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Positive allometry of signalling traits has often been taken as evidence for
sexual selection. However, few studies have explored interspecific differences
in allometric scaling relationships among closely related species that vary in
their degree of ecological similarity. Anolis lizards possess an elaborate retract-
able throat fan called a dewlap that is used for visual communication and
differs greatly in size and colour among species. We observed that Anolis
dewlaps demonstrate positive allometry: relative dewlap size increases with
body size. We also observed that coexisting species are divergent in signal
size allometries, while convergent species—similar in other aspects of ecology,
morphology and behaviour—typically share similar dewlap allometric scaling
relationships. These patterns suggest that dewlap scaling relationships may
follow the same pattern as other traits in the anole radiation, where ecologically
different sympatric species have evolved a suite of divergent traits.
1. Introduction
Visual signals represent some of the most elaborate biological features on Earth.
From peacock tail feathers to fiddler crab claws, signalling traits have evolved to
convey a range of information during visual communication [1–3]. Such traits
often exhibit positive static allometry [4], whereby signal size is disproportionately
largerwith increasing body size [5]. As signalling traits have often been considered
to influence reproductive fitness [4], positive allometric scaling of signal size has
often been taken as evidence for sexual selection, although this has attracted
some debate [4,6]. However, most studies have only explored allometric scaling
in single species [5]; comparative studies that explore interspecific differences in
signal size allometry among closely related species are rare (although see [7]).

In lizards, extendable throat fans called dewlaps have independently
evolved in multiple lineages as a signal for visual communication [8,9]. The
most speciose clade is Anolis lizards (anoles), in which sexual dimorphism in
dewlap size is typical and male anoles usually possess relatively larger dewlaps
than females [10]. However, evidence for positive allometry is mixed and
comparative analyses are rare [11–14].

Anoles have independently radiated into convergent communities
comprised of species specialized to use different portions of the structural
environment (‘ecomorphs’; [15]) on each of the four large islands of the Greater
Antilles: Cuba, Hispaniola, Jamaica and Puerto Rico [16]. Co-occurring species
of different ecomorph classes rarely have dewlaps comprised of similar colours
or patterns [14], which suggests a role for dewlaps as signals for species recog-
nition ([17–19], but see [20]). However, members of the same ecomorph class,
though convergent in ecology, morphology and behaviour, rarely are convergent
in dewlap phenotype [14,20]. Comparative studies of dewlap size allometry,
among either convergent species of the same ecomorph class or co-occurring
species of different ecomorph classes, have been surprisingly overlooked.

Here, we explore three questions: (1) is there positive allometric scaling of
dewlap size in Anolis lizards? (2) Do co-occurring species differ in signal size
allometry? And (3) do convergent species have similar signal size allometry?
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Table 1. Allometric relationships between dewlap size and body length in 10 Anolis lizard species. Slopes greater than 1 represent positive allometry where
signal size (dewlap area) is disproportionately larger with increasing body size; p-values reflect a statistical difference of b to isometry (i.e. 1).

ecomorph species country location N slope (b) s.e. R2 p-value

trunk A. brevirostris Dom. Rep. Barahona 118 1.108 0.149 0.324 0.469

trunk A. distichus Bahamas Andros Island 47 1.255 0.264 0.335 0.338

trunk–crown A. grahami Jamaica Long Mountain 103 1.453 0.094 0.703 <0.001

trunk–crown A. coelestinus Dom. Rep. Barahona 39 1.486 0.078 0.907 <0.001

trunk–crown A. smaragdinus Bahamas Andros Island 32 1.787 0.249 0.632 0.004

twig A. angusticeps Bahamas Andros Island 52 1.800 0.290 0.436 0.008

twig A. valencienni Jamaica Long Mountain 53 1.337 0.078 0.853 <0.001

trunk–ground A. cybotes Dom. Rep. Barahona 73 1.771 0.106 0.797 <0.001

trunk–ground A. sagrei Bahamas Andros Island 89 2.316 0.083 0.900 <0.001

trunk–ground A. lineatopus Jamaica Long Mountain 261 2.426 0.064 0.849 <0.001
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2. Methods
(a) Species sampling and field collection
Between 6 April–3 June and 2 November–16 December 2019, we
sampledmaleAnolis lizards (table 1) in three communities: Jamaica
(Long Mountain, Kingston), the Dominican Republic (Barahona
province) and the Bahamas (Andros Island). In all communities
no two species are of the same ecomorph class, and members of
the same ecomorph class in different communities are not closely
related (with the exception of A. distichus and A. brevirostris).

