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Cortical columns of direction-selective neurons in the motion sensitive area (MT) have been successfully established as a microscopic
feature of the neocortex in animals. The same property has been investigated at mesoscale (<1 mm) in the homologous brain area
(hMT+, V5) in living humans by using ultra-high field functional magnetic resonance imaging (fMRI). Despite the reproducibility of the
selective response to axis-of-motion stimuli, clear quantitative evidence for the columnar organization of hMT+ is still lacking. Using
cerebral blood volume (CBV)-sensitive fMRI at 7 Tesla with submillimeter resolution and high spatial specificity to microvasculature,
we investigate the columnar functional organization of hMT+ in 5 participants perceiving axis-of-motion stimuli for both blood
oxygenation level dependent (BOLD) and vascular space occupancy (VASO) contrast mechanisms provided by the used slice-selective
slab-inversion (SS-SI)-VASO sequence. With the development of a new searchlight algorithm for column detection, we provide the first
quantitative columnarity map that characterizes the entire 3D hMT+ volume. Using voxel-wise measures of sensitivity and specificity,
we demonstrate the advantage of using CBV-sensitive fMRI to detect mesoscopic cortical features by revealing higher specificity of axis-
of-motion cortical columns for VASO as compared to BOLD contrast. These voxel-wise metrics also provide further insights on how to
mitigate the highly debated draining veins effect. We conclude that using CBV–VASO fMRI together with voxel-wise measurements of
sensitivity, specificity and columnarity offers a promising avenue to quantify the mesoscopic organization of hMT+ with respect to
axis-of-motion stimuli. Furthermore, our approach and methodological developments are generalizable and applicable to other human
brain areas where similar mesoscopic research questions are addressed.

Key words: 7 Tesla; columns; fMRI; mesoscale; V5-hMT+.

Introduction
An important task of the visual system is to recognize moving
objects in a dynamic environment. The macaque middle temporal
(MT) area and its homolog in humans (hMT+, V5) is a higher order
cortical visual area sensitive to the direction of motion (Zeki 1974,
Maunsell and Van Essen 1983, Watson et al. 1993, Rees et al. 2000,
Born and Bradley 2005, Zimmermann et al. 2011). It also plays an
important role in constructive motion perception as revealed by
illusory (e.g. apparent) motion stimuli (Goebel et al. 1998, Muckli
et al. 2002, Born and Bradley 2005, Schneider et al. 2019). Invasive
electrophysiological recordings (Albright et al. 1984, Diogo et al.
2003) and optical imaging (Malonek et al. 1994) results suggested
that macaque extrastriate area MT is functionally organized in
cortical columns, similarly to V1 (Hubel and Wiesel 1965). In
particular, Albright et al. (1984) demonstrated in macaque MT
the occurrence of a systematic relationship between the pene-
tration angle of the electrode and the rate of change of preferred
direction of motion, indicating that cells with a similar preference
are arranged in vertically oriented columns (Mountcastle 1997,
Buxhoeveden and Casanova 2002). Albright et al. also discovered
that opposing directions of motion are located in neighboring
columns forming larger axis-of-motion columns.

The advent of magnetic resonance imaging opened the
avenue to bridge the gap to animal literature, by non-invasively
investigating the functional organization of the human brain.
Especially the advent of ultra high field (UHF) functional magnetic
resonance imaging (fMRI) combined with recent advances in
MR hardware and pulse sequences offers sub-millimeter spatial
resolution (Uǧurbil et al. 2003, Shmuel et al. 2007, Uludaǧ et al.
2009, Koopmans and Yacoub 2019) providing a unique way to
unveil mesoscopic properties underlying cognitive functions
at the level of cortical layers and cortical columns (Rakic
2008, Ugurbil 2016, Petro and Muckli 2017, De Martino et al.
2018, Dumoulin et al. 2018, Huber et al. 2020, Uğurbil 2021,
Viessmann and Polimeni 2021, Cho et al. 2022). Mesoscopic 7T
fMRI (Zimmermann et al. 2011, De Martino et al. 2013) has
already been used to investigate the columnar organization of
human MT using 3D-GRASE (Oshio and Feinberg 1992, Feinberg
et al. 1995, Kemper et al. 2015) and blood oxygenation level
dependent (BOLD) contrast. Zimmermann et al. (2011) provided
the first direct demonstration of axis-of-motion selectivity and
tuning characteristics in the human brain together with first
insights into the spatial organization of hMT+. However, their
columnar results can only be seen as an early approximation,
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since their limited number of samples across cortical depth could
obscure the full arrangement of the vertical columnar property.
To validate and enhance previous findings, we investigate
the functional organization of hMT+ in humans perceiving
axis-of-motion stimuli using 3 improvements: (i) we use cerebral
blood volume (CBV)-sensitive fMRI in addition to conventional
BOLD fMRI, and we developed novel methods to (ii) quantify local
sensitivity and specificity, and (iii) to detect, characterize, and
visualize cortical columns.

CBV-sensitive fMRI. We use the SS-SI VASO (Huber et al. 2014)
pulse sequence to get high-resolution CBV-sensitive fMRI. The
VASO sequence is more suitable for imaging mesoscopic features
compared to standard gradient echo BOLD echo planar imaging
(GE-BOLD EPI), since it provides higher spatial specificity to the
neuronal activation cite (Huber et al. 2019). Differently from the
BOLD contrast, VASO is more sensitive to the microvasculature
and it is less compromised by both oxygenation related vascular
changes as well as large draining effects from vessels penetrating
the cortex orthogonally or from pial veins lying on top of the gray
matter surface (Duvernoy et al. 1981, Lauwers et al. 2008, Weber
et al. 2011). However, its usage at submillimeter resolution is still
challenging due to its inherently low signal-to-noise ratio (SNR)
(Huber et al. 2019).

Local measure of sensitivity and specificity. For more pre-
cise quantification of differences between BOLD and VASO fMRI
responses, we develop a voxel-wise measure of sensitivity and
specificity as an extended version of the conventional global
measures (Huber et al. 2017, Beckett et al. 2020). These metrics
were also used to compare results from BOLD and VASO contrast
mechanisms at the global level (Huber et al. 2017, 2020, Oliveira
et al. 2022). Global metrics summarize the behavior of an entire
region of interest, whereas our local metrics provide a functional
characterization for each voxel inside a region of interest, result-
ing in more complete information for addressing mesoscopic
questions at submillimeter resolution. More specifically, our new
local metrics allow to evaluate the tuning property encoded in
each voxel: if a voxel is strongly tuned to a specific condition its
specificity will be high and its sensitivity will be inherited by the
contrast mechanism, whereas if a voxel is poorly tuned, as in the
case of a voxel sampling a big vessel, the specificity will be very
low while the sensitivity will be very high.

Novel method to characterize cortical columns. To overcome
depth-sampling limitations (Zimmermann et al. 2011), we develop
a new searchlight algorithm for functional column detection that
inspects the whole cortical depth of a specific volume of interest
and provides a quantitative columnarity map that is useful to
detect highly columnar functional patches inside the volume. The
algorithm provides a new generalized framework for investigat-
ing the columnar functional organization for any cortical gray
matter ribbon and it can potentially improve the replicability
and comparability of columnar results across studies using a
variety of columnar quantification methods (Yacoub et al. 2008,
Zimmermann et al. 2011, De Martino et al. 2013, 2015, Schneider
et al. 2019).

