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In post-stroke aphasia, language improvements following speech therapy are variable and can only be partially explained by the
lesion. Brain tissue integrity beyond the lesion (brain health) may influence language recovery and can be impacted by cardiovascular
risk factors, notably diabetes. We examined the impact of diabetes on structural network integrity and language recovery. Seventy-
eight participants with chronic post-stroke aphasia underwent six weeks of semantic and phonological language therapy. To quantify
structural network integrity, we evaluated the ratio of long-to-short-range white matter fibers within each participant’s whole brain
connectome, as long-range fibers are more susceptible to vascular injury and have been linked to high level cognitive processing.
We found that diabetes moderated the relationship between structural network integrity and naming improvement at 1 month post
treatment. For participants without diabetes (n = 59), there was a positive relationship between structural network integrity and naming
improvement (t = 2.19, p = 0.032). Among individuals with diabetes (n = 19), there were fewer treatment gains and virtually no association
between structural network integrity and naming improvement. Our results indicate that structural network integrity is associated with
treatment gains in aphasia for those without diabetes. These results highlight the importance of post-stroke structural white matter
architectural integrity in aphasia recovery.
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Introduction
Aphasia is an acquired language disorder that affects approx-
imately one third of those who experience a stroke (Berthier
2005). Although aphasia therapy is an effective way to reha-
bilitate language deficits for many individuals, it is difficult to
predict the extent to which patients will recover, as well as which
patients are likely to maintain improvements. Currently, the best
prognostic indicators of aphasia rehabilitation are pre-treatment
performance/aphasia severity, lesion size and location, age, and
education (Johnson et al. 2022). Nonetheless, there is still con-
siderable unexplained variance in recovery beyond these factors,
which has been extensively acknowledged in the literature (Lazar
and Antoniello 2008; Thye and Mirman 2018; Sul et al. 2019;
Osa García et al. 2020; Johnson et al. 2022). Moreover, general
cognitive functions such as nonverbal working memory, attention,
executive function, and nonlinguistic cognitive function might
also account for some of the variance in recovery (Harnish and
Lundine 2015; Harnish et al. 2018; Gilmore et al. 2019; Diedrichs
et al. 2022), but even with the inclusion of these additional fac-
tors, the interindividual variability in clinical trajectories remains
large.

Recent quantitative neuroimaging studies have supported the
idea that the integrity and connectivity status of the remaining

neural tissue could be a central determinant of recovery in apha-
sia (Wardlaw et al. 2013; Basilakos et al. 2015; den Ouden et
al. 2019; Gilmore et al. 2019; Klingbeil et al. 2019; Chang et al.
2021; Keator et al. 2021; Busby et al. 2022; Johnson et al. 2022;
Kristinsson et al. 2022). For example, white matter hyperintensi-
ties or premature aging of the residual brain tissue independently
predicted response to language therapy while controlling for age,
lesion volume, and severity in aphasia (Varkanitsa et al. 2020;
Kristinsson et al. 2022).

Importantly, stroke survivors commonly have cardiovascular
risk factors such as diabetes, hypertension, hyperlipidemia,
tobacco use, and reduced physical activity (Di Liegro et al. 2019;
Johnson et al. 2019; Kelly and Rothwell 2020), which can negatively
affect overall brain health and white matter integrity. Among
older adults without history of stroke, cerebro-cardio-vascular
risk factors, including diabetes, are associated with cognitive
decline, language deficits, and impaired memory performance
(Waldstein et al. 2005; Biessels and Reijmer 2014; Sadanand
et al. 2016; Johnson et al. 2019; Olaya et al. 2019; Lee et al.
2021). Among these, uncontrolled diabetes is also independently
associated with progressive decline in cognitive ability among
older adults after stroke, with one recent meta-analysis showing
that approximately 28% of stroke survivors have diabetes,
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and that this condition is associated with worse neurological
outcomes (Lau et al. 2019).

Currently, the impact of diabetes per se on neuroplasticity
in the context of aphasia recovery remains unclear. In general,
diabetes can lead to decrements in neuroplasticity and cause
microstructural changes in white matter, thus suggesting that it
may have an effect on aphasia recovery (Ho et al. 2013; Ryan et al.
2016; Ma et al. 2018; Krinock and Singhal 2021; Yang et al. 2021).
Given (i) the relationship between diabetes and general cognitive
decline, (ii) the high prevalence of diabetes among stroke survivors
with aphasia, and (iii) the broad cognitive demands of language,
it is reasonable to hypothesize that diabetes could significantly
affect aphasia recovery through impacting brain health.

