously (P < 1  ×  10-4 and │log2(FC)│>0.3), 73 
features were significantly associated with the B2/B3 vs control 
phenotype (Figure 2B). MS/MS analyses enabled annotations 
of 45 of them (n = 45 of 73, 62%) (Supplementary Table 2), 
corresponding to 38 unique lipid species. Globally, the B2/B3 
lipidomic profile observed in IBDGC-2 was remarkably similar 
to that in IBDGC-1 in terms of lipid categories and subclasses.

The high replicability between findings of the 2 IBDGC 
studies was also confirmed by interstudy alignment of 
results expressed as log2-transformed feature signal in-
tensity expressed as FC for cases vs control subjects and 

Figure 2. Circulating lipid features associated with stricturing or internal penetrating Crohn’s disease (CD) patients vs control subjects. A and B, 
Volcano plots show all 715 and 1894 lipid features retained in the final dataset following analysis of serum samples of CD patients and healthy control 
subjects in IBDGC-1 and IBDGC-2, respectively. Colors indicate lipid subclasses: very long-chain dicarboxylic acid (VLCDCA), free fatty acid (FFA), 
acylcarnitine (AC), lysophosphatidylcholine (LPC), LPC ether (LPCO-), lysophosphatidylethanolamine (LPE), phosphatidylcholine (PC), PC ether (PCO-), 
phosphatidylethanolamine (PE), PE ether (PEO-), phosphatidylinositol (PI), sphingomyelin (SM), ceramide (Cer), glucosylceramide (GlcCer), cholesterol 
derivative (Chol der), sterol sulfate (ST sulf), cholesterol ester (CE), diglyceride (DG), and triglyceride (TG) species. Lipid identification is shown for the 
15 most significant B2/B3-associated features annotated by tandem mass spectrometry in each dataset. C, The number of B2/B3-associated features 
annotated by lipid subclasses. FC, fold change; ND, nondetermined.

http://academic.oup.com/ibdjournal/article-lookup/doi/10.1093/ibd/izac281#supplementary-data
http://academic.oup.com/ibdjournal/article-lookup/doi/10.1093/ibd/izac281#supplementary-data
http://academic.oup.com/ibdjournal/article-lookup/doi/10.1093/ibd/izac281#supplementary-data
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corresponding P values given the semi-quantitative nature 
of our untargeted lipidomic screen (>85%) (Supplementary 
Table 3). However, given the greater sensitivity in IBDGC-2, 
we found more ether lipids of both phosphatidylcholine (ie, 
PCO-) and phosphatidylethanolamine (ie, PEO-) that were 
lower in CD patients, and 2 additional lipids that were asso-
ciated to CD, but that were not detectable in the first phase, 
namely (1) cholesta-4,6-dien-3-one (higher in CD patients) 
and (2) cholesterol ester (CE) (14:1; lower).

Correlation structure identifies lipid subclasses, 
shared structures, and specific lipid entities 
perturbed in CD
Next, because high-dimensional lipidomic data are expected 
to have a correlation structure,9 this was assessed in the 73 
B2/B3-associated features from IBDGC-2. We found 6 cor-
relation clusters and 4 individual features, with clusters 

primarily encompassing lipids of a same (sub)class or lipid 
entities from different subclasses but sharing similar struc-
tural characteristics with respect to their fatty acyl moieties 
(Figure 3, Supplementary Table 2). However, clustering could 
differ for lipids of the same (sub)class, as seen for the sterol 
species, namely SitS and cholesta-4,6-dien-3-one in cluster D 
and CE(14:1) in cluster E. A similar clustering was observed 
with the 72 B2/B3-associated lipids in IBDGC-1, albeit, as 
expected for this smaller dataset, correlations were less pre-
cisely defined (Supplementary Figure 2). Interestingly, lipids in 
cluster D were elevated in patient sera as compared with con-
trol subjects, whereas those in all other clusters were lower.