In this study, we acquire ultra-high field (7 Tesla) fMRI at
submillimeter resolution (0.8 mm isotropic) to investigate the
axis-of-motion cortical columns in hMT+ (V5). By using our new
algorithm for column detection, we provide a quantitative colum-
narity map that fully characterizes the functional organization of
hMT+ with respect to axis-of-motion preference. We demonstrate
the advantage of using CBV-sensitive fMRI to detect mesoscopic
cortical features by showing the higher specificity of axis-of-
motion cortical columns detected by VASO compared to BOLD
contrast.

Materials and methods
Experimental design

Participants. Five healthy participants (4 males and 1 female,
28–34 years old, 10 hMT+ regions) with normal or corrected-to-
normal vision were recruited for the study. Participants received
a monetary reward. All participants had been in an MRI scan-
ner at least once before and were trained and experienced at
maintaining fixation for long periods of time. Informed consent
was obtained from each participant before conducting the exper-
iment. The study was approved by the ethics review committee of
the Faculty of Psychology and Neuroscience (ERCPN) of Maastricht
University and experimental procedures followed the principles
expressed in the Declaration of Helsinki. Note that the sample
size of this study, despite it being small when compared to con-
ventional fMRI studies, is well within the range used in previous
fMRI studies at 7 T with similar research questions (Yacoub et al.
2008, De Martino et al. 2013, 2015, Schneider et al. 2019, Hollander
et al. 2021, Haenelt et al. 2023).

Stimulus presentation. The scripts used for the stimulus
presentation were developed based on Schneider et al. (2019)
and presented using the open source application PsychoPy3
(v2020.2.4). Scripts are available on https://github.com/27-
apizzuti/AOM-VASO_project. A frosted screen (distance from eye
to screen: 99 cm; image width: 28 cm; image height: 17.5 cm) at the
rear of the magnet was used to project the visual stimuli (using
Panasonic projector 28 PT-EZ570; Newark, NJ, USA; resolution
1,920 x 1,200; nominal refresh rate: 60 Hz) that participants could
watch through a tilted mirror attached to the head coil. We used
50% gray background (at 435 cd/m2 luminance) with white dots (at
1310 cd/m2) for the motion stimulation (black color is measured
at 2.20 cd/m2). An MR compatible button box was used to register
participants’ responses for the attention task during the entire
functional scanning procedure.

Stimulus description. Each participant underwent a 2 h scan-
ning session. In the scanning session, we collected 1 run to
functionally locate hMT+, 3–4 runs (according to the available
scanning time) to map 4 axes of motion conditions, and an
MP2RAGE scan to obtain a high-resolution structural image (only
if not already available from a previous scanning session). For the
hMT+ functional localizer, a standard block design paradigm was
used presenting moving dots in alternation with static dots in
a circular aperture (Tootell et al. 1995) (run duration: 9 min 10
s). We did not separate MST from hMT (Huk et al. 2002, Kolster
et al. 2010, Zimmermann et al. 2011) since we aimed to cover
the whole human motion complex (hMT+). Dots traveled inwards
and outwards from the center of the aperture for 10 s (speed = 8
degree of visual angle per second, dot size = 0.2 degree of visual
angle, number of dots = 200, black dots on gray background),
were followed by a stationary dots display presented for the same
amount of time. A total of 27 repetitions of task-rest blocks were
collected. For the axis-of-motion mapping runs, we presented
dots in a circular aperture moving coherently along one of 4
axes (0◦ ↔ 180◦, 45◦ ↔ 225◦, 90◦ ↔ 270◦, 135◦ ↔ 315◦, in both
directions of motion) (Zimmermann et al. 2011) alternated with
static flickering dots (run duration: 15 min). Moving dot patterns
(speed = 8 degrees of visual angle per second, dot size = 0.2
degree of visual angle, number of dots = 250) were presented
for 24 s followed by a variable inter-trial interval (ITI) of 24–29 s
to reduce functional signal carry over effects. Each motion axis
block was repeated 4 times per run. In all conditions, a black disk
(target/fixation dot) surrounded by an annulus was presented in
the center of the aperture. Participants were instructed to fixate
the black disk and respond through the button box every time
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Fig. 1. Graphical abstract. A-B) Experimental paradigm. A) Moving dots stimuli were presented in a circular aperture moving coherently along one of
four axes (colored arrows indicate 0◦↔ 180◦, 45◦↔ 225◦, 90◦↔ 270◦, 135◦↔ 315◦, in both directions of motion and were not presented in the actual
stimulus). B) Within each stimulus block, all the four axis-of-motion conditions were presented in alternation with the flicker condition (baseline), for
which dots were statically flickering. Each stimulus block was repeated four times in a run. A demo of our axis-of-motion stimulus is available here:
https://github.com/27-apizzuti/AOM-VASO_project/tree/main/stimulus_scripts/demos. C-D) From macroscale to mesoscale. C) Definition of the region
of interest hMT+, shown for an inflated hemisphere for one example participant (sub-01). D) Zooming in hMT+: example of axis-of-motion cortical
columns shown for a flattened hMT+ for the same participant (sub-01).

the annulus changed color (attention task). Figure 1 provides an
overview of the study as a graphical abstract. A demo of our
axis-of-motion stimulus is available here: https://github.com/27-
apizzuti/AOM-VASO_project/tree/main/stimulus_scripts/demos.

MRI acquisition
Data acquisition was performed on a whole-body “classical” MAG-
NETOM 7T (Siemens Healthineers, Erlangen, Germany) at Scan-
nexus B.V. (Maastricht, The Netherlands) using a 32-channel RX
head-coil (Nova Medical, Wilmington, MA, USA). A second and
a third order B0 shimming procedure was used to improve the
homogeneity of the main magnetic field B0 in the shim volume
containing the region of interest. The localizer experiment was
conducted using a GE EPI sequence with BOLD contrast (Moeller
et al. 2010) (echo time (TE) = 15 ms, nominal flip angle (FA) = 55◦,
echo repetition time (TR) = 1000 ms, multi band factor (MB) = 3,
57 slices) with a whole brain field of view and a (98 × 98) matrix
at 2 mm isotropic nominal resolution. Before the acquisition of
the run, we collected 5 volumes for distortion correction with the
settings specified above but opposite phase encoding (posterior-
anterior).

For the axis-of-motion mapping experiment, we used a Vascu-
lar Space Occupancy (VASO) sequence (Lu et al. 2003) optimized

for 7T (Hua et al. 2011). Specifically, we used the Slice-Selective
Slab Inversion (SS-SI VASO) approach (Huber et al. 2014) with a 3D
EPI readout (Poser et al. 2010) at nominal isotropic voxel resolution
of 0.8 mm. Previous work has shown that the 3D readout is
beneficial for sub-millimeter applications (Huber et al. 2018). The
in-plane field of view was 129×172 mm (162×216 matrix) for a
total of 26 acquired slices. The imaging parameters were: TE = 25
ms, ‘temporal resolution’ of pairs of images = 4840 ms, variable
flip angle scheme FA = 26+◦, in plane partial Fourier factor 6/8
with POCS reconstruction of 8 iterations, inversion time (TI)=1530
ms for the blood nulling point and FLASH-GRAPPA = 3 (Talagala
et al. 2016). Variable flip angles were used to minimize T1-related
blurring along the slice direction (Huber et al. 2018). The sequence
was implemented using the vendor provided IDEA environment
(VB17A-UHF) and is available to download via C2P on the SIEMENS
App-Store in Teamplay. The placement of the small functional
slab was guided by an online analysis of the hMT+ localizer
data (general linear modeling by Siemens), to ensure a bilateral
coverage of area hMT+ for every participant.

