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Poor glycemic control in type 2 diabetes has been associated with accentuated age-related cognitive decline, although the underlying
neural mechanisms are not well understood. The current study sought to identify the impact of glycemic control on the neural dynamics
serving working memory in adults with type 2 diabetes. Participants (n = 34, ages = 55–73) performed a working memory task while
undergoing MEG. Significant neural responses were examined relative to poorer (A1c > 7.0%) or tighter glycemic control (A1c < 7.0%).
Those with poorer glycemic control showed diminished responses within left temporal and prefrontal regions during encoding and
showed diminished responses within right occipital cortex during maintenance but showed an enhanced activity in the left temporal,
occipital, and cerebellar regions during maintenance. Notably, left temporal activity in encoding and left lateral occipital activity in
maintenance significantly predicted performance on the task such that diminished temporal activity led to longer reaction times,
which were driven by the poorer glycemic control group. Greater lateral occipital activity during maintenance was associated with both
lower accuracy and longer reaction times across all participants. These findings suggest that glycemic control has a robust impact on
the neural dynamics serving working memory, with distinct effects by subprocess (e.g. encoding vs. maintenance) and direct effects on
behavior.
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Introduction
Type 2 diabetes is characterized by chronic glycemic dysregula-
tion and progressive insulin resistance and has been associated
with many distinct health complications, including cognitive and
neural deficits (Reijmer et al. 2010; Feinkohl et al. 2015; Geijselaers
et al. 2015). Studies examining the acute impact of glycemic dys-
regulation, employing glycemic clamp and insulin administration
methods, have found significant impairments across multiple
cognitive domains and linked these to widespread neural dys-
function (Sommerfield et al. 2004; Tschritter et al. 2009; Kullmann
et al. 2016; Backeström et al. 2021). Some of these studies have
further demonstrated immediate improvements in cognition with
normalized glucose levels (Ott et al. 2012; Alagiakrishnan et al.
2013; Backeström et al. 2021), suggesting a direct causal link for
the neural dysfunction. In studies examining the links between
chronic glycemic dysregulation and cognitive function, higher
glycated hemoglobin (A1c) levels are generally associated with
worse cognitive outcomes (Cukierman-Yaffe et al. 2009; Grober
et al. 2011; West et al. 2014). Relatedly, current care guidelines
aim for A1c levels <7.0% (Association 2021), but even then care
is warranted as strict glycemic control can come at the cost of
increased episodes of hypoglycemia, which have also been linked
to cognitive dysfunction (Zammitt and Frier 2005; Seaquist 2015).

One cognitive domain that is differentially impacted by the
disease is executive function, particularly processes like working
memory (Grober et al. 2011; Palta et al. 2014). Working memory

is defined as the temporary storage and/or manipulation of
information to fulfill task goals and can generally be parsed
into 3 distinct phases: encoding, maintenance, and retrieval.
Working memory is critical to many other higher-order cognitive
processes, including decision-making, language comprehension,
and task switching. In healthy populations, working memory
paradigms generally elicit widespread frontal–parietal, occipital,
and temporal activities (Rottschy et al. 2012). For example,
electrophysiological studies of working memory tasks with
language-based stimuli elicit strong alpha band responses across
left hemispheric language-related regions, including the left
superior temporal cortex, left supramarginal gyrus, and left
prefrontal cortex (Heinrichs-Graham and Wilson 2015; Proskovec
et al. 2016). Further, widespread dynamic alpha activity in the
occipital, parietal, and prefrontal cortices can be discerned by the
phase of working memory processing (e.g. maintenance) (Brookes
et al. 2011; Bonnefond and Jensen 2012; Heinrichs-Graham and
Wilson 2015). Interestingly, alpha frequency activity in right
hemispheric homolog regions has also been shown in studies
of pathological and healthy aging (Wiesman et al. 2016; Wilson
et al. 2017) and in patients with type 1 diabetes (Embury et al.
2018), with such activity broadly thought to reflect compensatory
processing. Such neural dynamics during working memory
processing have not yet been studied in type 2 diabetes; however,
working memory deficits have been shown in type 2 diabetes
using neuropsychological assessments (Palta et al. 2014) and
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in fMRI studies of acute hyperglycemia induced by glycemic
clamp procedures (Backeström et al. 2021). Importantly, as type 2
diabetes associated with increased vascular damage, fMRI studies
can be impacted by this underlying pathophysiology. MEG offers
a distinct advantage in this respect as its signal is not altered
by the intervening tissues, as in electroencephalography, or by
alterations in the vasculature, which can have a major effect
on fMRI. Further, the temporal precision of MEG enables the
dynamics of these responses to be discerned and thereby enables
the distinct subprocesses of working memory (e.g. encoding,
maintenance, and retrieval) to be studied in relative isolation.