Circulating lipids are differently associated with CD 
disease behavior and location subtypes
To explore the relationship between circulating lipids and CD 
subtypes, we further analyzed the entire IBDGC-2 dataset, 

Figure 3. Correlations between circulating lipid features associated with stricturing or internal penetrating Crohn’s disease patients vs control subjects. 
Positive correlations (r > 0.4) existing between the 73 B2/B3-associated features [P < 1 × 10-4 and │log2(fold change)│] in IBDGC-2 are illustrated using 
Fruchterman-Reingold algorithm, where the clusters with identified analytes are labeled A–E. Bond thickness corresponds to the strength of correlation 
between features. Circled features with bold ID are the 9 components of the classification model (see Figure 5). For expansions of the lipid subclasses, 
see Figure 2.

http://academic.oup.com/ibdjournal/article-lookup/doi/10.1093/ibd/izac281#supplementary-data
http://academic.oup.com/ibdjournal/article-lookup/doi/10.1093/ibd/izac281#supplementary-data
http://academic.oup.com/ibdjournal/article-lookup/doi/10.1093/ibd/izac281#supplementary-data
http://academic.oup.com/ibdjournal/article-lookup/doi/10.1093/ibd/izac281#supplementary-data
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which was larger and more representative in terms of disease 
behavior and location than IBDGC-1. First, we tested whether 
the inclusion of B1 impacted on our previous results that fo-
cused on B2 and B3 phenotypes and found 4 new features as-
sociated with CD (all patients) vs control subjects (P < 1 × 10-4 
[q < 8 × 10-4] and │log2(FC)│>0.3), likely gained by the increase 
in power due to larger sample size (Supplementary Table 4). In 
contrast, half of the B2/B3-associated features failed to reach 
the significance threshold in the all CD patients vs control 
subjects analysis, suggesting an impact of disease subtype on 
association with some lipid features. To assess this directly, we 
tested each feature for association to a specific disease loca-
tion or behavior and found 182 associations with P < 1 × 10-4 
for at least 1 subtype (behavior [n = 138], location [n = 94]) 
(Supplementary Table 5), which we have plotted as effect sizes 
of these features with respect to disease status on separate axes 
(Figure 4). This representation highlights distinct patterns for 

multiple lipid features. Of note, in terms of disease behavior, 
the strongest effects were observed for PE(O-16:0/20:4), very 
long-chain dicarboxylic acid (VLCDCA) 28:1(OH), SitS, and 
cholesta-4,6-dien-3-one, all being more pronounced in B2/
B3 than in B1 (Figure 4A and 4B). In terms of disease loca-
tion, the strongest effects were observed for SitS, cholesta-4,6-
dien-3-one, and CE(14:1) in ileal disease (L1) (Figure 4C and 
4D). Taken together, these results suggest circulating levels of 
specific lipids are differentially perturbed among the pheno-
typic subgroups of CD, with SitS and cholesta-4,6-dien-3-one 
having the largest effect sizes.

Models using 9 or fewer lipid features are strong 
disease classifiers
Given the strong effect sizes observed for many features, we 
assessed their ability in building a disease classifier. Specifically, 

Figure 4. Comparative effect size of changes in circulating lipid features between Crohn’s disease (CD) subtypes: disease behaviors and locations. The 
panels show the 182 features associated with P < 1 × 10-4 for at least 1 CD subtype in IBDGC-2. Fold change (FC) (log2) in mass spectrometry signal 
intensity values for each feature with respect to disease subtypes is shown on separate axes. Disease behavior is illustrated in panels A and B, while 
disease location is illustrated in panels C and D. A subtype-dependent effect would fall outside the first diagonal in panels B and D or far from the 
vertical x = 0 axis in panels A and C. Ellipses correspond to 95% confidence intervals. Lipids with bold ID are components of the classification model 
(see Figure 5). For expansions of the lipid subclasses, see Figure 2.