The anatomical images were acquired with an MP2RAGE (mag-
netization prepared 2 rapid gradient echoes) (Marques et al. 2010)
at 0.7 mm isotropic resolution (TR/TE = 6000 ms/2.39 ms, TI = 800
ms/2750 ms, FA = 4◦/5◦, GRAPPA = 3). MP2RAGE sequence param-
eters are optimized to overcome the large spatial inhomogeneity
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in the transmit B1 field by generating and combining in a novel
fashion 2 different images at 2 different inversion times (TI1, TI2)
to create T1-weighted MP2RAGE uniform (UNI) images (Marques
et al. 2010). Physiological traces of respiration and heartbeat were
recorded but not used for the analysis, since we did not observe
any improvements by conducting RETROICOR physiological noise
correction during the piloting stage (Glover et al. 2000). Indeed,
sub-millimeter data are expected to be in the thermal noise-
dominated regime (Triantafyllou et al. 2005).

Structural data analysis
Preprocessing and registration
T1-weighted UNI images with high contrast-to-noise ratio from
MP2RAGE were used to guide the determination of the anatomical
location of hMT+ and to derive layers in the cortical ribbon of
interest. T1-w UNI images were skull-stripped using a brain mask
obtained by inputting the MP2RAGE INV2 (TI2) images to FSL BET
(v.6.0.5) (Smith et al. 2004). When needed, we semi-automatically
corrected the results and used Segmentator (v.1.6.0) (Gulban
et al. 2018) to remove dura mater contribution. Then, we used
the anatomical bias correction algorithm from SPM12 (Wellcome
Trust Center for Neuroimaging, London, UK) to further reduce
inhomogeneities in the T1-w UNI images (Ashburner and Friston
2005, Friston et al. 2007). In order to preserve the high-resolution
functional data from issues of registration and interpolation
while computing depth-dependent analysis (Huber et al. 2017,
Guidi et al. 2020), we aligned the T1-w UNI images to the high-
resolution functional VASO data, according to https://layerfmri.
com/2019/02/11/high-quality-registration/. The target functional
slab “T1-w EPI” was derived from the original SS-SI VASO time
series by computing the inverse of signal variability that provides
a good contrast between gray matter (GM) and white matter
(WM) using AFNI (v.20.3.01) (Cox 1996, Cox and Hyde 1997)
(function: -cvar). In ITK-SNAP (v.3.8) (Yushkevich et al. 2006) we
manually aligned the T1-w UNI whole brain images to the T1-w
EPI slab and then ran ITK-SNAP’s automatic co-registration tool.
Then, we used the obtained transformation matrix as input for
running ANTS’s “Syn” registration algorithm (v.20.3.01) (Avants
et al. 2009, 2011, Madge 2020). Finally, the T1-w UNI images
were resampled to the T1-w EPI space using ANTS b-spline
interpolation (antsApplyTransforms -BSpline).

Segmentation
Accurate and precise tissue segmentation is a crucial step to
investigate cortical layers and columns. Since conventional
segmentation packages yielded unsatisfactory results for our
restricted field of view, a semi-automated segmentation approach
with manual intervention was used here. We used -3dresample

command from AFNI (v.20.3.01) to upsample (with cubic
interpolation) the processed T1-w UNI images with an upscaling
factor of 4 (nominal resolution = 0.2 mm isotropic). This step
allowed a smoothed calculation of cortical features (e.g. curvature
or thickness). Then, we confined the segmentation process to a
“scoop of interest” in both hemispheres: in ITK-SNAP we centered
a spherical mask around the anatomically expected area hMT+.
We ran FSL FAST to obtain a first definition of the cerebro-
spinal fluid/gray matter (CSF/GM) and the gray matter/white
matter (GM/WM) tissue borderlines. Tissue labels were carefully
quality controlled and manually edited when necessary (by A.P.),
and later revised independently by another expert (O.F.G.). In
combination, we also used morphological operations (dilation and
erosion) (Virtanen et al. 2020) to further improve the segmentation
output. These operations, when applied in combination with the

same parameters, remove mislabeled isolated voxels and smooth
boundaries between tissues.

Cortical depths
Once the segmentation was completed, we used LN2_LAYERS

program from LayNii (v2.2.1) (Huber et al. 2021) to compute equi-
volume cortical depths (Bok 1959, Waehnert et al. 2014), cortical
thickness and curvature for each gray matter voxel.

Flattening
We used LN2_LAYERS, LN2_MULTILATERATE, and LN2_PATCH_

FLATTEN programs within LayNii to flatten our cortical patches
(Gulban et al. 2022). We first establish the center of gravity of
the gray matter activated ROIs (left and right hMT+). Then a
disk of a predefined radius is grown geodesically and a local 2D
coordinate system (U and V coordinates) was imposed on it (using
LN2_MULTILATERATE program). Together with the “metric” file
from LN2_LAYERS (D coordinate), the end result of this procedure
is a full continuous mapping between flat cortex space (UVD) and
the original folded cortex space (XYZ). This mapping allows us
to flatten 3D chunks of cortical data (in NIfTI format) to explore
mesoscopic cortical structures as it was done in previous studies
(Zimmermann et al. 2011, De Martino et al. 2013, Schneider et al.
2019).

Functional data analysis: localizer experiment
Functional localizer data were pre-processed in BrainVoyager
v.22.1 (Goebel et al. 2006, 2012) as follows: slice scan time
correction, motion-correction, linear trend removal, and high-
pass filtering (6 cycles). We corrected for EPI geometric distortion
using the image registration method based on the opposite phase
encoding direction EPI data as implemented in COPE BrainVoyager
plugin (Breman et al. 2020). The same aligning procedure
explained for structural images was also used to align functional
localizer data to high-resolution VASO data. The registration
parameters (ITK-SNAP, ANTS “Syn”) were estimated matching
the computed temporal mean image from localizer data (Smith
et al. 2004) with T1-w EPI and then applied to the time series
using ANTS B-spline interpolation. Then, in order to functionally
define our ROI (bilateral hMT+), we calculated a voxel-wise
general linear model (GLM) for each participant in BrainVoyager.
The GLM was corrected for temporal auto-correlation (AR2).
The model contained a single predictor for the stimulus
condition “moving dots” convolved with a standard hemodynamic
response function. Voxels that showed a significant response to
“moving vs static dots” contrast (using a threshold (q) corrected
for multiple comparisons using false discovery rate; q(FDR)
<.05) were selected. Finally, we defined a bilateral hMT+ ROI,
by intersecting these voxels with two spheres of 16 mm in
radius (one for each hemisphere) placed inside the expected
anatomical location (Zimmermann et al. 2011, Schneider et al.
2019).