In the current study, we utilize a classic working memory task
and a dynamic functional mapping method based on MEG to
probe the chronic impact of glycemic control as evaluated by
A1c on the neural dynamics underlying this critical cognitive
function in patients with type 2 diabetes. We hypothesized that
glycemic control level would alter the oscillatory activity across
working memory relevant networks, including occipital, parietal,
and left lateralized temporal and prefrontal regions, and that
these effects would vary based on the phase of the task (i.e.
encoding/maintenance).

Materials and methods
Participants
Fifty-four participants with type 2 diabetes were recruited from
the Diabetes Center at the University of Nebraska Medical Cen-
ter (UNMC; ages = 55–73, 33 females) from mid-2017 through
late-2019. All procedures were performed following obtaining
informed consent in accordance with the Declaration of Helsinki
and full approval of UNMC’s Institutional Review Board. For-
mal diabetes diagnosis had to occur at least 1 year prior to
entering the study. Exclusionary criteria included: (i) any medi-
cal diagnosis directly implicating brain function (e.g. psychiatric
and/or neurological disease); (ii) known brain neoplasm or lesion;
(iii) history of cerebrovascular events (i.e. CVA, stroke, and TIA)
based on previous diagnosis and chart review; (iv) history of sig-
nificant head trauma, seizures, or epilepsy; (v) current substance
use disorder within the past 6 months; (vi) pregnancy or lactation;
(vii) hospitalization within the previous 90 days; (viii) any type
of cancer diagnosis or treatment in the past 5 years; (ix) uncon-
trolled hypertension, with blood pressures >140/90 or >160/100 if
currently on medication treatment; (x) body mass index of ≥40;
(xi) liver disease (AST or ALT >3× normal); (xii) any untreated
thyroid or B12 deficiencies; (xiii) treatment with antipsychotics,
antidepressants, and related medications known to affect brain
function, with the exception of as-needed antidepressants follow-
ing a 24-h washout period; and (xiv) ferromagnetic implants.

Participants measured their blood glucose level using a point-
of-care device prior to MEG and cognitive task completion, veri-
fying they were within the 70–200 mg/dL range. Participants who
were mildly hypoglycemic (55–70 mg/dL) were asked to raise their
blood sugar to the normal range, and after 1 h in the normal range,
these participants started their MEG session. Participants with
blood glucose levels <55 mg/dL or >200 mg/dL were rescheduled
at least 1 week later, as such values equate to clinically significant
hypo- and hyperglycemia.

Overall study design
Participants completed a panel of blood tests and provided key
demographic and medical history data at enrollment. Full char-
acteristics can be found in Table 1. Once blood glucose level
was checked and was between 70 and 200 mg/dL, participants

then completed cognitive tasks within the MEG environment. See
below for task and MEG acquisition parameters. Participants’ data
were analyzed groupwise relative to their glycemic control level
(above and below 7.0% A1c).