http://academic.oup.com/ibdjournal/article-lookup/doi/10.1093/ibd/izac281#supplementary-data
http://academic.oup.com/ibdjournal/article-lookup/doi/10.1093/ibd/izac281#supplementary-data
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we built a model using the 73 B2/B3-associated features from 
IBDGC-2, trained and tested using all B2/B3 and control 
samples in the IBDGC-2 dataset. The purpose of this model 
was to use a minimal number of features while reaching max-
imal classification performance. This model showed a very 
high performance, with an AUC of 0.97 for the ROC curve 
(Figure 5A), and also performed very well (AUC of 0.90) 
when tested against the entire IBDGC-2 dataset including B1 
(Figure 5B). Discrimination from control subjects was how-
ever better (1) for ileal presentations (L1 and L3) than for 
colorectal-only presentations (L2) and (2) for stricturing or 
internal penetrating behavior (B2/B3) than for inflammatory 
behavior (B1) (Supplementary Figure 3). It is noteworthy 
that, despite the large number of B2/B3-associated features 
(Figure 2), the model was made from only 9 lipid features 
(Figure 5C) that were representative of 6 different correla-
tion clusters and 2 individual features (classifiers are shown 
in bold in Figure 3), including the 5 annotated classifiers 
PE(O-16:0/20:4), VLCDCA [28:1(OH)], SM(d18:1/21:0), 
SitS, and CE(14:1) (cf. Supplementary Figure 1 for MS/
MS spectra used for their annotation). Out-of-sample AUC 
estimates obtained from cross-validation (Supplementary 
Figure 4) and an alternate model (Supplementary Figure 5) 
demonstrated the great performance of the model, with an al-
ternate model with as few as 5 lipid features producing high 
out-of-sample performances (ROC curves; AUCs of 0.79-
0.9) (Supplementary Figure 5B). We next explored the effect 
of sex as a biological variable in our analyses and noted that 
while many of the CD-associated metabolites were associ-
ated with sex (Supplementary Table 7), male/female status it-
self was not associated with CD (P = .38), and consequently, 
performance of the model was not affected by the inclusion 
of sex information.

To explore whether any of these metabolites are asso-
ciated with disease activity or with known biomarkers of 
disease activity, we performed lipidomic analyses of an inde-
pendent set of 42 CD patients for whom this information was 
readily available at the time of serum collection (as this was 
not available for the IBDGC samples). Following data proc-
essing, 1111 lipid features were retained in the final dataset. 
Focusing on the metabolites with known identities that were 
strongly associated in the IBDGC cohort, we examined their 
association to clinically active disease (32 had active disease 
at serum collection), per clinical assessment and Harvey-
Bradshaw Index (HBI) or HBI alone. Additionally, we tested 
for association between the CD-associated metabolites and 
serum C-reactive protein levels, and with steroid use. As can 
be seen in Supplementary Table 7, none of the metabolites in 
clusters A, B, or C were associated with disease activity and 
HBI at a P < .1, and only 1 metabolite [TG(18:2_16:0_20:4) 
in cluster D was associated with disease activity and another 
(TG(16:0_18:1_22:5)] with HBI score. In terms of association 
to C-reactive protein levels, while there was no significant as-
sociation to most CD-associated metabolites, 2 metabolites 
in cluster C and 3 in cluster D were associated at P < .1 
(Supplementary Table 7).

Discussion
IBD is a complex disease involving important contributions 
of multiple host cell types within the intestinal mucosa, no-
tably immune cells, epithelial cells, and mesenchymal cells, 

as well as contributions from intestinal flora and mesenteric 
fat, known as creeping fat.16 Furthermore, alterations in ep-
ithelial permeability subsequent to colon inflammation may 
lead to extraintestinal manifestations, most notably in the 
liver.17 Importantly, well-powered genetic, transcriptomic, 
proteomic, and microbiome-based studies have increased 
our understanding of the biological pathways that contribute 
to IBD clinical heterogeneity, as well as provide candidate 
biomarkers of disease and clinical outcomes.10,18–21 More 
recently, metabolomic studies using patient stool or serum 
samples have also uncovered some metabolites and metabolic 
pathways associated with IBD pathophysiology.22–28 However, 
up to now, few if any studies have applied a comprehensive 
untargeted lipidomic profiling on serum samples, capturing 
both intestinal and extraintestinal contributions, from large 
cohorts of CD patients and healthy individuals.