Functional data analysis: axes of motion
experiment
Preprocessing and functional maps
Axis-of-motion functional data were analyzed following the
optimized preprocessing pipeline for SS-SI VASO sequence https://
layerfmri.com/2019/03/22/analysispipeline/. For each run, the
first 4 time points (non-steady state images) were overwritten
with steady-state images. Then, we separated odd and even
time points from raw data, corresponding to MR signals with
and without blood nulling and we separately performed motion
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correction using SPM12 (Friston et al. 2007). A 4th-order spline was
used for resampling to minimize blurring. For every participant,
motion parameters between the two contrasts were very similar,
as expected, and never higher than the nominal voxel resolution.
The original time series length was restored for both blood-
nulled and BOLD images using 7th order polynomial interpolation
method before multiple runs were averaged to minimize noise
amplification in the next processing steps. Dynamic division of
blood-nulled and BOLD volumes was performed to generate VASO
images with reduced BOLD contrast contamination (LN_BOCO
program within LayNii). BOLD correction is valid under the
assumption that T2

∗ contrast is the same in images with both
contrasts, because they are acquired concomitantly (Huber et al.
2014). For each participant, we fit a voxel-wise general linear
model restricted to the bilateral hMT+ ROI (previously defined)
on both the BOLD and VASO time series in BrainVoyager. The
model contained five predictors, one for each axis-of-motion
condition and one for the flickering condition. Each predictor
was then convolved with a standard hemodynamic response
function. The GLM was corrected for temporal auto-correlation
(AR2). Statistical t-maps were then computed. While generating
the t-map by contrasting one axis-of-motion stimulus condition
(e.g. horizontal) versus flickering dots baseline condition, the two
contrasting conditions were balanced in terms of number of time
points considered in the computation, since in the experimental
paradigm the latter was repeated 4 times more than the former
one. In addition to the t-maps, we also computed voxel-wise
percent signal change (Huber et al. 2017, Beckett et al. 2020)
between mean signal during task (e.g. moving dots along one axis-
of-motion) and baseline (flickering dots) with the same balancing
rationale used for computing t-maps. This method has been
shown to provide results that are easier to interpret than methods
using inferential statistics, which can be affected by laminar
differences in noise and hemodynamic response function shape
(Huber et al. 2017). We used percent signal change to computed
layer profiles (results are presented in Supplementary Figs. 2
and 3).

Preference maps and voxel selection
We created a BOLD and VASO “preference map” (un-thresholded)
by assigning to each voxel the preferred axis-of-motion, based on
the predictor showing the highest GLM fit (among the four axes of
motion), representing the highest stimulus-induced normalized
fMRI response (t-value) (Zimmermann et al. 2011, De Martino et al.
2013, Schneider et al. 2019).

To take into account differences in sensitivity between the two
contrast mechanisms, we evaluate the hMT+’s tuning to axes of
motion stimuli following three statistical ways and compare the
obtained results.

We thresholded the preference maps by considering three
sets of voxels (see Table 1): (i) voxels that exhibited a significant
t-value response (using a threshold (q) corrected for multiple
comparisons using false discovery rate; q(FDR) < 0.05) when
contrasting “all axes of motion moving dots vs flickering dots,”
later called ‘FDR’. (ii) Voxels that survive a cross-validation test,
later called ‘CV’. (iii) Voxels that survive a cross-validation test and
show positive t-value response to each axis-of-motion condition,
later called ‘CV+’. A cluster-size thresholding (threshold = 4) was
applied separately to each set of voxels (using https://gist.github.
com/ofgulban/27c4491592126dce37e97c578cbf307b).

The number of “FDR” voxels differs significantly between the
two contrast mechanisms, due to expected differences in sensi-
tivity. As an alternative approach to the FDR method, we designed

a leave-one-run out cross-validation method (Zimmermann et al.
2011, Emmerling 2016) that might be less dependent on the
lower sensitivity of VASO. The cross-validation was separately
applied to both BOLD and VASO preference maps restricted to
suprathreshold BOLD “FDR” voxels. Iteratively, we divided the
available number of runs (learning set) into training set (average
of all runs excluding the test run) and test set (left out run)
and for each set we labeled voxels according to their preferred
axis, by fitting a GLM as explained above. Within each fold of
the cross-validation process, only voxels showing the same axis
preference between training and test set were kept for the next
step. Finally, we cross-validated our BOLD and VASO preference
maps by removing all voxels whose labeled preferred axis did not
match with the cross-validated predicted label.

Our third method tackles the question about the neural mean-
ing of having a negative response to a specific condition that
was not taken into account for FDR and CV voxels. A negative
response to a specific axis-of-motion could, in principle, indicate
a neural suppression, as shown here Albright (1984). However,
positive and negative t-value fluctuation around zero can also
occur as noise contribution when dealing with low contrast-to-
noise-ratio (CNR) data as it is the case for high-resolution fMRI.
In order to exclude the latter possibility, we introduced the “CV+”
set of voxels. In this case, we narrowed down the set of CV-voxels
by only keeping those voxels that showed a positive response (t-
value) for all conditions, when separately contrasting each axis-
of-motion with the ‘flickering condition’.

Tuning curves
Finally, for each set of voxels, tuning curves are computed for
each axis-of-motion, by averaging t-values responses of all voxels
sharing the same preferred axis-of-motion and evaluating them in
the preferred and not preferred conditions. As previously done by
(De Martino et al. 2013), a global tuning selectivity index was also
computed for each tuning curve, by calculating the ratio of the
response for the preferred axis-of-motion divided by the average
response towards all other axes of motion.

Voxel-wise sensitivity and specificity calculation
To investigate the signal behavior and differences between BOLD
and VASO contrast, we developed new voxel-wise measures of
sensitivity and specificity. By coding the voxel response to each
axis-of-motion with a t-value, a 4 entries t-value vector was
assigned to each voxel. Sensitivity was computed by calculating
the Euclidean norm of the t-values vector (−→v ) (Eq. 1):

Sensitivity def= ‖−→v ‖ (1)

Specificity was computed according to Eq. 2:

Specificity def= 1 − arccos (̂v · ŵ)

θmax
(2)

First, the t-values vector is transformed into a “unit vector” by
dividing each component with the norm of the vector (from v to v̂).
Then, the entries of the vector were arranged in ascending order
and the dot product between (̂v) and a reference winning vector
was computed [0 0 0 1] (ŵ). Since the ordering operation constrains

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad151#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad151#supplementary-data
https://gist.github.com/ofgulban/27c4491592126dce37e97c578cbf307b
https://gist.github.com/ofgulban/27c4491592126dce37e97c578cbf307b
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Fig. 2. Numerical example of how to compute voxel-wise sensitivity and specificity for a 2 dimensional case. In A) the fMRI response of a voxel is modeled
using a General Linear Model and the response modulation or “weight” (e.g. beta, t-value, percent signal change) during each stimulus is computed. In
B) and C) we show step-by-step how to use the weights to compute our voxel-wise sensitivity and specificity.

the angle computation in the range 0◦-60◦ (in 4 dimensions), we
scaled the computed angle by the maximum angle (θmax). Finally,
we defined “specificity” as the additive inverse of the computed
scaled angle.

In Fig. 2, we show with two numerical examples how to com-
pute step-by-step our voxel-wise sensitivity and specificity mea-
sures. Note that θmax for the 2D case is equal to 45◦. The sensitivity
measure quantifies how strongly a voxel responds to any axis-of-
motion condition. The specificity measure quantifies how well a
voxel is tuned toward a specific axis-of-motion. We developed our
specificity index (inspired by the n-dimensional compositional
vector angle analysis from Gulban (2018)) which serves a similar
purpose to the orientation selectivity index (OSI) commonly used
in orientation tuning studies (Swindale 1998, Yacoub et al. 2008,
Cho et al. 2022). The OSI is used when orientation tuning is inves-
tigated with a high orientation sampling (e.g. minimally every
45 degrees) in order to detect smooth changes in orientations,
to fit a circular distribution and evaluate its dispersion from
the preferred orientation. However, the OSI is not suitable for
axis-of-motion paradigms since they do not differentiate func-
tional responses to opposite motion orientation and, as conse-
quence, do not provide a continuous sampling of the tuning
response. In contrast, our specificity measure does not require
a fitting and therefore may be considered as an alternative way
to quantify voxel selectivity even in cases when categorical (and
not continuous) stimulations are evaluated. For the specificity
index calculation, negative t-value entries are a critical point. We
assume that negative t-values represent, in our data, an absence
of neural response to a specific condition, therefore, when occur-
ring in FDR and CV set of voxels, we zero them. The CV+ set
of voxels does not suffer from this limitation and functions as
control.