Working memory task
During the MEG session, participants were seated in a nonmag-
netic chair and were instructed to fixate on a crosshair presented
centrally for 1,300 ms. Stimuli were presented at a visual angle of
17◦. A grid containing 6 letters (font: Calibri, size: 80 pt) was then
presented for 2,000 ms (encoding). These letters then disappeared
from the grid and, 3,000 ms later, (maintenance) a single “probe”
letter appeared for 900 ms (retrieval; see Fig. 1A). Participants
were instructed to respond with a button press as to whether the
probe letter was 1 of the 6 letters previously presented (in-set:
index finger and out-of-set: middle finger). Trials were presented
in pseudorandomized order, with 50% of trials having an in-set
probe and 50% an out-of-set probe. Each trial lasted for 6,900 ms,
and each participant completed 128 trials for a total run time
of about 15 min. This same task with slightly different timing
parameters has been validated by our group in several previous
studies (Heinrichs-Graham and Wilson 2016; Proskovec et al. 2016,
2019; Wiesman et al. 2016; Embury et al. 2018; Killanin et al. 2022).

MEG methods and statistical analyses
Acquisition and preprocessing
MEG acquisition and analysis methodology followed standardized
MEG processing pipelines that have been previously published by
our group (Proskovec et al. 2016; Wiesman et al. 2016; Embury
et al. 2018). Neurophysiological data were recorded using a 306-
sensor Elekta/MEGIN MEG system (Helsinki, Finland) within a
1-layer magnetically shielded room with active shielding engaged.
Data were sampled at 1 kHz with an acquisition bandwidth of
0.1–330 Hz. Data were corrected individually for head motion
and were subjected to noise reduction using the signal space
separation method with a temporal extension (Taulu and Simola
2006). Each participant’s functional data were coregistered with a
structural T1-weighted MRI template. Blink and cardiac artifacts
were modeled and extracted by signal-space projection (Uusitalo
and Ilmoniemi 1997).

The continuous time series was divided into epochs of 7,200-
ms duration, with 0 ms denoting the onset of the encoding grid.
Epochs were rejected using a fixed threshold method, supple-
mented with visual inspection. To ensure analysis of task-relevant
data, only correctly answered trials were included in final anal-
yses. Additionally, participants with poor performance (i.e. near-
chance accuracy) were excluded from further analyses.

Sensor space statistical analyses
Once cleared of artifactual trials, the remaining epochs were
transformed into the time-frequency domain using complex
demodulation, and the resulting spectral power estimations per
sensor were averaged over trials to generate time-frequency plots
of mean spectral density. Sensor-level data were normalized by
dividing the power of each time-frequency bin by the mean
baseline power (−1,200 to −1,000 ms) for that particular bin.
Statistical analyses of the sensor-level spectrograms comparing
the active window relative to the baseline period per gradiometer
were then conducted to determine the time-frequency windows
to be imaged.

Each data point in the spectrogram was initially evaluated
using a mass univariate approach based on the general linear
model (GLM) and was then corrected for multiple comparisons
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Table 1. Demographics and laboratory tests of the final sample.

T2D with poorly controlled glycemic
levels (A1c > 7.0%)

T2D with tightly controlled glycemic
levels (A1c < 7.0%)

N 17 17
Age (years) 63.3 ± 4.9 62.3 ± 5.1
Sex 4 males;

13 females
8 males;
9 females

Education (years) 15.1 ± 2.9 14.6 ± 2.0
Body mass index 32.3 ± 4.4 31.7 ± 4.5
Handedness 15 right; 2 left 16 right; 1 left
Disease duration (years) 13.5 ± 8.6 12.0 ± 7.1
A1c (%) 8.16 ± 0.74 6.54 ± 0.36
A1c (mmol/mol) 66 ± 8.1 48 ± 3.9
Creatinine (mg/dL) 0.80 ± 0.23 0.85 ± 0.18
Glucose (mg/dL) 133.24 ± 34.88 107.65 ± 21.53
Albumin/creatinine (ugAL/mgCR) 36.82 ± 69.35 18.44 ± 23.51
Thyroid-stimulating hormone (mcIU/mL) 2.13 ± 0.96 1.96 ± 1.20
B12 (pg/mL) 394.89 ± 364.98 468.85 ± 285.43

Values depict means ± SD. T2D = Type 2 Diabetes; A1c = glycated hemoglobin.