Cardiovascular risk factors are associated with white matter
hyperintensities, disrupted white matter connectivity, and propor-
tion of axonal projections (i.e. fiber length) (Debette and Markus
2010; Voss et al. 2010; Moroni et al. 2018). The literature shows that
diabetes is also associated with disrupted white matter networks,
decreased gray matter volume (both globally and regionally), and
altered functional connectivity (Musen et al. 2006; van Elderen et
al. 2010; Zhang et al. 2016; Wang et al. 2019; Zhou et al. 2022).
The mechanisms supporting the loss of white matter integrity
are multiple, and it is well established that white matter is more
susceptible to injury compared to gray matter (Hamner et al.
2011). For instance, anaerobic resistance (the ability of cells to
survive in the absence of sufficient oxygen) is known to decline
with age (Hamner et al. 2011). Within the white matter, long-
range axonal projections are particularly susceptible to injury
due to their higher metabolic demand because of their length
(Buzsáki 2006; Ju et al. 2016). Studies outside of the aphasia
literature have shown the susceptibility of long-range fibers to
cardiovascular risk factors such as high blood pressure (Carnevale
et al. 2018) and diabetes (Huang et al. 2022) in the context of long-
range fiber preservation and cognitive aging (Hilal et al. 2021),
multiple sclerosis (Meijer et al. 2020), and dementia (Savard et al.
2022). Long-range fiber loss due to cardiovascular risk factors has
been shown to be predictive of cognitive performance in a non-
stroke population (Marebwa et al. 2018), as well as among stroke
survivors with aphasia (Wilmskoetter et al. 2019).

In the current study, we examine brain health and diabetes in
the context of post-stroke aphasia to predict language recovery
following treatment. Specifically, we aim to examine the inter-
action between structural network integrity (proportion of long-
to short-range fibers normalized by total number of fibers) with
diabetes to predict treatment gains.

Materials and methods
The study was approved by the Institutional Review Boards at the
Medical University of South Carolina and the University of South
Carolina. All procedures, including informed consent, were per-
formed within the guidelines and regulations at each institution
and according to the Declaration of Helsinki.

Participants
Participants included 78 adults with (> 12 months) post-stroke
aphasia due to a left-hemisphere stroke. Participants did not have
a history of other neurological or psychiatric disorders. Partici-
pants were 59% male and 41% female and on average 59.92 years
old (SD = 11.38). Most participants had Broca’s aphasia (48%),
followed by Anomic aphasia (27%), Conduction aphasia (13%),
Wernicke’s aphasia (6%), Global aphasia (5%), and Transcortical

motor aphasia (1%), classified based on Western Aphasia Battery-
Revised (WAB-R) score distributions and clinician assessment
(Kertesz et al. 2007). Participants were on average 45.24 months
post-stroke at the time of baseline evaluation (SD = 44.25), and
67% of participants experienced an ischemic stroke, followed by
hemorrhagic (25%), or other (“Other” etiology refers to cases in
which it was unclear whether the stroke was ischemic or hem-
orrhagic) (8%).

Design and instruments
All participants were part of the Predicting Outcomes of Language
Rehabilitation in aphasia (POLAR) clinical trial (Kristinsson et al.
2021). They completed a 3-week block of speech therapy with
one form of therapy (semantic or phonological), followed by a 4-
week rest period, and then another 3-week block with the other
form of therapy (semantic or phonological). The order of ther-
apy approaches was randomized. Semantically focused therapy
included three tasks: (i) semantic feature analysis, (ii) a seman-
tic barrier task, and (iii) Verb Network Strengthening Treatment
(VNeST) (Edmonds 2014). In turn, phonologically focused therapy
included three tasks as well: (i) phonological component analysis,
(ii) a phonological production task, and (iii) a phonological judg-
ment task. Each therapy session was one hour.

The WAB-R was administered at baseline to identify type and
severity of aphasia (Kertesz et al. 2007). Cardiovascular risk factors
were also collected at baseline, including a yes/no question about
diabetes (diabetes absent: n = 59, diabetes present: n = 19). Partic-
ipants were administered the Philadelphia Naming Test (PNT) at
baseline and 1 month following therapy (Fig. 1).

In this study, we opted to evaluate naming treatment results
based on proportion of potential maximal gain (PMG), which can
provide information about improvement while considering the
available magnitude of potential improvement. However, PMG can
be numerically influenced by baseline performance and possibly
mask gains if not fully controlled for baseline deficits (Bonkhoff
et al. 2019; Bowman et al. 2021). Therefore, PMG was used as a
dependent measure controlling for baseline impairments in our
moderation analysis.