The inset at the upper right corner of Fig. 5A visualizes the rela-
tionships between these 2 variables: voxel characteristics strongly
differ according to which region of the space they belong to. For
instance, high-tuned voxels are represented with high specificity,
whereas un-specific vessel-dominated voxels are represented by
high sensitivity and low specificity.

To test if it is possible to derive information about the vascula-
ture from our fMRI data, we combined sensitivity and specificity
information with time-averaged T2

∗-weighted EPI intensity from
BOLD time series, since it was demonstrated to be a robust marker

of vascular effects (Kay et al. 2019). Global measures of sensitivity
and specificity were also implemented to compare our results to
the literature (Huber et al. 2017, Beckett et al. 2020).

Voxel-wise columnarity index calculation
Cortical column detection and quantification using fMRI is a
challenging task (Yacoub et al. 2008, Zimmermann et al. 2011,
De Martino et al. 2015, Schneider et al. 2019). Inspired by Blaze-
jewska et al. (2019), we implemented a searchlight algorithm to
seek cylindrical columnar structures following the local coordi-
nates of the cortical gray matter. The introduction of a geodesi-
cally parametrized cylindrical kernel centered around each voxel
in the folded brain instead of using rectangular kernels in the
flattened domain (e.g. De Martino et al. (2015)) streamlines the
columnarity index computation while at the same time mak-
ing it easier to physically interpret. This algorithm is imple-
mented as a part of LN2_UVD_FILTER program (accessible via “-
columns” option) in LayNii v2.2.1 and consists of the following
steps:

1) Our primary inputs are the local coordinates of the cortical
gray matter. These local coordinates consists of: (i) a
voxel-wise parametrization of the cortical surface that
contains the orthogonal U and V coordinates (computed
by LN2_MULTILATERATE program), and (ii) voxel-wise equi-
volume cortical depths that contains the D coordinates
(“metric” file output as computed by LN2_LAYERS program)
(see Fig. 3A).

2) Our secondary input is a scalar map. This scalar map con-
sists of the BOLD or VASO preference map (see Fig. 3B).

3) Our tertiary input is a binary map which we refer to as
“domain”. This binary map consists of the initial set of
tuned voxels (the “FDR BOLD” voxels were used as mask
for both BOLD and VASO contrast, see definition in the
method section “Preference maps and voxel selection”). Note
that we extended these activated voxels to cover the rest of
the cortical thickness (using LN2_UVD_FILTER with “-max”
option). For instance, if only a single middle gray matter
voxel is available at a location, we include the voxels above
and below until it covers the local cortical thickness.

4) The algorithm starts by evaluating a cylindrical 3D window
centered at every voxel within the domain. This evaluation
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Fig. 3. Overview of the searchlight algorithm for functional cortical column detection. A-B) Input examples of local coordinates (U, V, D) and BOLD
preference map of left-hMT+ for one example participant (sub-01). C) Conceptualization of the algorithm on a toy model of a cortical ribbon. A
searchlight with a cylindrical 3D window is evaluated at each voxel position. On the toy model, we show the searchlight (dark gray voxels with cardinal
axes) and its relative 3D window (light gray). For every position of the searchlight, the window adapts to the geometry of the ribbon and covers the entire
cortical depth (see examples (I) voxel close to the outer gray matter, (II) voxel close to the inner gray matter, (III) voxel close to the middle gray matter
on a wall, (IV) voxel close to the middle gray matter on a gyrus). Pink cylinder is an example of a high columnarity index (V), whereas the blue cylinder
is an example of a low columnarity index (VI). D) Output example of the columnarity index map generated for the data (B) of the same participant.

is done by (i) computing Euclidean distances using the UVD
coordinates of the center voxel to all the other voxels within
the domain, and (ii) by detecting the voxels that fall within
user-determined radius and height of the cylinder. Note that
we set the cylinder radius to 0.6 mm and the height to cover
the full cortical depth (independent of a voxel being at the
deep, middle, or superficial part of the cortex, see number
I, II, III, IV in Fig. 3C). We chose the diameter of the cylinder
to be slightly higher than the nominal resolution (0.8 mm)
in order to take into account all the possible orientations
that a voxel can assume to sample the brain geometry (our
diameter 1.2 mm is in the range: 2

√
2 × 0.8 mm = 1.13 mm

and
√

3 × 0.8 mm = 1.38 mm).
5) This step determines a set of voxels for each window. Note

that the number of windows is equal to the number of
voxels within the domain input. However, the total number
of voxels for each window can change as a function of
local cortical thickness and local curvature. Note that this
behavior is natural and expected.

6) For the set of voxels within each window, we compute the
modal (most frequently occurring) value within the BOLD or
VASO preference maps.

7) Finally, we compute the “columnarity index” by dividing
the number of voxels of the modal value with the total
number of voxels evaluated in the cylindrical window (see
Fig. 3D). Note that the columnarity index ranges between 0
(no columnarity) to 1 (ideal or pure columnarity).

Upon completion, our algorithm yields a map where each voxel
contains a unique columnarity index. This procedure allows us to
reveal cortical columns for any range of the columnarity index
(from 0 to 1, with 0.5 step size) by accordingly thresholding the

columnarity map and applying it as a binary mask to the input
preference map.

We summarize the columnar behavior of hMT+ for both
BOLD and VASO contrast by providing the following quantitative
measurements as a function of the columnarity index: voxel-wise
sensitivity and specificity (see Fig. 9A and B (i–ii)) and percentage
of columnar volume with respect to the volume of the domain
(see Fig. 9A and B (iii)). Finally, we evaluate the spatial similarity
between BOLD and VASO columnarity maps by computing a
spatial consistency score: for each value of the columnarity index
we quantify the percentage of voxels that appear in the same
spatial location and with the same axis-of-motion preference
in both contrasts with respect to the total amount of columnar
voxels (see Fig. 9A, B (iv)).

Control analysis: benchmarking columnarity index
calculation
In order to interpret the columnar results from the empirical
BOLD and VASO functional data in terms of vicinity to a “pure
noise” or to an “ideal columnar” scenario, we ran our columnarity
index computation on two synthetic scalar maps (“noise” prefer-
ence map and “ideal” preference map) and compared empirical
vs benchmark results. This procedure was done for each empir-
ical hMT+ separately (i.e. 10 hMT+ regions from the left and
right hemisphere of five participants). The “random” preference
map was generated at original voxel resolution (0.8 iso mm) by
assigning to each voxel a preferred axis-of-motion based on a ran-
dom distribution and then upsampled, as done for the empirical
data. The “ideal” preference map that would lead to “ideal” func-
tional columns was created by using the LN2_HEXBIN program
from LayNii. This program uses the U,V coordinates of a specific
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Table 1. Number of BOLD and VASO voxels considered for each
voxel selection method (FDR, CV, CV+).