Fig. 1. Working memory task paradigm and behavioral metrics. A) The working memory task included a 1,300 ms fixation cross, followed by the
appearance of a 6-letter grid for 2,000 ms (encoding period), an empty grid for 3,000 ms (maintenance period), and finally, a probe letter within the
grid for 900 ms (retrieval period). During retrieval, participants were to respond with a button press as to whether the probe letter was (index finger) or
was not (middle finger) included in the previous set of 6 letters that was shown during the encoding period. B) Participants’ accuracy did not differ by
group, but there was a trend for group differences in reaction time (t32 = 2.01, P = 0.053), where those with poorly controlled glycemic levels (A1c > 7.0%)
had longer reaction times. # = (P = 0.053).

in stage 2. First, paired t-tests were conducted on each data
point against the mean baseline value at that frequency, and
the output spectrograms of t-values was thresholded at P < 0.05
to define time-frequency bins containing potentially significant
oscillatory deviations across all participants. In stage 2, time-
frequency bins that survived the threshold were clustered with
other temporally and/or spectrally neighboring bins that also
survived the threshold, and a cluster value was derived by
summing all of the t-values of all data points in the cluster.
Nonparametric permutation testing was then used to derive a
distribution of cluster values, and the significance level of the
observed clusters were tested directly using this distribution
(Maris and Oostenveld 2007). From these analyses, time-
frequency windows with significant oscillatory responses across
all participants were selected for imaging using a beamforming
approach.

Anatomical-level statistical analyses
Significant time-frequency windows were imaged at a 4.0 × 4.0
× 4.0-mm resolution using a linearly constrained minimum vari-
ance vector beamformer (Gross et al. 2001) as implemented in the
Brain Electrical Source Analysis software (version 6.1). This beam-
former method uses spatial filters in the time-frequency domain
to calculate the source power for the entire brain volume. Fol-
lowing convention, we computed noise-normalized source power
per voxel in each participant using active (i.e. task) and passive
(i.e. baseline) periods of equal duration and bandwidth. Resul-
tant images are referred to as pseudo-t maps, with units that
reflect noise-normalized power differences at each voxel. Each
participant’s functional MEG images were transformed into stan-
dardized space using the transform that was previously applied to
the structural images. Once transformed, resultant source images
were resampled to enable voxel-wise statistics across the sample.
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The resulting 3D maps of brain activity were averaged across
all participants to assess the neuroanatomical basis of significant
oscillatory responses identified through the sensor-level analysis.
In addition, these images were statistically evaluated using a t-
test, mass univariate approach based on the GLM. Specifically,
the effect of glycemic control was determined using 2-tailed
independent-sample t-tests separately for each encoding and
maintenance bins between patient groups with tightly controlled
and poorly controlled A1c levels. All output statistical maps were
displayed as a function of alpha level, thresholded at P < 0.05,
and adjusted for multiple comparisons using a spatial extent
threshold (i.e. cluster restriction; k = 10 4-mm3 voxels) based on
the theory of Gaussian random fields (Worsley et al. 1996). Sig-
nificant peaks were extracted for post hoc analyses. Correlations
with behavior metrics were also computed.

Results
Demographic, behavioral, and laboratory results
Seven participants had to be excluded for technical issues
related to MEG data acquisition and/or excessively artifactual
MEG data, and 1 participant had to be excluded for low blood
sugar during the scan. In addition, the task itself was difficult
for some participants, and 12 were excluded due to poor
accuracy on the working memory task (i.e. performance at-
or near-chance levels, cutoff was 60% accuracy). The final
sample of 34 represented match groups of poorly controlled
(A1c > 7.0%) and tightly controlled (A1c < 7.0%) glycemic levels.
Groups did not differ on age (P = 0.564), sex (P = 0.151), race
(P = 0.135), education (P = 0.635), handedness (P = 0.545), BMI
(P = 0.711), and disease duration (P = 0.586). Participants did
differ on glucose level at time of scan (P = 0.015; see Table 1),
although all participants were within the normal range at
time of scan. Most participants (n = 32) additionally completed
the NIH Toolbox cognitive battery, achieving near-population
mean standard scores (mean = 53.09 ± 9.26), which did not differ
by group (P = 0.422). Thirty participants identified as White, 2
participants identified as Black, and 2 participants identified as
Asian/Pacific Islander. Fifteen participants were solely treated by
≥1 oral medications (most commonly metformin), and 19 were
treated with insulin with/without additional oral medications.
Some participants reported additional comorbidities, including
nephropathy (5), retinopathy (4), peripheral neuropathy (12), and
cardiovascular (7) conditions. Seven participants from the tightly
controlled group and 10 participants from the poorly controlled
group reported ≥1 of these comorbid conditions. Nine participants
reported ≥2 of these conditions. See Table 1 for demographics and
blood panels.