MRI acquisition and analyses
High-resolution structural MRI data were obtained from all 78
participants using a Siemens 3 T Trio or a Prisma Systems scanner
with 20-channel head-neck (16/4) coil located at the University
of South Carolina or at the Medical University of South Car-
olina, respectively. The images were acquired with the follow-
ing parameters: T1-weighted images—MR-RAGE sequence with
1 mm3 isotropic voxels, FOV matrix of 256 mm × 256 mm, 9-degree
flip angle, and 192 sagittal slice sequence with TR = 2,250 ms,
T1 = 925 ms, and TE = 4.15 ms, with parallel imaging (GRAPPA = 2,
80 reference lines); T2-weighted images -3D SPACE voxel size
of 1 mm3, 256 mm × 256 mm FOV matrix, 160 sagittal slice
sequence, variable flip angle, TR = 3,200 ms, TE = 352 ms, with
no slice acceleration. Diffusion echo planar imaging (EPI) data
were also obtained from all participants in accordance with the
following parameters: diffusion EPI scan using 36 directions with
b = 1000 (60 volumes), 2,000 (60), and 0 s/mm2 (11), TR = 6,100 ms,
TE = 101 ms, 82 × 82 matrix, 222 mm × 222 mm FOV, with par-
allel imaging GRAPPA = 2, 45 contiguous 2.7 mm axial slices,
TA = 853 s.

DICOM to NIfTI format conversion was performed using
dcm2niix (Li et al. 2016). The stroke lesions were manually
delineated on the T2 weighted images by trained personnel under
supervision of a neurologist (LB) who were blinded to behavioral
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Fig. 1. Schematic of study design (note that treatment 1 and 2 were randomly assigned order).

scores. The stroke lesions were normalized to standard space
using SPM12 and open source MATLAB scripts developed in-house
(Rorden et al. 2012) using an enantiomorphic approach (Nachev
et al. 2008) within SPM12’s unified segmentation-normalization
(Ashburner and Friston 2005) to avoid lesion-related distortions in
spatial normalization (Fig. 2). Diffusion images were undistorted
using a TOPUP sequence (Andersson et al. 2003), and movement
and Eddy motion correction were applied using FSL’s -eddy tool
(Bodammer et al. 2004; Andersson and Sotiropoulos 2016).

Brain health: Structural network integrity
We employed a whole-brain structural connectome approach to
measure the integrity of white matter networks and the global
impact of diabetes. The whole-brain structural connectome was
reconstructed from all individuals using probabilistic diffusion
tensor imaging. We computed a reverse normalization to warp the
Atlas of Intrinsic Connectivity of Homotopic Areas (AICHA; Joliot
et al. 2015) brain atlas in standard space to the individual’s native
diffusion image using SPM12’s “oldnorm” function. Probabilistic
gray and white matter maps were obtained during SPM12’s uni-
fied segmentation-normalization of T1 images and also registered
into diffusion space to guide tractography. Pairwise connectivity
between all possible gray matter regions from the atlas was mea-
sured through probabilistic tractography using FDT’s Bedpost and
FDT’s probtrackX (5,000 individual pathways drawn through the
probability distributions on principal fiber direction, curvature
threshold set at 0.2, 200 maximum steps, step length 0.5 mm,
and distance correction (Behrens et al. 2007)). The probabilistic
white-matter map excluding the stroke lesion was used as a
waypoint mask. For each possible pair of regions, we computed
the number of probable streamlines arriving in one region when
another region was seeded (averaged with the vice-versa direction
given the undirected nature of diffusion tensor imaging data).
The weighted connectivity between regions was corrected based
on the distance traveled by the streamlines (“distance correction”
built into probtrackX) and the sum of volume of the regions to
account for space and length biases. As a result, an individu-
alized connectivity matrix was obtained from each individual.
Since these were based on probabilistic tractography, connections
with very low probability (lower than the 20th percentile) were
considered likely spurious and transformed into zero weight.

To quantify proportion of long-range fibers, we used a similar
approach as in Wilmskoetter et al. (2019). Proportions were com-
puted by measuring the Euclidean distance between the centroids
of ROIs in standard Montreal Neurological Institute (MNI space).

Connections whose distance was within the first quartile (lowest
25%) were identified as “short distance” fibers, those within the
second and third quartiles (25–75%) were identified as “middle
distance” fibers, and connections within the fourth quartile (75%
and above) were identified as “long range” fibers (Fig. 2). Hence,
structural network integrity was measured as the proportion of
long-range to short-range fibers normalized to the total number
of fibers:

Number of Long − Range Fibers
Number of Short − Range Fibers

× Total Number of Fibers

Accordingly, better structural network integrity was character-
ized by a larger proportion of long-range to short-range fibers nor-
malized to total number of fibers. We will refer to this calculation
as “structural network integrity” from this point on.

