Algorithm 1.
1: ————————Step 1: Input |
Dataset D = {(x1(1), x2(1), ..., y(1)), (x1(2), x2(2), ..., y(2)), (x1(n), x2(n), ..., y(n))}; Primary learning algorithm : PLA = {DNN, LSTM-RNN, DBN}; Secondary learning algorithm:Random Forest(RF) 3: ———————-Step 2: Process 1: split D:Train_data, Testing_data 2: for t = 1, 2, ..., T do 3: h(t) = Stratified Fold (Train_data); 4: end for 5:New_Train_data =Ø; 6: for i in PLA do 7: for t = 1, 2, ..., T do 8: Zit =h(t)(PLA(i)); 9: end for 10: New_Train_data = ∪((Zi1, Zi1, ..., Zi1), yi); 11: end for 12: New_Test_data = Ø; 13: for i in PLA do 14: for t = 1, 2, ..., T do 15: Zit= h(t)(PLA(i)); 16: end for 17: New_Test_data = ∪ ((Zi1, Zi1, ..., Zi1), yi); 18: end for 19: Training_RF = RF(New_Train_data) 3: ———————Step 3: Output Testing_RF = Training_RF (h(1)(New_Test_data(1)), h(2)(New_Test_data(1)), ..., h(T)(New_Test_data(1))) |