Average accuracy was 76.7 ± 7.2%, and average reaction time
was 1,121.99 ± 144.02 ms. The groups did not differ by accuracy
(t32 =−0.76, P = 0.452), but there was a trend for reaction time
differences (t32 = 2.01, P = 0.053) such that those with higher A1c
levels (i.e. the poorly controlled group) had longer reaction times
(see Fig. 1B).

Sensor-level results
Statistical analysis of the time-frequency spectrograms showed
significant oscillatory responses in 2 distinct windows. These
included a 9–18 Hz oscillatory response during encoding and a
7–11 Hz response during maintenance (P < 0.001, corrected, see
Fig. 2). Imaging these responses indicated that parieto-occipital
regions were engaged during early encoding and that activity

Fig. 2. Working memory spectrogram. A grand-averaged time-frequency
spectrogram is shown, which was derived from a representative parieto-
occipital MEG sensor. Time is shown on the x-axis in seconds, and
frequency is shown on the y-axis in Hz. The colors reflect power increases
(red) and decreases (blue) relative to the baseline, and the scale bar is
shown to the right. Time-frequency windows for source imaging (beam-
forming) were derived from the statistical analysis of the sensor-level
data across all participants (Ps < 0.001, corrected). A distinct extended
alpha/low-beta decrease can be seen throughout the encoding period,
followed by a narrower band alpha increase (i.e. synchronization) during
maintenance.

spread anterior to include temporal and frontal regions during
maintenance.

Functional mapping results
Working memory dynamics altered with level of glycemic
control
To examine differences between the poorly and tightly controlled
groups, a whole brain t-test approach was performed separately
for the encoding and maintenance time windows. During encod-
ing, participants in the lower A1c group (tightly controlled) exhib-
ited stronger alpha/low-beta decreases in the left middle and
inferior temporal regions compared to those in the higher A1c
group (P < 0.05, corrected; see Fig. 3). Left inferior frontal and right
precentral gyri also showed group differences such that those
in the poorly controlled group exhibited weaker alpha/low-beta
increases relative to those in the well-controlled group (P < 0.05).

During the maintenance phase, groupwise effects were
found in right superior temporal, right medial occipital, left
lateral occipital, and left cerebellar regions (P < 0.05, see Fig. 3).
Specifically, participants in the poorly controlled group exhibited
significantly stronger alpha decreases in the right superior
temporal cortices relative to the well-controlled group. The other
3 significant responses were alpha synchronizations, with those
in the well-controlled group exhibiting more strongly increased
alpha in the right medial occipital peak, while both the left
lateral occipital and left cerebellar peaks reflected stronger
alpha increases in the more poorly controlled group. Finally, peak
differences were not significantly correlated with age (Ps of 0.072–
0.571) or duration (Ps of 0.109–0.952).

Altered neural dynamics relate to behavioral metrics
Next, we evaluated neuro-behavioral effects. During encoding,
both the left middle (Fisher’s Z = 2.13, P = 0.033) and inferior
(Fisher’s Z = 2.16, P = 0.031) temporal peaks were significantly
correlated with reaction time in those with poorly controlled A1c
(middle temporal: r15 = 0.61, P = 0.009; inferior temporal: r15 = 0.69,
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Fig. 3. Differences in working memory neural oscillatory responses by glycemic control level. (Top) Those with tightly controlled glycemic levels (A1c
< 7.0%) showed stronger alpha/low-beta decreases during encoding in left temporal regions, while those with poor glycemic control exhibited weaker
alpha/low-beta increases in the left inferior frontal and right precentral regions. (Bottom) Participants with poorer glycemic control (A1c > 7.0%) had
greater alpha increases in left lateral occipital and cerebellum and had greater alpha decreases in right temporal regions during the maintenance period.
However, those with tightly controlled glycemic levels had greater alpha activity in right occipital regions in maintenance. Data are thresholded P < 0.05
to P < 0.005.