Left-hMT+ BOLD VASO

FDR CV CV+ FDR CV CV+
sub-01 1168 444 404 88 302 157
sub-02 1245 388 370 66 203 82
sub-03 1006 394 383 48 258 88
sub-04 549 191 184 9 141 55
sub-05 756 286 261 149 256 123

Right-hMT+ BOLD VASO

FDR CV CV+ FDR CV CV+

sub-01 976 384 361 25 157 54
sub-02 1159 410 391 9 226 75
sub-03 1082 439 430 40 262 107
sub-04 419 133 127 4 74 25
sub-05 1152 497 476 28 234 85

brain volume to generate hexagonal bins with a desired radius
spanning for the whole cortical depth. The hexagonal bins are
considered as an approximation of “ideal” geometrically defined
cortical columns. We chose 1 mm diameter to simulate columns
that follow our hypothesis of axis-of-motion columns that can
be unveiled by our current resolution. We compared columnar-
ity index distributions from our empirical and benchmark data
(results are presented in Fig. 10 and in Supplementary Fig. 4).
Note that the generation of the benchmark dataset for both ‘pure
noise’ and ‘ideal columnar’ scenario does not model the spatial
covariance structure (point spread function) of our BOLD and
VASO data but aims to benchmark our columnar method from its
algorithmic point of view by providing fMRI contrast independent
lower and upper bounds. Including the spatial covariance struc-
ture into the simulated noise might increase the lower bound,
however such analysis is outside of the scope of the current work.

Results
Axis-of-motion tuning curves confirm
direction-selectivity of hMT+
Participants performed well (97% accuracy) on the change detec-
tion task, indicating proper fixation throughout the experimental
runs. The tuning property of hMT+ with respect to axis-of-motion
stimuli was evaluated separately for both BOLD and VASO in
three sets of voxels (FDR, CV, CV+). In Table 1, we report for each
participant and hemisphere the number of voxels belonging to
each set. We found bilateral axis-of-motion specific tuning curves
for all three sets of voxels (FDR, CV, CV+) for both the BOLD and
VASO contrast. As can be seen in Fig. 4, a characteristic peak at
the preferred axis-of-motion is present in each group of voxels,
showing a clear preference for a single axis-of-motion. Here we
show, for the first time, that VASO is also sufficiently sensitive to
map differential axes of motion responses in hMT+. Moreover, our
BOLD results corroborate and extend previous fMRI BOLD findings
(Zimmermann et al. 2011, De Martino et al. 2013, Schneider et al.
2019) showing robust responses of hMT+ to directions of motion.

For the BOLD contrast, varying the voxel selection method
results in a subtle progressive increase in tuning selectivity index
from the FDR to the CV and CV+ voxels (see Table 2). Figure 4
shows that the t-values of the preferred condition increases,
while t-values for the non-preferred conditions decrease. We don’t

Table 2. Tuning Selectivity Index reported for both BOLD and
VASO and each voxel selection method (FDR, CV, CV+).

Left-hMT+ BOLD VASO

FDR CV CV+ FDR CV CV+
Horizontal 0◦-180◦ 1.66 1.76 1.71 1.63 4.55 2.32
Vertical 90◦-270◦ 1.66 1.81 1.75 1.8 3.71 2.31
Diagonal 45◦-225◦ 1.62 1.67 1.65 1.75 4 2.16
Diagonal 135◦-315◦ 1.58 1.67 1.62 1.74 3.86 2.23

Right-hMT+ BOLD VASO

FDR CV CV+ FDR CV CV+

Horizontal 0◦-180◦ 1.68 1.8 1.76 1.77 6.24 2.5
Vertical 90◦-270◦ 1.62 1.71 1.68 1.69 5.87 2.37
Diagonal 45◦-225◦ 1.57 1.64 1.62 1.9 6.15 2.5
Diagonal 135◦-315◦ 1.56 1.65 1.63 1.75 4.43 2.37

observe substantial differences when comparing the CV with CV+
BOLD voxels, since the voxel’s reduction rate was always less than
10%. Our BOLD results consistently show the tuning selectivity of
hMT+ being invariant to the voxel selection procedure.

For the VASO contrast, varying the voxel selection method from
FDR to CV+ does not result in a progressive increase in tuning
selectivity index. The tuning curves from the FDR voxels are
characterized by the highest t-value range in both preferred and
not preferred conditions. As a consequence, the tuning selectivity
index is the smallest among the three sets and comparable with
the ones computed for the BOLD contrast. The statistical thresh-
old q(FDR) < 0.05 might be too conservative for the low sensitivity
of the VASO contrast and only captures a subset of tuned voxels
that are similarly activated in both contrasts. The tuning curves
from the CV voxels are characterized by the highest tuning selec-
tivity index. The percentage of surviving CV voxels around 24.8%
(left-hMT+) and 19.2% (right-hMT+) was comparable with 35.8%
(left-hMT+) and 37.6% (right-hMT+) for the BOLD contrast, sug-
gesting that the partial recovery of the low sensitivity for the VASO
contrast comes together with an increased tuning selectivity (see
Table 2). However, when considering the VASO tuning curves using
CV+ voxels, the tuning selectivity index is still higher than VASO
FDR voxels, but it is lower when compared to VASO CV voxels.
This effect might be due to the presence of negative t-values in
the CV voxels, which might pull towards zero the t-values of the
non-dominant conditions, inflating the tuning selectivity index.
Although we found differences in tuning selectivity depending on
the voxel selection, our results show tuning selectivity for both
BOLD and VASO tuning curves with a slightly stronger selectivity
effect for the VASO contrast.

Voxel-wise sensitivity and specificity metrics
quantify differences in imaging contrast
We computed voxel-wise sensitivity and specificity for all FDR, CV,
CV+ tuned voxels for both BOLD and VASO contrast in both hemi-
spheres. As observed in Fig. 5 characteristic sensitivity–specificity
scatter plots were found for both BOLD and VASO contrast. For
all participants, we observed that BOLD cross-validated voxels are
overall more sensitive (spanning a wider sensitivity range) and
less specific (spanning a narrower specificity range) compared to
VASO voxels. In line with our tuning curve results, the choice of
the voxel selection does not affect the shape of both BOLD and
VASO scatterplots. However, the strongest BOLD and VASO dif-
ference in sensitivity and specificity ranges are mostly observed

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad151#supplementary-data
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Fig. 4. Group average axis-of-motion selectivity tuning curves for each axis-of-motion for both BOLD and VASO contrast in the (A) left hMT+ and (B)
right hMT+. Tuning curves are evaluated for FDR, CV and CV+ voxels. The plots depict the mean and the standard error of all voxels for each category.

for CV and CV+ voxels. Again, the FDR VASO voxels seem to be a
subset of BOLD voxels.