Statistical analyses
To address our hypotheses, we used t-tests to compare struc-
tural network integrity and improvements in naming accuracy
for those with versus without diabetes. We then used a mod-
eration analysis for naming improvement at 1 month following
treatment, controlling for age, lesion volume, and baseline PNT
performance in SPSS 27 with PROCESS (Hayes 2013) to investigate
the relationship of diabetes, structural network integrity, and
treatment gains.

Results
Statistical analyses
A series of t-tests were used to compare baseline naming perfor-
mance, naming improvement at 1 month post-treatment, struc-
tural network integrity, lesion volume, and age for participants
with and without diabetes. The diabetes present and diabetes
absent groups did not differ on any of variables except for recovery
at 1 month, which was significantly lower for those with diabetes
(t = −3.08, p = 0.003; see Table 1 and Fig. 3A).

Moderation: treatment gains at 1 month
With naming improvement at 1 month as the dependent
variable, with structural network integrity as the independent
variable, with diabetes as the moderating variable (where
diabetes = 1 and no diabetes = 2), and with age, lesion volume,
and baseline performance as covariates, the model summary for
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Fig. 2. Schematic of imaging methods used from using the T1 weighted, diffusion weighted, and AICHA atlas to constructing a whole brain connectome
and tractography, then calculating the distance of each area, followed by categorizing fiber length.

Table 1. Comparison of baseline Philadelphia naming test (PNT), treatment gains, lesion volume, and structural network integrity
across those with and without diabetes.

Diabetes (n = 19) No Diabetes (n = 59)

Mean (SD) Mean (SD) t-value p-value

Baseline PNT 67.92 (68.00) 81.21 (61.10) −.80 .43
Treatment Gains (1 Month) .034 (.10) .13 (.16) −3.08 .003
Age 61. 32 (8.81) 59.36 (12.00) .66 .51
Lesion Volume 125,268 (109,667) 124,600 (85,433) .028 .98
Structural Network Integrity 3496 (1630) 3955 (1801) −.99 .33

the regression predicting naming improvement at 1 month
was significant, R = 0.73, R2 = 0.53 F(6,71) = 13.26, p < 0.001. The
interaction between diabetes and structural network integrity
was significant, and R2 = 0.043, F(1,71) = 6.49, p = 0.013 (i.e., the
interaction explains 4.3% of the variance in treatment gains; see
Table 2, Fig. 3). This interaction indicated that diabetes moderates
the relationship between structural network integrity and naming
improvement at 1 month. Although the overall interaction was
significant, the conditional effects showed that the relationship
between structural network integrity and naming improvement
at 1 month was only significant for those without diabetes (i.e. not
significant for those with diabetes), for whom there was a positive
relationship between structural network integrity and naming
improvement (t = 2.19, p = 0.032; see Table 2, Fig. 3B). Again, the
effect was absent for participants with diabetes.

An analysis including scanner site can be found in the sup-
plementary materials, which shows that it is not a significant
covariate (Supplementary Analysis 1). A linear regression with

and without the interaction terms can also be found in the
Supplementary Materials (Supplementary Analysis 2).

Discussion
In the current study, we examined the relationship among struc-
tural network integrity, presence of diabetes, and treatment gains
in post-stroke aphasia. Our results show that diabetes moderates
the relationship between structural network integrity and nam-
ing improvement at 1 month after treatment, meaning that the
strength of the relationship between structural network integrity
and treatment gains is influenced by diabetes. More specifically,
our findings reveal that structural network integrity and the
absence of diabetes interact (i.e. diabetes status × structural
network integrity) to predict treatment gains.

Our results highlight the importance of considering cardiovas-
cular health and the health of non-lesioned tissue in aphasia
recovery trajectories, which is in line with previous research on

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad140#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad140#supplementary-data
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Fig. 3. A) Treatment gains for those with and without diabetes (p < 0.05); B) plot of proportion of structural network integrity and treatment gains at
1 month for those with and without diabetes (note that the relationship between treatment gains and structural network integrity is significant for
“diabetes absent” while the “diabetes present” group is not significant).

Table 2. Moderation model: 1 month follow-up.