P = 0.002) such that stronger alpha/low-beta decreases were
related to faster reaction times, whereas no relationship between
these variables was seen in those with tightly controlled A1c
levels (middle temporal: r15 = 0.21, P = 0.419; inferior temporal:
r15 = 0.14, P = 0.592; see Fig. 4).

Likewise, during maintenance, left lateral occipital activity was
significantly related to accuracy across both groups such that
stronger alpha increases were associated with lower accuracy
(r32 = 0.48, P = 0.005), but this effect was largely driven by
the tightly controlled A1c group (Fisher’s Z = 2.06, P = 0.039;
tightly controlled A1c: r15 = 0.79, P < 0.001, poorly controlled
A1c: r15 = 0.27, P = 0.295; Fig. 5). Further, neural activity in
the left lateral occipital were also significantly related to the
reaction time across groups (r32 = 0.36, P = 0.043) such that
stronger activity were related to slower reaction times, but this
effect was not significantly different between groups (Fisher’s
Z = 0.84, P = 0.401). Similarly, activity in the left cerebellar peak
was significantly related to reaction time across both groups
(r32 = 0.42, P = 0.017; Fig. 5) such that stronger alpha increases
were associated with longer reaction times, but again this
effect was not significantly different between groups (Fisher’s
Z = 1.77, P = 0.077). These results highlight potential deviations in
processing and neural oscillatory dynamics by A1c level.

Discussion
We found that the level of glycemic control significantly
affected the neural dynamics serving encoding and maintenance
phases of the working memory task. During encoding, type
2 diabetes patients with tightly controlled A1c levels (<7.0%)
showed stronger left inferior frontal, right precentral, and left
temporal alpha/low-beta responses than those with poorly
controlled diabetes (A1c levels >7.0%). In maintenance, those
with poorly controlled diabetes had greater alpha activity in right
temporal, left lateral occipital, and left cerebellum and had lower
activity in the right occipital cortex than those with tightly con-
trolled diabetes. Working memory tasks, particularly those with
language-based stimuli, tend to recruit left lateralized regions,
beginning in occipital and spreading anterior to temporal and

frontal regions throughout the encoding period, and incorporating
parietal regions in maintenance to disengage from distracting
information (Brookes et al. 2011; Bonnefond and Jensen 2012;
Heinrichs-Graham and Wilson 2015; Proskovec et al. 2016). Poor
glycemic control was associated with alterations in temporal,
frontal, occipital and parietal dynamics, suggesting a widespread
neural impact of chronic dysglycemia. Below, we discuss the
implications of these findings for understanding the broad impact
of glycemic regulation in type 2 diabetes.

Previous literature has found similar cognitive and neural
decrements relative to elevated glycemic levels (McCrimmon
et al. 2012; Geijselaers et al. 2015), although many of these studies
used fMRI which can be affected by the vasculature damage that
is known to occur with chronic dysglycemia. Previous studies
similarly have shown a significant relationship between elevated
A1c levels and diminished resting temporal dynamics (Xia et al.
2013), mirroring the directionality seen in the present study
during encoding. Using glycemic clamp and neuropsychological
methods, acute dysglycemia has been shown to yield cognitive
decrements in multiple domains, including working memory
(Sommerfield et al. 2004), and at least 1 glycemic clamp study
showed diminished neural responses when a working memory
task was completed during acute hyperglycemia (Backeström
et al. 2021). In addition, a previous fMRI study of working memory
in type 2 diabetes has shown increased regional recruitment
in frontal–parietal regions compensating for reduced functional
connectivity between these regions (Zhang et al. 2016). Further,
this increased regional recruitment scaled with performance
(Zhang et al. 2016).