In this study, we applied a validated comprehensive semi-
quantitative untargeted lipidomic workflow, which has the 
potential to uncover key lipid subclasses and isomers with 
their acyl chains, originating from host cells, dietary in-
take, and intestinal flora. First, this workflow was applied 
to serum samples from a cohort of 100 patients with CD 
patients and 100 control subjects, matched for age, sex, and 
ethnicity. Findings were then replicated in an additional 200 
CD patients and 200 control subjects, with the results being 
remarkably consistent between IBDGC-1 and IBDGC-2 de-
spite being tested 18 months apart on 2 different instruments. 
This speaks to the robust nature of the standardized blood 
sampling protocol and storage of the NIDDK Repository 
in minimizing artifactual lipid variations, the platform and 
workflow, and the markers identified in the process.

Specifically, this led to the identification of >70 structurally 
unique lipids with strong association to CD (P < 1 × 10-4) and 
effect size [│log2(FC)│>0.3] in both datasets, of which over 
60% were annotated by MS/MS. We observed that most as-
sociated lipid features fell into 5 major correlation clusters 
that included lipids predominantly of similar (sub)classes or 
sharing similar acyl side chains. However, a few other lipid 
features were independent of these major clusters.

Given the relatively strong effect sizes observed for the 
associated lipids, we were able to build a high-performance 
model with only 9 lipid features (ROC curve: AUC of 0.97), 
which was not affected by sex. Of note, the 9 lipid features 
were from the 6 correlation clusters plus 2 individual features, 
highlighting the nonredundant information provided by these 
different lipid clusters and likely distinct biological pathways. 
We were able to identity 5 of these classifiers, namely PE(O-
16:0/20:4), VLCDCA 28:1(OH), SM(d18:1/21:0), SitS, and 
CE(14:1). Although this classifier model was tested in a retro-
spective fashion, the strong performance characteristics sug-
gest that a small set of circulating lipids may be considered 
as promising candidate biomarkers to assist disease classifi-
cation in CD. This will now need evaluating in a variety of 
prospective cohorts.

Given the many lipid entities identified in our study, 
this afforded us the opportunity to examine structural 
commonalities within each cluster to inform about their 
potential biological properties. Changes in serum levels of 
identified lipid classifiers or their correlated counterparts, as 
well as proposed alterations in their metabolism and poten-
tial impact on the (patho)physiology of IBD, are illustrated in 
Figure 6 and summarized as follows.

http://academic.oup.com/ibdjournal/article-lookup/doi/10.1093/ibd/izac281#supplementary-data
http://academic.oup.com/ibdjournal/article-lookup/doi/10.1093/ibd/izac281#supplementary-data
http://academic.oup.com/ibdjournal/article-lookup/doi/10.1093/ibd/izac281#supplementary-data
http://academic.oup.com/ibdjournal/article-lookup/doi/10.1093/ibd/izac281#supplementary-data
http://academic.oup.com/ibdjournal/article-lookup/doi/10.1093/ibd/izac281#supplementary-data
http://academic.oup.com/ibdjournal/article-lookup/doi/10.1093/ibd/izac281#supplementary-data
http://academic.oup.com/ibdjournal/article-lookup/doi/10.1093/ibd/izac281#supplementary-data
http://academic.oup.com/ibdjournal/article-lookup/doi/10.1093/ibd/izac281#supplementary-data
http://academic.oup.com/ibdjournal/article-lookup/doi/10.1093/ibd/izac281#supplementary-data
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Cluster A includes PE(O-16:0/20:4) and 5 other correlated 
ether lipids annotated by MS/MS analyses, which are lower 
in serum of CD patients vs control subjects. PE(O-16:0/20:4) 
was selected by the predictive models and was significantly 
associated with the B2/B3 phenotype but not with the disease 
location. Ether lipids are unusually abundant in neutrophil 

membranes, where they are essential for cell viability.29 They 
are intermediates in plasmalogen synthesis and also suggest 
a host dysmetabolism in CD of ether lipids in peroxisomes, 
which are specialized cellular organelles recently shown to 
function as hubs that coordinate responses to stress, metabo-
lism, and immune signaling to maintain enteric health and the 