Our results are in agreement with recent findings (Huber et al.
2017, Beckett et al. 2020) (see also Supplementary Figs. 2 and
3) and confirm that, despite its reduced signal sensitivity, the
VASO contrast provides greater specificity to the neuronal origin

of the fMRI signal. Interestingly, our new local sensitivity and
specificity measures offer a voxel-wise perspective on the drain-
ing veins effect: the vessel-dominated voxels responsible for this
effect can be straightforwardly detected and localized. As shown
for an exemplary participant in Fig. 6, the combination of high
sensitivity and low specificity help detecting vessel-dominated

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad151#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad151#supplementary-data
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Fig. 5. Group result for sensitivity and specificity scatterplot for both BOLD and VASO contrast in (A) left hMT+ and (B) right hMT+ for FDR (right
column), CV (middle column) and CV+ (right column) voxel sets. The inset at the upper right corner shows in a qualitative way how different regions of
the space are associated with different voxel characteristics. Rectangles highlight main differences between contrast types and voxel selection strategy.
The red rectangle encompasses highly tuned voxels, whereas the blue area shows vessel-dominated voxels.
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Fig. 6. Volume-based visualization of voxel-wise sensitivity and specificity maps for one example participant (sub-01) in the left hMT+ ROI. The same
axial slice is shown for both T2

∗-w EPI signal and T1-w signal (nominal resolution 0.2 iso mm). The green arrow points to a vascular structure detectable
only through T2

∗-w EPI intensity as a dark spot (reflecting static susceptibility effects). High sensitivity and low specificity characterizes all the voxels
belonging to this vascular structure (green arrows) for BOLD contrast. The detectability of this vascular structure is less evident for VASO contrast, as
expected.

voxels (highlighted by green arrows) similarly to decreased BOLD
T2

∗-weighted EPI intensity that has been shown to be a robust
marker of vascular effects (Kay et al. 2019). A lower number of
vessel-dominated voxels are found for VASO contrast compared
to BOLD, demonstrating the reduced signal contamination by
draining veins and its improved specificity. In Fig. 7, we project
the vessel-dominated voxels shown in Fig. 6 in the flat laminar-
resolved domain. This representation provides a more convenient
visual representation to evaluate voxel localization across cortical
depths. As shown in Fig. 7, the vessel-dominated voxels appear
mostly in the superficial layers and disappear in the deep lay-
ers. This result demonstrates BOLD signal contamination by pial
vasculature that lies above the cortex. The same phenomenon is
strongly attenuated in VASO signal.

Quantification of the columnar organization of
axes of motion tuned voxels
We explored the spatial organization of axis-of-motion tuned vox-
els for both BOLD and VASO contrast by using our new searchlight
algorithm for column detection. We evaluated both BOLD and
VASO columnarity maps as a function of the columnarity index.
We used the flattening algorithm (Gulban et al. 2022) and 3D ren-
dering visualization tools (Sullivan and Kaszynski 2019) to show
our columnar results. The spatial organization of the columns can
be fully observed in the rotated animations accompanying the
Fig. 8: https://doi.org/10.6084/m9.figshare.20393667.

In Fig. 8A and B, we show BOLD and VASO axis-of-motion
columnar results for one representative participant (left-hMT+)

for three values of the columnarity map 25%, 50%, 65%. Qual-
itatively, we observe that hMT+ is mostly organized by “small”
columns or “patch of columns” occupying a quarter or a half of
the whole cortical depth. For these columnarity index thresholds,
we find that only a part of the columnar organization is preserved
in both BOLD and VASO contrast (Fig. 8C). The density of the
axis-of-motion columns decreases with a linear increase of the
columnarity index for both BOLD and VASO.

To derive a quantitative description of the columnar orga-
nization of hMT+ with respect to the axis-of-motion stimuli,
we summarized the group results of hMT+ in Fig. 9. According
to our local measures of sensitivity and specificity, we confirm
that VASO columnarity results are always more specific and
less sensitive than BOLD columnarity results regardless of
the choice of the columnarity index (Fig. 9A and B (i–ii)).
Interestingly, we found that for a columnarity index of 40%
the percentage of columnar volume reaches a peak for both
BOLD and VASO contrast (Fig. 9A and B (iii)). At the same time,
more than 50% of the columnarity maps are consistently found
in both BOLD and VASO columnar results (Fig. 9A and B (iv)).
Our results suggest that the selectivity of hMT+ is mostly
organized in ‘patches of columns,’ and only partially organized
in geometrically-defined columns spanning the whole cortical
depth.

Finally, we compare our empirical results with the columnar
results derived from the “random” and “ideal columnar” bench-
mark results and summarize them in Fig. 10. In Supplemen-
tary Fig. 4 we compare columnarity index’s probability density

https://doi.org/10.6084/m9.figshare.20393667
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad151#supplementary-data
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Fig. 7. Depth-dependent T2
∗-w EPI intensity, voxel-wise sensitivity and specificity maps for BOLD and VASO contrast showed for the flattened left hMT+

ROI for one example participant (sub-01) (nominal resolution 0.05 mm iso.). Note that in this figure we project the same vessel-dominated voxels shown
in Fig. 6 in the flat laminar-resolved domain. The vascular structure highlighted by the green arrow corresponding to the dark spot in T2

∗-w EPI intensity
is clearly visible at superficial layers but not at middle or deep layers, which indicates that it is a pial vein. High sensitivity and low specificity are in
agreement with the spatial displacement of darkness of T2

∗-w EPI intensity.

function (PDF) of empirical and benchmark data for each partic-
ipant. As we can see for the group results in Fig. 10, the median
of the distribution of the columnarity index for both BOLD and
VASO is always in between the median of the distribution of the
columnarity index of the “random” and the “ideal” benchmark
datasets.

Discussion
Overview of the results
This study shows for the first time the feasibility of mapping axes
of motion cortical columns in the extrastriate area hMT+ in living
humans using CBV-VASO fMRI at 7T. The SS-SI VASO sequence
with 3D EPI readout enabled us to simultaneously acquire BOLD
and VASO responses in hMT+. Therefore, we separately applied
the same analysis pipeline to both VASO and BOLD fMRI data
(Huber et al. 2015, 2017, Oliveira et al. 2022). In this regard,
the development of new local metrics of sensitivity and speci-
ficity was pivotal to quantitatively compare and interpret results
found with VASO and BOLD contrast. Our metrics not only con-
firmed the higher specificity and lower sensitivity of VASO com-
pared to BOLD voxels (Beckett et al. 2020), but also allowed us
to clearly highlight pial vein effects in BOLD contrast. Finally,
the new searchlight algorithm for functional column detection
provides a unique framework to investigate mesoscopic cortical
features with its improved quantifiability and comparability with

respect to previously used methodologies (Yacoub et al. 2008,
Zimmermann et al. 2011, De Martino et al. 2013, 2015, Schneider
et al. 2019). The columnarity map computed by our algorithm
provides a full representation of the 3D functional organization
of hMT+ allowing a transparent evaluation of columnarity.

Local vs global sensitivity and specificity metrics
Conventionally, global measures of sensitivity and specificity
(Huber et al. 2017, Beckett et al. 2020) are used to compare
different contrast mechanisms in terms of draining veins effects.
As described in (Beckett et al. 2020) those global indices are
computed by fitting a linear regression model to layer profiles
(see Supplementary Fig. 3). In this work, we extended the concept
of sensitivity and specificity from a global to a voxel-wise scale,
by exploiting the tuning property of hMT+ voxels. By visualizing
our sensitivity and specificity maps, we observed that untuned
voxels show very low specificity. Voxels close to pial vessels show a
very low specificity and very high sensitivity in combination with
a low T2

∗-w EPI signal as an additional independent diagnostic
marker. For the data of the participant reported in Figs. 6 and 7,
we clearly showed BOLD voxels sampling a pial vessel. The VASO
contrast is expected to be not sensitive to macrovasculature.
However, we still observe a smaller number of voxels with the
aforementioned properties. Two possible candidate mechanisms
can be leading to this phenomenon: a flow-dependent vein effect
as described in (Huber 2015) or a dilatation effect of big arteries

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad151#supplementary-data
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Fig. 8. Examples of BOLD (A) and VASO (B) axes-of-motion cortical columns for one example participant (sub-01) at 25%, 50%, 65% of the columnarity
index. C) BOLD-VASO spatial consistency plots show only axes of motion columns that are detected in both BOLD and VASO contrasts for each
columnarity threshold (see animations here: https://doi.org/10.6084/m9.figshare.20393667.

on the pial surface (Kim et al. 2013), which is still disputed. We
believe that our new local metrics of sensitivity and specificity
provide an alternative way to evaluate the draining veins effect
and to visualize pial vessels responsible for it.