Many of the group differences found in the current working
memory study were consistent with those affected by normative
aging processes (Proskovec et al. 2016). In particular, we found
stronger oscillations in posterior cortices during maintenance
in those with poorly controlled glycemic levels. Similarly, older
healthy aging adults exhibit stronger responses than younger
adults across these same brain regions during maintenance, likely
reflecting the compensatory mechanisms assisting in blocking
distracting stimuli and maintaining the fidelity of the encoded
response during maintenance (Proskovec et al. 2016). Likewise, the
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Fig. 4. Encoding neuro-behavioral correlations. Temporal dynamics during encoding significantly related to reaction time in both the left inferior
(left; Fisher’s Z = 2.16, P = 0.031, poorly controlled: r15 = 0.69, P = 0.002 tightly controlled: r15 = 0.14, P = 0.592) and left middle (right; Fisher’s Z = 2.13,
P = 0.033, poorly controlled: r15 = 0.61, P = 0.009, tightly controlled: r15 = 0.21, P = 0.419) temporal regions but only in the poorly controlled group.
Stronger alpha/low-beta decreases in these regions were associated with faster reaction times specifically in the poorly controlled glycemic level
group (A1c > 7.0%), where overall weaker oscillatory activity during encoding in these regions led to longer reaction times. Dashed lines represent
each group’s slope (light blue = tightly controlled; darker blue = poorly controlled), while the solid lines represent the overall (all subjects) slope of the
relationship.

Fig. 5. Maintenance neuro-behavioral correlations. Lateral occipital responses during maintenance were significantly related to both accuracy (left,
r32 = 0.48, P = 0.005) and reaction time (right, r32 = 0.36, P = 0.043). Greater alpha increases in this region during maintenance yielded worse accuracy,
driven by the tightly controlled glycemic group (Fisher’s Z = 2.06, P = 0.039; tightly controlled A1c: r15 = 0.79, P < 0.001, poorly controlled A1c: r15 = 0.27,
P = 0.295), and longer reaction times across both groups (Fisher’s Z = 0.84, P = 0.401). Left cerebellar dynamics and the relationship to reaction time
mirrored the effects in the left lateral occipital cortex (r32 = 0.42, P = 0.017) with a trend in the effect by group (Fisher’s Z = 1.77, P = 0.077). Dashed lines
represent each group’s slope (light blue = tightly controlled; darker blue = poorly controlled), while the solid lines represent the overall (all subjects)
slope of the relationship.

increased bilateral recruitment we find throughout the mainte-
nance period likely reflects compensation by right homologous
regions to complete task goals, as also found in aging studies
(Proskovec et al. 2016).

Interestingly, several of the responses in the current study
also related to behavior. For example, the encoding response in
both the left inferior and middle temporal regions were related to
behavior, with the amplitude of these responses inversely scaling
with reaction time such that stronger activity was associated with
faster reaction times, and this effect was largely driven by the
group with uncontrolled diabetes. This impact on behavior likely
reflects a diminished neural efficiency in task-relevant regions
of those, with higher A1c levels leading to worse behavioral
outcomes. Conversely, increased left lateral occipital activity
during maintenance was seemingly detrimental to performance,
with activity in this region related to both accuracy and reaction
time such that stronger responses were associated with both
lower accuracy and longer reaction times. While this response

was related to behavior, the effect did not differ by group,
demonstrating the direct impact of glycemic control on
brain–behavior relationships even in the context of controlled
glycemic levels.