Figure 5. Crohn’s disease (CD) classification model based on serum lipid features. A and B, The receiver-operating characteristic curve shows the 
performance of the classification model to discriminate case vs control phenotypes. Performance was tested (A) in the IBDGC-2 dataset consisting 
of all B2/B3 and control samples or (B) in the entire IBDGC-2 dataset (including all CD patients) The 95% confidence interval is shown in grandy and 
performances are expressed as the area under the curve (AUC). Estimations of out-of-sample performance are reported in Supplementary Figures 4 
and 5. C, The boxplots represent the mass spectrometry signal intensity values (log2) with quartiles for the 9 classifiers, within control subjects (gray), 
B1 patients (blue), and B2/B3 patients (red) in IBDGC-2. For expansions of the lipid subclasses, see Figure 2. FC, fold change.

http://academic.oup.com/ibdjournal/article-lookup/doi/10.1093/ibd/izac281#supplementary-data
http://academic.oup.com/ibdjournal/article-lookup/doi/10.1093/ibd/izac281#supplementary-data
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Figure 6. Putative mechanisms underlying observed changes in lipid candidate biomarkers and their impact on Crohn’s disease (CD) pathophysiology. 
This figure illustrates the proposed mechanisms underlying the observed changes (lower in green, higher in red) in serum levels of candidate biomarker 
lipids and their correlated clusters (letters on the right of lipid names) in CD patients. We reason that these changes may restrict (┬) or stimulate (↑) 
various biological functions and mechanisms linked to the pathogenesis of CD. Lipids from clusters with lower serum levels in CD vs control (clusters 
A-C and E) will be unable to carry out their normal physiological roles, notably (1) restricting inflammation either by preventing its overtriggering by 
pathogen-associated molecular patterns (PAMPs) or by favoring its resolution through specialized proresolution mediator–like mechanisms (clusters 
A and B), (2) strengthening the defense barrier of the intestinal mucosa (cluster C), and/or (3) maintaining a physiological oxidative stress status by 
restricting reactive oxygen and nitrogen species (RONS) effects (cluster A). Furthermore, in CD, dysbiosis is expected to impair metabolism of (1) 
short-chain fatty acids (SCFAs) and ultimately that of odd-chain fatty acids (OCFAs), which are normally incorporated into sphingomyelins (SMs) (cluster 
C) and (2) noncholesterol sterols resulting in sitosterol (Sit) being converted into sitosterol sulfate (SitS) (cluster D). Dysregulated host metabolism 
involving peroxisomes or cytochrome P450 enzymes is also expected to impair formation of polyunsaturated fatty acid (PUFA)–containing ether lipids 
(cluster A), very long-chain dicarboxylic acids (VLCDCAs) (cluster B), very long-chain fatty acid (VLCFA)–containing SMs (cluster C), and cholesterol 
esters (CEs) (cluster E), while favoring the formation of a specific oxysterol, namely cholesta-4,6-dien-3-one (cluster D). Enhanced oxidative stress in 
CD may also contribute to lower serum levels of PUFA-containing ether lipids (cluster A), while the defective intestinal barrier function may result in 
serum over-representation of SitS and cholesta-4,6-dien-3-one (cluster D). Altogether, these changes and others may contribute to the progression from 
a physiological control of crucial intestinal processes toward a commitment of CD. Figure created by Servier Medical Art (SMART) images by Servier 
(http://smart.servier.com/), licensed under a Creative Commons Attribution 3.0 Unported License (CC BY 3.0).

functionality of the gut-microbe interface.30 Lipids within this 
cluster also share a structural feature, namely that they have 
predominantly an omega-6 (C20:4) or omega-3 (C22:6) PUFA 
moieties in sn-2 position, which are susceptible to oxidative 
stress and likely contribute to their biological role via their 
metabolism to pro/anti-inflammatory as well as specialized 
proresolution mediators (SPMs).5 Hence, the lower circulating 
levels in PUFA-containing ether lipids may reflect an enhanced 
oxidative stress or dysregulated peroxisomal lipid metabolism 
and likely compromise inflammation resolution in CD.