(b) Measurement of dewlap size
Dewlap size (total area) was calculated from digital photographs
obtained in the field. Dewlaps were extended via pulling of the
hyoid bone using a pair of small forceps (see electronic supplemen-
tary material, figure S1) and digital photographs were taken
(Canon EOS Rebel T5 with X-Rite ColorChecker Passport for
scale). We used a digital drawing tablet (Wacom Intuos Pro) to
manually trace dewlaps in ImageJ [21] (all by B.K.). Body size
(snout-to-vent length; SVL) wasmeasured in the field using digital
calipers (Mahr EWRi digital caliper; all by J.T.S.).

(c) Statistical analyses
Allometry describes the size of morphological traits relative to
each other, most typically to body size. Specifically, allometric
slopes (b) can be described using the equation Y = aXb, where Y
in our study represents dewlap size and X represents body size.
Dewlap size (area) was first linearized with respect to body size
(SVL) by square-root transformation and then both variables
were natural log transformed [5,14]. Ordinary least squares
regressions were used to determine allometric scaling relation-
ships [5,14]. Isometry (b = 1) describes a relationship where
relative trait size is constant with increasing body size. Positive
allometry (b > 1) represents increasing relative trait size with
body size; negative allometry (b < 1) describes the opposite. We
used t-tests to investigate whether allometric slopes differed
statistically from isometry. To test for divergence in static allome-
tries (i.e. intraspecific relationships between variation in dewlap
andbodysize) between co-occurring species in different ecomorph
classes and convergence in static allometries between non-
coexisting species of the same ecomorph class, we included a
dewlap size × species interaction in independent multiple
regression models for each community and ecomorph class. All
analyses were conducted in R [22] using RStudio [23].
3. Results
(a) Static allometry of dewlap size
We sampled the dewlap sizes of 867 lizards. All species
exhibited positive allometric scaling of dewlap size relative
to body size (i.e. b > 1). Trunk–ground anoles exhibited the
strongest allometry, while trunk anoles exhibited the weakest
(and did not differ statistically from isometry; table 1,
figure 1).

(b) Comparative analyses of dewlap size allometry
In all communities, co-occurring species exhibited different
allometries of dewlap size (table 2). Between communities,
species of the same ecomorph class typically exhibited similar
allometries (table 2). Trunk–ground anoles were an exception:
the allometric slope of A. cybotes was lower than that of
both A. sagrei (F1,158= 60.8, p < 0.001) and A. lineatopus
(F1,158 = 29.9, p < 0.001). The removal of small-bodied outliers
in both A. distichus and A. valencienni did not change overall
results (see electronic supplementary material).
4. Discussion
All Anolis lizards in our study exhibited positive allometry in
dewlap size (table 1 and figure 1). Specifically, we observed
that dewlap allometry is very similar for allopatric species of
the same ecomorph class (figure 1 and table 2b), but that co-
occurring species—those of different ecomorph classes—vary
significantly in dewlap size allometry (table 2a).

As positive signal allometry is often taken as evidence
for sexual selection [4], interspecific differences in dewlap
allometry may result from divergent sexual selection pressures.
A comparative analysis of Anolis social behaviour found high
variation among different ecomorphs in dewlap display rates
and spatially structured social landscapes (e.g. interaction
frequency of adult males overlapping in space; [24]). For
example, male trunk–ground anoles spatially overlap with six
times as many males as twig anoles but encounter a similar
number of females [24]. These differences may lead to variable
sexual selection pressures, driving evolutionary differences in
dewlap allometry. Conversely, species of the same ecomorph
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Figure 1. (a–d) Allometric scaling patterns of dewlap size in Anolis lizard ecomorphs. Positive allometry occurs when slopes are steeper than isometric dashed lines
(i.e. b = 2, as dewlap area data presented here are not linearized). (e) Typical dewlap size progression with body size in Anolis sagrei.
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class are typically very similar in social [24] and dewlap attri-
butes (table 2, [20]). In the same vein, convergence within
ecomorphs could result from similar sexual selection pressures.
For example, trunk–ground anoles typically exhibit the highest
rates of dewlap display behaviours associated with courtship
and competitive social conflict [24–26], suggesting strong
sexual selection may occur. Concomitantly, trunk–ground
species in our study displayed the steepest allometric slopes of
dewlap size (table 1).