The mechanism thought to underlie specific deficits attribut-
able to type 2 diabetes directly is impaired insulin signaling in the
brain. Insulin is involved in a vast number of neural operations
across the cortex and subcortical structures, with increased
concentration in the thalamus, hippocampus, and cerebellum
(Kullmann et al. 2016; Arnold et al. 2018). At the cellular level,
it has a role in the regulation of key receptors (i.e. NMDA,
GABA, and AMPA), the development of synapses and dendritic
spines, and astrocytic inflammatory signaling (Arnold et al.
2018). Insulin levels have been linked to cognitive performance
in the domains of memory, processing speed, and executive
functioning (Kullmann et al. 2016). Studies of intranasal insulin
administration in particular have found acute increased memory
performance following administration (Kullmann et al. 2015).
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Insulin resistance also induces inflammatory processes through
several mechanisms, including the production of advanced
glycation end products (AGEs) (Yaffe et al. 2011; Chatterjee and
Mudher 2018). Increased AGEs have been shown to lead to worse
cognitive outcomes regardless of diabetes status (Adams et al.
2016). There is also evidence of insulin resistance contributing
to the accumulation of amyloid and tau (Kullmann et al. 2016;
Chatterjee and Mudher 2018), which may underlie the increased
risk for Alzheimer’s disease in type 2 diabetes.

The evidence is mixed on the effects of strict glycemic control
despite the clear links of hyperglycemia to cognitive decrements.
Several studies, including the large ACCORD-MIND study (Cooray
et al. 2011; Moheet et al. 2015), have shown modest immedi-
ate improvements in cognitive measures with tighter glycemic
control, although at longer follow-up intervals, effects are not
significant (Moheet et al. 2015). At least a few studies have shown
negative impacts of strict glycemic control (Zammitt and Frier
2005; Launer et al. 2011; Seaquist 2015), likely due to the periodic
induction of hypoglycemia when trying to overcompensate for
hyperglycemic episodes.

While this study made major strides in elucidating the impact
of type 2 diabetes on specific neural circuits underlying higher-
order cognition, some limitations should be acknowledged. First,
we examined the impact of glycemic control using the coarse
A1c measure, where continuous glucose monitoring may have
offered a finer grain look at glucose metrics, including glycemic
variability. Examining the influence of hyperglycemic peaks and
hypoglycemic troughs could reveal the key details behind the
deficits scaling with A1c. Further, it might reflect a multiple hit-
type model, where these discrete events are specifically inducing
damage rather than (or in addition to) the general background
glycemic level chronically causing damage. Future studies should
examine these variables more in depth to further clarify their
causal links to the observed neural deficits. Second, the partic-
ipants found the current task fairly difficult even though none
had apparent or diagnosed neurological deficits at this stage.
This may affect the generalizability of the study to the general
population of those with type 2 diabetes as they age, particularly
those with diagnosed neurocognitive deficits. Additionally, due to
the number of exclusions, we may have introduced some selection
bias into our sample. While exclusions occurred for each of the
glycemic level groups, there were a greater number excluded with
higher A1c values (14 poorly controlled vs. 6 within the tightly
controlled group). Notably, the scope and goals of the current
study were limited to those without apparent deficits in order
to examine the effects more directly of diabetes rather than
possible confounding conditions like dementia. Specifically, for
participants that completed the NIH toolbox cognitive battery,
participants generally had near-population mean standard scores
and these did not differ by group. Further, no cognitive deficits
were noted in the medical records of any of our participants.
Future studies should examine the effects of working memory
load in this population to determine whether these alterations
are also found at various other smaller working memory loads
and in those with apparent deficits to examine the trajectory of
these changes with severity of neurocognitive effects. Notably, the
current approach focused on the dynamics within the alpha and
alpha/low-beta bands, similar to our approach in a previous study
of individuals with type 1 diabetes. Previous studies have also
found effects across the frequency spectrum, particularly in theta
and gamma. Dynamics across other frequency bands should be
examined in future studies across a variety of contexts and in
relation to working memory processes.

Conclusion
In the current study, we found specific alterations in working
memory processing by the level of glycemic control. An overall
suppression of responses in task-relevant regions was found in
those with poorly controlled A1c levels during working memory
encoding, with distinct effects of glycemic control status on neu-
ral dynamics during working memory maintenance. In particu-
lar, participants with poorly controlled diabetes showed stronger
responses in several key brain regions, with only 1 occipital cluster
showing a greater response in participants with tightly controlled
A1c. These findings suggest that glycemic control has a direct and
major impact on cognitive and neural processing in those with
type 2 diabetes.
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