Cluster B consists of VLCDCA 28:1(OH) and 4 
correlated lipid features, including its nonhydroxylated and 

polyunsaturated relative VLCDCA 28:4, which were lower 
in sera of CD patients, associated with the B2/B3 phenotypes 
but not with disease location. While originally named gas-
trointestinal tract acids, VLCDCAs have been reported to 
have antiproliferative and anti-inflammatory properties 
in vitro31,32 and are reduced in patients with colorectal 
cancer,33–35 suggesting their categorization as bioactive lipids. 
Importantly, VLCDCAs are structurally and functionally re-
lated to SPMs,36 which are hydroxylated PUFAs that trigger 
the resolution phase of inflammation via signaling through 
G protein–coupled receptor–dependent pathways. To the best 
of our knowledge, this is the first report of lower circulating 

http://smart.servier.com/
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levels of VLCDCA 28:1(OH) and 28:4 in CD. This may re-
flect a metabolic dysregulation possibly via (1) reduced 
VLCFA metabolism via cytochrome P450 in the liver37 or (2) 
enhanced catabolism in peroxisomes.37 However, irrespec-
tive of the mechanism, this is likely impacting inflammatory 
processes possibly via SPM-like effects, which have not yet 
been explored in IBD.

Cluster C consists of SM(d18:1/21:0) and 11 correlated 
lipids that were lower in sera of CD patients vs control 
subjects and strongly associated with disease behavior but 
independent of location. Notably, all these sphingolipids 
bear OCFA or VLCFA moieties. OCFA levels likely reflect 
gut microbiota–mediated synthesis of its short-chain FA 
precursor, namely propionic acid, or host metabolism of 
branched-chain amino acids, which were reported to be both 
reduced in CD.22,38 As for VLCFAs, their incorporation into 
sphingolipids, which involves intestinal ceramide synthase 2, 
has been connected to intestinal defense in mice.6,7 In support 
of the current observation, a dysregulated intestinal metabo-
lism of SMs was also observed in the feces from patients with 
CD.28 Hence, lower serum SMs bearing OCFAs or VLCFAs 
likely reflect dysbiosis or a defective synthesis and may impact 
on intestinal epithelial barrier function.

Cluster D consists of SitS and 15 other MS/MS-identified 
lipids, including cholesta-4,6-dien-3-one, which were 
all found to be elevated in sera of CD patients vs control 
subjects and were associated with disease behavior and loca-
tion. Interestingly, 2 triglycerides containing PUFAs (20:4 or 
22:5), which are precursors for bioactive molecules involved 
in inflammation and its resolution, were the only serum lipids 
found to be associated with disease activity and HBI in our 
independent cohort, suggesting rapid triglyceride acyl chain 
remodeling under these conditions. To the best of our knowl-
edge, SitS and cholesta-4,6-dien-3-one are herein reported 
for the first time. The SitS precursor, sitosterol, is a dietary 
phytosterol with known antiproliferative and anti-inflamma-
tory properties. By analogy with bile acids,39 one may specu-
late that dysbiosis favors elevated levels of its putative inactive 
3-OH sulfated form (ie, SitS). Given that noncholesterol 
sterols are absorbed in the small intestine but their transfer 
into the lymph fluid is far less efficient, the elevated levels 
of SitS, which are more pronounced in B2/B3 and L1 pres-
entation, may therefore reflect dysbiosis or intestinal epithe-
lial barrier dysfunction. As for cholesta-4,6-dien-3-one, little 
is known about this oxysterol except for its accumulation 
in patients with cerebrotendinous xanthomatosis—50% of 
which suffer from chronic diarrhea—caused by mutations in 
the CYP27A1 gene.40 Several oxysterols play important roles 
in CD pathophysiology, acting through immune cell receptors 
such as GPR183 and liver X receptors, coded by IBD risk 
genes identified by genome-wide association studies.1 While 
the specific role of cholesta-4,6-dien-3-one in CD remains 
to be clarified, its higher serum levels concur with lower 
CYP27A1 messenger RNA levels in colon biopsies from CD 
patients41 and add to our knowledge on the dysregulated me-
tabolism of cholesterol and bile acids in CD.