Sexual selection is not the only factor affecting dewlaps,
however; rather, dewlaps are multi-purpose signals, commu-
nicating information not only to male rivals [27] and
potential mates [28,29], but also congeneric competitors [17]
or even predators [30,31]. Therefore, while dewlap traits may
have direct reproductive fitness consequences through their
function in courtship interactions, as well as many indirect fit-
ness consequences, the relative importance of these biotic
interactions could be expected to differ among ecomorphs
classes that inhabit different parts of the structural environ-
mental and differ in behaviour and social structures [24]. The
variation in dewlap allometry that we observed could have
evolved due to this variation in function: species with social
systems where signals function primarily for courtship often
have different optimal allometric slopes than those that



Table 2. Differences in allometric scaling of dewlap size in (a) co-occurring
species of different ecomorph classes and (b) convergent but allopatric
species of the same ecomorph class.

sum sq. d.f. F p

(a) ecomorph differences within a community

Jamaica × ecomorph 1.37 2,411 67.05 <0.001***

Bahamas ×

ecomorph

0.24 3,212 7.15 <0.001***

Dom. Rep. ×

ecomorph

0.14 2,224 7.07 0.001**

(b) ecomorph similarities between communities

trunk × species <0.01 1,161 0.28 0.595

trunk–ground ×

species

0.25 2,411 11.12 <0.001***

(A. cybotes

excluded)

0.01 1,343 0.90 0.344

trunk–crown ×

species

0.02 2,168 1.26 0.285

twig × species 0.03 1,106 2.64 0.107
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function as threat displays [32]. The patterns of dewlap size
allometry that we observed—both the divergence in sympatry
and convergence within ecomorphs—are likely the result of a
complex trade-off between the multiple functions of the
dewlap (e.g. courtship and antagonism) which may vary
among ecomorphs.

While dewlap phenotypes likely evolve primarily due to
the dual roles of signalling behaviours that have both direct
(i.e. courtship) and indirect (e.g. mediation of agonistic inter-
actions among competing males) fitness effects, the context of
communication between the signaller and the receiver may
also play a major role [33]. In anoles, it is likely that dewlap
size is a proxy for overall body size (as the two are highly cor-
related; table 1). However, variation in the strength of this
correlation—as well as the allometric slope—exists among eco-
morphs. One possible explanation is due to variation in
signalling distance among ecomorphs. Anolis visual systems
are complex, possessing fovea that facilitate binocular visual
acuity [34–36], and are very similar among species [37,38],
suggesting little interspecific variation in visual acuity as it per-
tains to distance [39]. As small differences in absolute size are
more difficult to discern with increasing distance [40], species
that display from further distances would be expected to
have allometric slopes that are both steeper and more highly
correlated. In this way, increased allometry would exaggerate
the signal’s message while increased correlation would
increase the signal’s accuracy. Trunk–ground anoles have the
largest dewlaps of all ecomorphs [41] and also display from
greater distances and in environments with the fewest visual
obstructions [24,26]; our results suggest that these species
also exhibit the strongest positive allometry in dewlap size
and dewlaps most accurately represent body size (table 1).
The strength of allometry in dewlap size may therefore be a
function of the distance at which different species
communicate, with allometric slopes being strongest in those
that display from the greatest distance.

Allometric scaling patterns may also be affected by the
viability costs associated with dewlap size, which may vary
among microhabitats and so among ecomorphs. However,
comparative data on viability among Anolis ecomorphs are
lacking but would be exceptionally valuable in clarifying
these dynamics.

A recent study of dewlap size allometry in Caribbean
anoles reported surprising evidence for hypo-allometry, i.e.
dewlap size was proportionately smaller with increasing
body size [14]. This result was especially surprising as it was
counter to all other studies (e.g. [11–13]), including our results
here. The paper introduced a new method based on measure-
ments taken from videos of lizards displaying in nature [14].
Though an innovative and potentially important method,
when we examined the underlying data associated with the
paper, we found that the dewlap size measurements are
vastly larger than our measurements of individuals of
the same species (see electronic supplementary material).
These video-derived size estimates were not validated by
additional measurement methods (e.g. the methods used in
this article) and so their accuracy remains unclear. Further
studies using such video-based measurements of anole
dewlaps would benefit from detailed validation of the accu-
racy of trait size estimates before such studies can challenge
the results consistently discovered by other studies of anole
dewlap allometry.

Here, we observed that all Anolis species exhibit positive
allometry in dewlap size: larger individuals had propor-
tionately larger dewlaps for their body size than small
individuals, although the strength of this allometry varied
among species. As our study represents one of the first com-
parative analyses of signal size allometry in lizard dewlaps, it
remains unclear if these patterns are specific only to anoles or
are consistent across in the multiple independent lineages
that have evolved dewlap structures [8,9].
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