General perspective on cortical columns
While the existence of direction selective neurons within area
MT is a well-established feature in primates (Albright 1984) and
cats (Hubel and Wiesel 1962, 1965) only preliminary fMRI evi-
dence has been reported in humans (Zimmermann et al. 2011,
De Martino et al. 2013). Our findings provide strong evidence for
a functional columnar organization of axis-of-motion features
also in human MT+. The obtained columnarity maps, however,

indicate that functional clusters are only partially in line with
proposed ideal (anatomical) columnar models (Mountcastle 1956)
that are assumed to penetrate vertically from the pial surface
to the white matter boundary in a regular manner. The hypoth-
esis of 3D columns was mostly investigated by multi-unit elec-
trophysiological recordings in animals. Pioneering results from
Hubel and Wiesel (1962, 1965), Albright et al. (1984), were put
in perspective by reports showing that the preferred orienta-
tions were not necessarily represented in a columnar fashion
in animal visual cortex (Bauer et al. 1983, Berman et al. 1987,
Bauer et al. 1989). In particular, Bauer et al. (1983) reported that
the preferred orientations jump by 90◦ along the vertical track
of the electrode penetration in cat area 18. It’s worth noting

https://doi.org/10.6084/m9.figshare.20393667
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Fig. 9. Descriptive statistics for both BOLD and VASO columnarity maps in (A) left hMT+ and (B) right hMT+. Average of voxel-wise sensitivity (i) and
specificity (ii) and percentage of columnar hMT+ volume (iii) is evaluated for both BOLD (black line) and VASO (red line) as a function of the columnarity
index. (iv) Average of BOLD-VASO consistency quantified for each value of the columnarity index. A vertical dotted line is drawn for a columnarity index
of 40, corresponding to the peak of columnar volume (iii).

Fig. 10. Comparing columnarity index distributions between empirical
and benchmark datasets. Empirical BOLD and VASO group distributions
of left-hMT+ and right-hMT+ are reported as white boxplots. ‘Random’
and ‘ideal’ columnarity index distributions are shown in green boxplots
on the left and right side, respectively. Boxplots extend from the first
quartile to the third quartile, with a line at the median. The whiskers
extend from the box by 1.5x the iter-quartile range. Green shaded bands
encompass the upper and lower distribution of the random and ideal
benchmark sets. See Supplementary Fig. 4 for a detailed version with
individual participant results.

that this technique comes with the cumbersome task of accu-
rately tracing the penetrating electrodes together with the lim-
ited sampling space, affecting the robustness of those results
(Horton and Adams 2005). Later findings (Tanaka et al. 2011)
provided a new perspective on the conventional columnar view

of orientation representation of the visual cortex: simulations
based on a 3D self-organized model predicted the occurrence of
direction reversal in columns along the cortical depth dimension
being proportional to the curvature of the cortex, and orientation
columns having wedge-like shape when sampling gyri or sulci.
The same study confirmed these theoretical predictions with
multi-slice, high-resolution functional MRI in cat areas 17 and 18.
These mechanisms were also discussed by (Zimmermann et al.
2011) to explain the variability of iso-oriented feature maps across
cortical depths observed with high-resolution fMRI in humans.
Recently, Nakamichi et al. (2018) proposed a new explanation for
the variability across cortical depths based on functional optical
coherence tomography in cats: their results show that the 3D
structure of orientation columns were heavily distorted around
pinwheel centers. Orientation singularities were rarely straight
solid bars connecting pinwheel centers, instead they typically
ran inside the cortex creating “singularity strings” with pecu-
liar trajectories. Besides findings challenging a simplistic view
of columnar organization (Rakic 2008), the functional relevance
of cortical columns has also been debated (Horton and Adams
2005, Haueis 2021). Whether cortical columns “are a structure
without a function” (Horton and Adams 2005) or not, the presence
of functional clusters with groups of neurons that share similar
tuning properties allows high-resolution human fMRI studies to
reveal coding principles of the brain, which would otherwise only
be possible at microscopic resolution.

Our columnar results are to our knowledge the first to provide
a quantitative columnarity map to characterize the functional
organization of axis-of-motion features in hMT+ exploiting the
benefits of CBV-based fMRI at 7T. Our new algorithm for column

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad151#supplementary-data
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detection not only improved the quantifiability and comparability
with other studies, but it also takes into account the curvature
effect (Tanaka et al. 2011). However, we found that the spatial con-
sistency between VASO and BOLD columnar results decreased as a
function of the columnarity index. We believe that this variability
is due to an interplay of two effects. On the one hand, the dif-
ferences in terms of sensitivity but especially specificity between
VASO and BOLD would mostly affect the columnar results when a
conservative columnarity index threshold is applied. On the other
hand, the aforementioned theory of variability of orientation
selectivity across cortical depths could explain the trend of spatial
consistency.

Future CBV-sensitive fMRI studies with higher spatial resolu-
tion (e.g. < 0.5 mm isotropic), improved sensitivity and increased
sample size, would be able to investigate the functional organi-
zation of hMT+ in more detail that would be likely sufficient to
resolve direction-of-motion columns instead of the larger axis-
of-motion columns with higher statistical power. Such higher-
resolution fMRI studies might also reveal direct evidence for
pinwheels and their effect on columnarity.

Another critical aspect that has to be discussed while interpret-
ing fMRI results on functional cortical columns is the link to the
underlying vasculature, in particular to the influence of penetrat-
ing arteries and veins that run perpendicularly to the cortex. The
review paper by Uludağ and Blinder (2018) dedicates a paragraph
’Vascular and columnar neuronal functional units’ shedding light
on this topic. Despite Blinder et al. (2013) convincingly showing
no association between columnar responses and vasculature tree
in the mouse barrel field cortex, a clear understanding of the
same relationship in humans is still lacking. Conducting higher
resolution fMRI studies would not resolve this conundrum by
itself. Therefore, there is a need to understand the origin of the
vascular control of the cerebral blood flow that sustains neurons
along the whole vascular tree and how this interacts with meso-
scopic cortical features such as columns and layers. A meaningful
future direction would be to combine such higher-resolution fMRI
studies together with even higher-resolution anatomical MRI data
(e.g. < 0.4 iso mm, Lüsebrink et al. 2021, Bollmann et al. 2022,
Gulban et al. 2022). For instance, conjoining the development of
new VASO acquisition protocols (Koiso et al. 2022, Dresbach et al.
2023, Faes et al. 2023) with functional column responses (Yacoub
et al. 2008, Hollander et al. 2021), and with the analysis of the in
vivo intracortical angioarchitecture (Gulban et al. 2022, see Fig. 4)
might offer a way to reveal if the detected columns are a reflection
of the underlying macrovasculature in humans, or not.

To conclude, the improved quantifiability provided by our new
method for column detection will make the comparison of our
results with future studies straightforward. Furthermore, our
approach and methodological developments are generalizable
and applicable to other human brain areas where similar
mesoscopic research questions are addressed.
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