Cluster E consists of CE(14:1) and 2 other correlated 
lipids. CE(14:1) was found to be lower in CD patients vs 
control subjects and to be associated with ileal disease lo-
cation. Just as SitS, CE(14:1) also belongs to the sterol lipid 
class but is likely to represent distinct biological information, 
given that they are in different clusters. Lower CE(14:1) in 
CD may result from impaired cholesterol metabolism, either 

its acylation by acyl-CoA cholesterol acyltransferase in the 
intestine or liver or by lecithin-cholesterol acyltransferase ac-
tivity in high-density lipoproteins.42 This may also be linked 
to a cellular deficiency in plasmalogens, which is known to 
impact several steps of cholesterol homeostasis.43 Another 
interesting potential explanation is provided by the recent 
discovery of a microbial cholesterol dehydrogenase named 
ismA and that ismA+ species decreased fecal and serum cho-
lesterol in humans.44 While this remains speculative, lower 
CE(14:1) in the sera of CD patients may reflect changes in 
the gut microbiome that increase the proportion of ismA+ 
species.

Taken together, these 5 annotated classifiers, as well as 
many of the correlated lipids within their clusters, appear to 
capture multiple different biologic mechanisms, which is rea-
sonable to assume, and are associated with the etiology or 
pathology of CD. The strongest association of most of these 
metabolites was to B2/B3, suggesting that these capture bi-
ological pathways when there is a breakdown of intestinal 
homeostasis and barrier integrity.

Conclusions
In the current study, we identified circulating lipids associated 
with CD, disease location, and behavior and propose specific 
metabolic pathways that are perturbed in disease. While it 
remains to be determined how early in the disease process 
such metabolic imbalances are detectable in patients with CD, 
given the strong discriminating capacity that was observed 
with as few as 5 to 9 lipid features, it will be important to ex-
plore the potential of these candidate biomarkers to aid in the 
diagnosis of CD. It needs to be acknowledged that much work 
still needs to be done (eg, exploring potential confounders 
in large prospective cohorts, determining how early in dis-
ease course these lipid profiles are detected) in order to es-
tablish the clinical utility of these biomarkers. Nonetheless, 
this and recent studies demonstrate the power of MS-based 
metabolomics, particularly untargeted lipidomic approaches, 
to uncover mechanisms of CD pathophysiology and clinical 
outcomes.22–28

Supplementary Data
Supplementary data is available at Inflammatory Bowel 
Diseases online.

Acknowledgments
We thank Pr Hubert Schaller, at the Institut de Biologie 
Moléculaire des Plantes (Centre National de la Recherche 
Scientifique, Université de Strasbourg) for sharing analytical 
standards as well as Caroline Daneault and Isabelle Robillard 
Frayne for their assistance in lipidomic sample analysis.
Members of the iGenoMed Consortium: Alain Bitton, 
Gabrielle Boucher, Guy Charron, Christine Des Rosiers, Anik 
Forest, Philippe Goyette, Sabine Ivinson, Lawrence Joseph, 
Rita Kohen, Jean Lachaine, Sylvie Lesage, Megan Levings, 
John D. Rioux, Julie Thompson Legault, Luc Vachon, Sophie 
Veilleux, and Brian White-Guay.

Members of NIDDK IBD Genetics Consortium: Manisha 
Bajpai, Sondra Birch, Alain Bitton, Krzysztof Borowski, 
Gregory Botwin, Gabrielle Boucher, Steven R. Brant, Wei 



1036 Ferru-Clément et al

Chen, Judy H. Cho, Roberto Cordero, Justin Côté-Daigneault, 
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