Overall Model

Standardized
Coefficient

Unstandardized
Coefficient

Unstandardized Coefficient Standard
Error

t-value p-value LLCI ULCI

Constant .31 .14 2.15 .035 .023 .60
Structural Network Integrity −.84 −.0001 .0000 −2.19 .032 −.0001 .0000
Lesion Volume .069 .0000 .0000 .77 .44 .0000 .0000
Diabetes −.27 −.095 .070 −1.35 .18 −.23 .05
Baseline .52 .001 .0002 5.22 <.001 .0008 .002
Age −.23 −.003 .001 −2.57 .012 −.0054 −.0007
Interaction 1.12 .0000 .0000 2.55 .013 .0000 .0001

Conditional Effects of the Focal Predictor at Values of the Moderator

Coefficient Standard Error t-value p-value LLCI ULCI

Diabetes Present .0000 .0000 −1.66 .101 −.0001 .0000
Diabetes Absent .0000 .0000 2.19 .032 .0000 .0000

residual network integrity and aphasia (van Elderen et al. 2010;
Zhang et al. 2016; den Ouden et al. 2019; Keator et al. 2021; Busby
et al. 2022; Johnson et al. 2022; Kristinsson et al. 2022). More
specifically, we found that those with diabetes recover less than
those without diabetes, which is similar to work showing diabetes
as associated with cognitive decline (Waldstein et al. 2005; Biessels
and Reijmer 2014; Sadanand et al. 2016; Johnson et al. 2019; Olaya
et al. 2019; Lee et al. 2021). Taken together, these observations
support the inclusion of cerebro-cardio-vascular profile in models
of cognitive recovery (Marebwa et al. 2018; Song et al. 2020; Zanon
Zotin et al. 2021).

There are a number of important caveats in the interpretation
of our findings. First, we recognize that brain health can be
defined in many ways. Here, we focused specifically on structural
network integrity, defined as the proportion of long to short range
fibers normalized by total fibers because (i) this is a biomarker
that can be derived at the individual level in a straight-forward
fashion in a research setting, making it good for generalization;
and (ii) prior studies have shown the relevance of this measure
as a marker for brain integrity, particularly in the context of

cardiovascular risk factors, such as hypertension and diabetes or
aging and dementia (Pires et al. 2013; Gao et al. 2014; Huang et al.
2022; Savard et al. 2022). Although, clinically, this biomarker might
not be currently feasible for treatment planning, we urge the field
to focus on cardiovascular risk factors in relation to both brain
health and aphasia recovery in order to create more clinically
relevant tools and ultimately improve prognostic evaluation. Yet,
the mere finding of an association between structural network
integrity and aphasia recovery is an encouraging avenue, and we
propose further exploration of this marker and its applications
in translational neuroimaging research and clinical practice. In
our study, this measure accounted for ∼ 4.3% of the variability
in treatment gains despite strictly controlling for other well-
established contributors to such variability (i.e. age, lesion volume,
baseline PNT performance). Although our measure of structural
network integrity seems to be a useful measure, ideal quantifica-
tion of brain health will likely rely on a multi-pronged and multi-
modal approach rather than a single measure.

An important limitation to consider is the determination of
diabetes solely as present or absent. Due to the inherent biases
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in retrospective analyses, we did not have a richer approach to
quantify this risk factor. The binary measurement of diabetes
may have led us to find null effects in the diabetes present
group due to differing variability in this group. Additional mea-
surement of diabetes severity/management has the potential
to uncover patterns of structural integrity in relation to treat-
ment response for individuals with diabetes. However, we argue
that our findings make expanding on definitions and measure-
ment of diabetes worthy of further exploration. In particular, we
propose studying multifaceted variables to include hemoglobin
A1c as a continuous measure, the use of anti-diabetes insulinic
and non-insulinic agents, duration of disease, and the presence
or absence of diabetes-related end-organ damage, as including
these factors may reveal what is occurring in the brain of those
with comorbid diabetes and aphasia. One of the main impli-
cations of the current study is emphasizing the importance of
prospectively gathering these clinical variables in detail, which
will enrich models and help better define the mechanistic path-
ways regarding how brain health integrity supports cognitive
rehabilitation. Additionally, we did not examine diabetes main-
tenance (i.e. medication, diet, exercise) in relation to brain health
or aphasia recovery. This should certainly be examined in future
work.

Conclusion
Our results support the importance of brain health in aphasia
recovery. Specifically, structural network integrity is a mechanistic
factor related to treatment gains for those without diabetes.
Although this relationship was not present for those with dia-
betes, we did find that there were fewer treatment gains in the
diabetes present group. In sum, the current study supports a
network integrity/brain health perspective to aphasia recovery
and the influence of diabetes on recovery.

Supplementary material
Supplementary material is available at Cerebral Cortex online.
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